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Abstract: This paper compares various optimization techniques and objective functions to obtain
optimum rocket engine performances. This research proposes a modular optimization framework that
provides an optimum design for Gas Generator (GG) and Staged Combustion (SC) Liquid Propellant
Rocket Engines. This process calculates the ideal rocket engine performance by applying seven
different optimization techniques: Simulated Annealing (SA), Nelder Mead (NM), Cuckoo Search
Algorithm (CSA), Particle Swarm Optimization (PSO), Pigeon-Inspired Optimization (PIO), Genetic
Algorithm (GA) and a novel hybrid GA-PSO technique named GA-Swarm. This new technique
combines the superior search capability of GA with the efficient constraint matching capability of
PSO. This research also compares objective functions to determine the most suitable function for GG
and SC cycle rocket engines. Three single objective functions are used to minimize the Gross Lift-Off
Weight and to maximize Specific Impulse and the Thrust-to-Weight ratio. A fourth multiobjective
function is used to simultaneously maximize both Specific Impulse and Thrust-to-Weight ratio. This
framework is validated against a pump-fed rocket, and results are within 1% of the actual rocket
engine mass. The results of this research indicate that PSO and GA-Swarm produce optimum results
for all objective functions. Finally, the most suitable objective function to use while comparing these
two cycles is the Gross Lift-Off Weight.

Keywords: Liquid Propellant Rocket Engine (LPRE); genetic algorithm; hybrid technique; design
optimization

1. Introduction

A Launch Vehicle (LV) design requires complex decisions to be made from the start of
the design phase. Mission designers must decide on inter-related factors, which include
the most feasible engine design and propellants to reach the mission’s requirements, envi-
ronmental impact, manufacturing processes, overall cost and the availability and skillset of
human resource required to manufacture, test and deploy a launch vehicle [1]. These factors
are all inter-connected, highlighting the intricacies involved in making major decisions at
an early stage of the design process.

A typical rocket engine uses solid, liquid or hybrid propellants. Compared to solid
or hybrid propellants, liquid propellants have the following advantages: (1) relatively
high energy density, which leads to a higher Specific Impulse (Isp), resulting in increased
engine efficiency; (2) propellant storage tanks require a reasonably low volume; (3) engine
throttling (if required) is easily achieved by varying the propellant flow rate in order to
control the thrust; (4) allowance for multiple burns as the engine can be repeatedly shut
down and restarted [2]. Liquid Propellant Rocket Engines (LPREs) are classified by their
propellant feed system: either pressure fed or pump fed. Mission designers prefer pump-
fed LPREs due to the higher combustion chamber pressure (pc) produced. Higher pc results
in a relatively smaller engine; therefore, the payload carrying capacity of the overall LV
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increases. However, pump-fed engines, also known as turbopump engines, come with
varying complexities. There are three types of turbopump LPRE cycles: Gas Generator
(GG), Staged Combustion (SC) and Expander. GG and SC cycles contain a secondary
combustion chamber where tapped-off fuel and oxidizers are ignited. The resulting exhaust
gases are used to power the turbine. This turbine powers the pumps, which raise the
propellant pressure to the required pc. In SC, the exhaust gases are redirected back to
the main chamber for complete combustion. Expander cycles do not contain a secondary
combustion chamber. Such engines are only used for cryogenic propellants as their heat of
vaporization is greater; therefore, more energy can be extracted and used in mechanical
work. Thus, Expander cycle LPREs are only used as upper stage engines in LVs. Hence,
for single-stage LVs or first-stage engines, there is often a tradeoff between GG and SC
engines: SC engines typically achieve higher pc; therefore, the LV can carry greater payloads.
However, this increase in payload comes at the expense of greater design complexity.

The design phase for an LV consists of three stages: conceptual, preliminary and
detailed design. The propellant pair and engine cycle are finalized in the conceptual
design phase. The mission designer’s main aim is to maximize the LPRE performance
while simultaneously minimizing the overall LV weight in order to increase the payload [3].
According to Hammond [4], the Life-Cycle Cost (LCC) of an LV follows the Pareto Principle:
80% of a vehicle’s LCC is finalized at the conceptual design stage.Thus, any changes in
the preliminary or detailed design stages do not result in exponential improvements.
Therefore, to minimize the risk of major revisions at a later stage in the design cycle,
research recommends a thorough analysis of all major sub-systems and components at the
conceptual design phase [5]. The use of multiple trade-off studies during the conceptual
design stage enables mission designers to quantitatively determine the effect of mission
requirements on the engine’s performance and overall LV size. Such studies aid mission
designers in understanding the effect of interconnected variables such as propellant mass,
LV weight, pc, thrust and manufacturing complexity [6].

Trade-off studies rely on mathematical tools to model the propulsion sub-systems and
provide LV mass estimates. These tools are based on Mass Estimate Relationships (MERs),
which are empirical models derived from parametric equations between thrust and engine
mass [7]. Therefore, the accuracy of the model is proportional to the number of data points
used. A review of MERs determined that there is no single set of relationships that is more
accurate [8]. Wildvank [9], therefore, recently developed a structural dry mass model for
an LV, with the aim of moving away from empirical-based mass estimates.

Optimization techniques initially used on LPRE cycles included non-gradient- and
gradient-based methods such as Genetic Algorithm (GA) and Sequential Quadratic Pro-
gramming (SQP) for both entire cycles as well as specific sub-systems [10–12]. Akhtar
et al. and Bayley et al. [13,14] used GA-based techniques to optimize a single-stage and a
four-stage LV, respectively. Da mota [15] utilized SQP to optimize two LPRE cycles with the
objective of maximizing payloads. He concluded that algorithms such as Particle Swarm
Optimization (PSO) should also be studied. Zhou et al. [16] modelled the optimal starting
and regulating characteristics of an electric pump for LPRE using the GA technique. A
fuzzy Multi-Objective GA (MOGA) technique has been applied to a GG cycle [17] as well
as on a hybrid rocket [18] with the objectives of maximizing altitude and minimizing Gross
Lift-Off Weight (GLOW). Orgeira-Crespo et al. [19] compiled a database of existing LPREs
and examined conceptual multistage LVs based on those existing engines. A GA technique
was used on these conceptual LVs to optimize the GLOW based on different trajectories.
Castellini et al. [20] compared different techniques to optimize the LV ascent trajectory and
concluded that GA and PSO techniques were the most feasible techniques to use.

A surrogate model-based two-step method was used by Mack et al. [21] to optimize
a radial turbine in an Expander cycle LPRE. First, Response Surface Approximation was
used to search the solution space to develop an approximate model. Secondly, GA was
used to refine the search area and obtain a global optimum point. An alternative to this
method is CFD, which is computationally intensive and time-consuming. Cui et al. [22]
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also used a surrogate-based model to optimize the trajectory of an air-launched solid
rocket. Neural Network (NN)-based models were applied by Dresia et al. [23] to LPRE
problems such as estimating the fatigue life of reusable thrust chambers and estimating the
maximum temperature in nozzle cooling channels. In both cases, NN models were created
as large sets of training data were available: 120,000 data points to estimate fatigue life
and 20,000 CFD simulations to calculate the maximum temperature. NN-based controllers
are proposed by Yu et al. [24] to ensure steady-state spacecraft formation when in orbit.
Therefore, similarly to [25], surrogate and NN models are beneficial when problems are
computationally intensive and already have numerous data sets available. For the purposes
of this research, the numerical calculations are not computationally intensive; therefore, the
benefits of such techniques are minimized and non-gradient- and gradient-based algorithms
can be directly applied.

When determining GLOW for an LV, according to the best of our investigations,
researchers, apart from [19], used mass models based on MERs to provide estimates for the
masses. While minimizing GLOW and maximizing payload have been used as Objective
Functions (OFs), to the best of our knowledge, other OFs such as maximizing Isp or Thrust-
to-Weight ratio (T/W) have not been investigated. In addition, the optimization models
mentioned previously require Thrust (F) and pc as inputs. This results in running the
optimizer numerous times at different user defined F and pc values in order to obtain a
Pareto front of optimal points. Furthermore, although newer techniques such as the Cuckoo
Search Algorithm (CSA) and Pigeon-Inspired Optimization (PIO) have successfully been
used in various aerospace applications [26], to our knowledge, these techniques have not
been used in LPREs.

This research has three aims. First, to estimate the mass and dimensions of a pump-fed
cycle LPRE using mathematical model and not via statistical or empirical estimates. Second,
to compare seven techniques, including a novel hybrid GA-PSO technique (GA-Swarm),
and four OFs on GG and SC cycles and determine the most suitable technique and function
for each cycle. Thirdly, a comparison is made between the two cycles for a given mission.

The structure of this paper is as follows: a description of the modelling and optimiza-
tion process used in this research is provided in Section 2; a validation of the mass model
and results of the optimization algorithms and OFs are discussed in Section 3; conclusions
and future work are provided in Section 4.

2. Methodology

A flow chart describing the process used to estimate the mass and dimensions of
a pump fed LPRE is shown in Figure 1. The framework developed in this research has
a modular format. Therefore, the propulsion sub-systems are ’assembled’ in various
combinations to model different cycles.

The required inputs are propellant pair, the LPRE cycle to be modelled (SC or GG) and
the mission. The mission as defined in this process includes the required change in velocity
(∆V) and the required altitude (H). In this research, pc, F and burn time (∆t) are calculated
during the optimization process, unlike previously mentioned models in Section 1 where
pc and F were required inputs.
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Figure 1. Optimization and modelling flow chart.

2.1. LV Model

Once the propellant pair is entered, Chemical Propellant Equilibrium Program (CPropEP),
an external software based on NASA calculations [27], is used to calculate propellant
thermodynamic properties. Detailed information on CPropEP is given in [28,29]. This
software calculates a range of output variables, from which the characteristic velocity (c∗),
thrust coefficient (CF), combustion chamber temperature (Tc), isentropic expansion factor
(γ), molar mass (M) and the expansion ratio (ε) are required for further calculations in
this research.

As pc is not fixed and as optimum pc is required, the above variables would have to be
recalculated in every iteration during the optimization process. In order to reduce comput-
ing times, an additional code was written to calculate the optimum Mixture Ratio (MR) for
the propellant combination at different values of pc. The data were fitted using non-linear
curve-fitting. The equations generated are then used to recalculate the thermodynamic
variables in each iteration during optimization instead of repeatedly running CPropEP
again. Therefore, the advantages of this additional step are as follows:

• Time saved during the optimization process as CPropEP is not repeatedly run for
each iteration. Instead, it only runs once to generate equations for each of the re-
quired variables.

• The optimum MR for each pc is calculated to achieve the maximum c∗ at that specific
pc. Maximizing c∗ is important as it indicates a higher combustion efficiency and an
increase in engine performance.

The thermodynamic properties are then used in the engine model developed for the
purpose of this research.

This method also minimizes the optimization processing time as otherwise CPropEP
would load and run for each value of pc. MR is calculated via the equation below:

MR = a + b × p0.125
c +

c
pc

(1)
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The output variables c∗, CF, Tc, M and γ are calculated in succession using the follow-
ing equation:

y = a + b × p0.125
c − c

pc
(2)

where y alternately represents c∗, CF, Tc, M and γ.
Equation (3) is used to calculate ε.

ε = a + b × p0.769
c (3)

These equations and the values of the variables a, b and c are unique to the combination
of a given propellant pair at a given exit pressure. If the performance of an LPRE cycle
needs to be analyzed with a different propellant pair or the performance of the propellant
pair needs to be evaluated at a different value of pe, data need to be generated from the
start to obtain the required values for each equation.

2.1.1. Propellant Mass and Tank Calculations

A forward calculation is used in the optimization techniques, which requires Thrust
F, pc and burn time ( ∆t) to be specified. Therefore, initial values are given; however,
the final values are obtained as an optimized output. Using the output values calculated
in Section 2.1 and standard equations as defined in [30], specific impulse, Isp, propellant
mass flow rate, ṁp, and overall propellant mass, Mprop, are calculated using the following
equations:

Isp = c∗ × CF
g0

(4)

ṁp =
F

Isp × g0
(5)

Mprop = ṁp × ∆t (6)

where g0 is the standard value of Earth’s gravity defined as 9.81 m/s2. The multiplication
by g0 is for the purpose of unit conversion only as Isp is defined as total impulse per unit
weight of propellant. Using the optimum MR calculated in the previous section, the mass
of fuel, M f , is calculated via the following.

M f =
Mprop

1 + MR
(7)

As fuel has been predefined, its density is already known; therefore, the volume of
fuel and, hence, volume of fuel tank can be calculated as per Equation (9). An additional
10% volume is added to account for ullage volume.

v f =
M f

ρ f
(8)

v f Tank = 1.1v f (9)

Assuming the tank is cylindrical in shape, with a Length:Diameter (L/D) of 7, rear-
ranging the standard equation for volume of a cylinder, the radius and length are calculated
in the following equations.

r f Tank =
3

√
v f Tank

14π
(10)

l f Tank =
v f Tank

r2
f Tankπ

(11)
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The selected propellant tank material for both propellants is Stainless Steel 316 [30].
Safety factors of 1.25 and 1.5 are, respectively, applied to the yield strength and ultimate
strength to calculate the maximum allowable operating stress, σtank.

The total operating pressure is calculated as given below where the pressure drops
due to the injector head assumed to be 10 bar, and an additional 10% is added due to losses
in the fittings.

ptot = pc + pinjDrop + 0.1pc (12)

As the tank material and allowable operating stress is known, the equation for Hoop
Stress as defined in [30] is rearranged to obtain the tank’s thickness via the following
equation.

t f Tank =
ptot × r f Tank

σtank
(13)

Finally, the propellant fuel tank mass is determined using Equation (14):

M f Tank = 2π × r f Tank × l f Tank × t f Tank × ρtank (14)

where ρtank is already known as the tank material is pre-defined. Equations are then
repeated to calculate the oxidizer mass, Mox, and oxidizer tank mass, MoxTank. Instead of
Equation (7), the following equation is used to calculate the oxidizer mass.

Mox = Mprop − M f (15)

In this framework, it is assumed both tank radii are the same. Therefore, once the radii
of both tanks are calculated, the maximum value is taken as the radii for both, and the tank
lengths and thicknesses are recalculated accordingly.

2.1.2. Pressurant Mass and Tank Calculations

The selected pressurant is Helium, He, and the pressurant tank material is Ti 6Al-
4V [30]. The initial tank pressure, pHe, is set at 450 bar. The number of moles of He required
to pressurize the fuel and oxidizer tanks is calculated using the Ideal Gas Equation:

nHe f =
ptot × v f

RT
(16)

nHeox =
ptot × vox

RT
(17)

where R is the molar gas constant, 8.314 J/Kmol, and temperature, T, is assumed at room
temperature, 298.16 K. The volumes for fuel (v f ) and oxidizer, (vOx) were previously
calculated using Equation (8).

The ratio of He left in the tank, ratioHele f t , is assumed to be 2. The pressure of He left
in the tank, pHele f t is given by the following.

pHele f t = ptot × ratioHele f t (18)

The minimum number of moles of He, (nHe), therefore, required to pressurize both
propellant tanks is calculated as follows.

nHe =

(nHe f +nHeox)×pHe
pHele f t

pHe
pHele f t

− 1
(19)

The mass of He, MHe, is obtained via converting the number of moles of He to kg.

MHe =
4nHe
1000

(20)
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The Ideal Gas Equation is again used to calculate the volume of He, vHe, in the tank.
This is assumed to be the inner tank’s volume. The pressurant tank is assumed to be
spherical; therefore, using the standard equation for volume of a sphere, the inner radius is
calculated via the following.

rHeTanki
= 3

√
vHe
4π

(21)

Given the allowable stress, S (assumed 1100MPa), and joint efficiency, E (0.9), of the
material and the equation from [30], the tank’s thickness, tHeTank, is determined as follows.

tHeTank =
pHe × rHeTanki

2S × E − 0.2pHe
(22)

The tank’s outer radius, rHeTanko , is simply the following.

rHeTanko = rHeTanki
+ tHeTank (23)

The He tank outer, vHeTanko , and inner vHeTanki
volumes are calculated using the

volume of a sphere and the respective inner and outer tank radii given in equations. The
mass of the pressurant tank, MHeTank, is therefore calculated below with an additional 20%
mass as the safety margin.

MHeTank =
1.2(vHeTanko − vHeTanki

)

ρHeTank
(24)

2.1.3. Combustion Chamber Mass Calculations

The combustion chamber’s shape is assumed to be cylindrical with a converging-
diverging nozzle attached at the lower end. The assumptions, based on those given in [30],
used are chamber area (ac) equivalent to three times the throat area (at), nozzle characteristic
length (L∗) of 1.143 m, nozzle converging section is a truncated cone and the chamber and
nozzle thickness is 3 mm. A 45°angle is assumed for the converging nozzle section and
15°angle for the diverging section. The nozzle and chamber’s material comprises stainless
steel. Therefore, once at is calculated as in Equation (25), and as material ρ is known,
standard equations for volume of a cylinder and truncated cone are used to calculate
the remaining dimensions and, consequently, the nozzle’s mass, Mnozzle, and combustion
chamber’s mass, Mc.

at =
c∗ × ṁp

pc
(25)

2.1.4. Pre-Burner and Gas Generator Dimensions and Masses

The pre-burner and gas generator dimensions and mass (MGG and MPB are calculated
in a similar manner to the main thrust chamber given in the previous section). The
assumptions about the material, shape, converging angle and nozzle thickness are as given
in Section 2.1.3.

The mixture ratio for both GG and PB is fixed at 0.5. CPropEP is used to calculate the
subsequent thermodynamic parameters required for mass and dimension calculations.

2.1.5. GG Parameters

For the GG cycle, the combustion chamber pressure of the GG, pcGG, is assumed to be
the same as the main chamber, pc.

The propellant mass flow rate for GG, ṁpGG, is assumed to be 2% of the main chamber
flow rate, as given in [30].
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2.1.6. SC Parameters

For the SC cycle, the combustion chamber pressure of the PB, pcPB, is calculated via
the critical pressure ratio, as given in [30]:

pcPB =
Pratiot × 1.1 × (pc + ∆plosses)

0.57
(26)

The propellant mass flow rate for PB is assumed to be fuel rich [30]. It is assumed that
the entire fuel volume flows through the PB. The total fuel mass flow rate through the PB is
assumed at 1.5 × ṁ f PB. As the mixture ratio is already known, as is ṁ f PB, the PB oxidizer
mass flow rate is then calculated.

2.1.7. Engine Balancing

The design of a turbopump system depends on the power balance between the pumps
and turbine. The mission designer must ensure that the power generated by the turbine
matches the power required by the pumps.

The power required by each pump is a function of the volumetric flow rate, Q, change
in pressure, ∆p, and the pump efficiency, η, as shown in the following equation.

Ppumpox, f =
Q × ∆p

ηp
(27)

The power required by each pump is calculated separately and summed to provide
the total power required by the pumps, PP.

The actual power produced by the turbine is calculated via the following:

PT = ηt × ṁT × cp × TTIn × (1 − (
1

PRatioT
)

γGG−1
γGG ) (28)

where etat is the turbine efficiency, ṁT is the turbine mass flow rate, cp is the specific heat
capacity at constant pressure of the gas entering the turbine, TTIn is the Turbine Inlet
Temperature, PRatioT is the turbine pressure ratio ( TurbineInletPressure

TurbineDischargePressure ), and γ is the ratio
of the specific heats.

The equations given above undergo several iterations until the power produced by
the turbine matches the power required by the pumps.

2.1.8. GG Power Balance

GG is an open cycle LPRE. The turbine pressure ratio across the turbine is kept fixed at
20 [30]. In addition, the turbine mass flow rate is assumed equal to the GG mass flow rate.
As mentioned in Section 2.1.5, the mixture ratio is fixed as is the GG flow rate. Therefore,
the oxidizer and fuel mass flow rates through the GG can be calculated as per Section 2.1.5.

2.1.9. SC Power Balance

For closed cycles, such as SC and Expander, the LPRE tool keeps the turbine pressure
ratio as a variable to be optimized. According to [30], this ratio is approximately 1.5 for
SC and Expander cycles. The turbine must generate enough power to drive two oxidizer
pumps and one fuel pump. The PB mass flow rate and individual propellant mass flow
rates through the PB are calculated as mentioned in Section 2.1.6. The volumetric flow rate
through the secondary oxidizer pump, Qox2 is taken as half of the total fuel volumetric
flow rate, Q f . The turbine mass flow rate is assumed to be equal to the PB mass flow rate;
however, this flow rate is greater in magnitude compared to the GG flow rate as the entire
fuel is directed to the PB.

2.1.10. System Mass and Dimensions

The overall system mass, Msys, is then a sum of the combustion chamber, nozzle, tanks,
propellant and pressurant masses, turbopump assembly, Pre-Burner (or Gas Generator)
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and the payload, as shown in Equation (29). This is also known as Gross Lift-Off Weight
or GLOW. Calculations for system mass and dimensions are as per the model previously
described in [31].

Msys = MHeTank + MHe + Mox + MoxTank + M f + M f Tank
+Mnozzle + Mc + Mturbine + Mpumps + MGG + Mpayload

(29)

For the SC cycle, MPB would replace MGG and the secondary oxidizer pump, Mox2,
would also be included.

2.2. Flight

This section describes the models used to calculate the forces acting on the LPRE (and
hence the amount of Thrust, F, required) as it ascends through the atmosphere to reach the
required mission altitude. Changes in gravity, air density and atmospheric pressure and
temperature are taken into account. The framework assumes vertical lift-off and flight.

Once engine parameters are calculated, F and Drag (D) are calculated at pre-determined
intervals of time to determine the performance of the LPRE from takeoff until reaching the
required H.

2.2.1. Atmospheric Model

Atmospheric temperature, (Ta), and atmospheric pressure, (pa), vary with altitude, H.
This variation influences the air density (ρa), which in turn affects the drag on any vehicle
passing through the Troposphere, lower Stratosphere and upper Stratosphere. In this
research, the US Standard Atmosphere Model, 1976 [32], is used to calculate the pressure,
temperature and density with increasing altitudes as per the following equations.

For the Troposphere with an altitude below 11,000 m, Ta and pa are calculated via the
following:

Ta = 15.04 − 0.00649 × H (30)

pa = 101.29 × (
Ta + 273.1

288.08
)5.256 (31)

When the LPRE is travelling through the lower Stratosphere where the altitude is
between 11,000 m and 25,000 m, the following set of equations are used to obtain pa and Ta:

Ta = −56.46 (32)

pa = 22.65e1.73−(0.000157×H) (33)

The upper Stratosphere lies above 25,000 m. For these higher altitudes, (Ta) and (pa)
are determined as per the following equations:

Ta = −131.21 + 0.00299 × H (34)

pa = 2.488 × (
T + 273.1

216.6
)−11.388 (35)

The three equations are given above for calculating Ta return values in °C. Therefore,
an additional step is required to add 273.1 to each value to convert to Kelvin. Similarly, the
values of pa are in kPa and must be converted to Pa in order to ensure all units are uniform
throughout the framework.

The air density, ρa, is a function of pa and Ta and is calculated via the followin.

ρa =
pa

(0.286 × (Ta + 273.1)
(36)

2.2.2. Gravitational Model

Newton’s Law of Universal Gravitation is used to determine the change in acceleration
due to gravity, g0, at each change in altitude. The values of the constants G, Gravitational
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constant, Me, Earth’s mass and Re, Earth’s radius, are given in Table 1. These values are
used in the following equation to determine g0 at a particular altitude.

g0 =
G × M

(R + H)2 (37)

Table 1. Values used in Newton’s Law of Universal Gravitation.

Variable Value

G 6.67408 × 10−11

Me (kg) 5.9722 × 1024

Re (m) 6.371 × 106

2.2.3. Flight Model

The values calculated in Sections 2.2.1 and 2.2.2 are used to determine the Thrust, F,
and Drag, D, during the LPRE’s flight from takeoff to the required altitude, H. For this
framework, a time interval, δt, of 0.1 s is used when calculating the velocity and height
during the flight. The Drag Equation (assuming a fixed drag coefficient (CD0) of 0.2) and
General Thrust Equation are, respectively, used to calculate the Drag and Thrust, as given
in the following equations:

D =
ρa × v2 × As × CD0

2
(38)

F = ṁp × ve + ae × (pe − pa) (39)

where ve and Rg are defined as per [30] using the universal gas constant R assumed to be
8.314 J/Kmol. Tc, M and γ are calculated via Section 2.1 and used as follows.

Rg =
R
M

(40)

ve =

√√√√√(2 × γ × Rg × Tc

γ − 1

)
×

1 −
(

pe

pc

)( γ−1
γ

) (41)

The exit pressure (pe) is fixed and assumed at 0.7 bar for this research study. Therefore,
for each interval of time, pa is recalculated as per the equations given in Section 2.2.1 and
then used in the Thrust equation. The second term in the Thrust Equation is the pressure
component, which varies as pa changes as the LPRE gains altitude. F, therefore, increases
when the nozzle exit velocity, ve, is at a maximum point (as propellant mass flow rate, ṁp
is fixed).

In the Drag Equation, As is assumed as the frontal surface area. This is a fixed value,
and as CD0 is kept at a fixed value, changes in D are only due to changes in ρa and velocity, v.

The system mass at each interval of time and D, F, Ta, pa, ρa and gravity, g0, calculated
earlier are used to determine the system mass, Msys, velocity, v, and subsequently the
altitude, H, at each time interval as per the following equations.

Msys = Msys − ṁp × ∆t (42)

v = v +
F

Msys
× ∆t − g0 × ∆t − D

Msys
× ∆t (43)

h = h + v × ∆t (44)

2.3. Optimization

There is a need to quantitatively compare different optimization techniques to evaluate
which methods are most suitable for a particular problem. There may not be a single
method that consistently performs better than others for different objective functions. This
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is why the following techniques are evaluated according to their performance: Simulated
Annealing (SA), Nelder Mead (NM), Cuckoo Search Algorithm (CSA), Pigeon-Inspired
Optimization (PIO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and a
novel hybrid GA-PSO technique named GA-Swarm, which is described in further detail in
Section 2.3.1.

The importance of selecting a relevant OF for use in multidisciplinary design studies
cannot be overemphasized. Da Mota et al. [15] tried to minimize the Gross Lift-Off Weight
(GLOW), the structural mass (SM) and the expected total cost to investigate the effect of
changing the OF using a single optimization technique. Dresia et al. [33] investigated the
effect of minimizing GLOW or Structural Mass (SM) on a GG cycle using GA techniques
and Akhtar et al. [13] studied the effect of GLOW using GA on a pressure-fed cycle.

These seven optimization techniques and four Objective Functions (OFs) are used to
optimize each LPRE cycle and to determine the most suitable OF and technique. A list of
the four OFs, design variables and constraints is provided in Table 2.

Table 2. OF and Variable names and descriptions.

Objective Function Description

GLOW Gross Lift-Off Weight (total mass of LV including payload)
Isp Specific Impulse
T/W Thrust-to-Weight ratio
TWISP Simultaneously maximize Isp and T/W

Design Variable Description

F Thrust
pc Combustion Chamber Pressure
∆t Burn time

Constraints Description

∆V Change in velocity
H Required altitude

2.3.1. Genetic Algorithm-Swarm (GA-Swarm)

GA-Swarm is a novel technique developed in this research by incorporating the
’swarm’ behaviour of PSO within GA. GA-PSO hybrid techniques have been used previ-
ously [34–36]. However, these techniques either incorporate mutation within PSO to ensure
the technique can escape local optima or apply the GA ’fitness’ function to swarm particles
in order to divide them and then apply crossover and mutation functions on the ’better’
half of the population.

In GA-Swarm, as shown in Figure 2, PSO is incorporated into the GA algorithm by
ensuring that after crossover, the offspring ’swarm’ towards the best solution in order to
ensure a more efficient search within the solution space.

The offspring is given a bias toward the best solution if a random number is less than
a predefined probability, pSwarm, which is usually equal to 0.2.

childj = (1.0 − sSwarm) ∗ childj + sSwarm ∗ gBestj (45)

For the strength of bias, sSwarm is taken to be equal to 0.2.
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Figure 2. Flowchart depicting the GA-Swarm Algorithm

2.3.2. Constraints and Boundaries

There are two constraints for all techniques and OF: ∆V and H. In order to ensure
that constraints are met every time the algorithm is run, a penalty-based method is applied.
This weightage factor is provided in Equation (46):

X = 100,000.0 × abs((v − ∆V)) + 10,000.0 × abs((h − H)) (46)



Appl. Sci. 2022, 12, 10462 13 of 27

where there is a penalty for each constraint, as shown in Equation (47):

Objective Function = Raw Cost + X (47)

where the Objective Function is as given in Table 2: i.e., GLOW, Isp, T/W or maximizing
both Isp and T/W. In every iteration, there is a check whether the velocity and height
calculated match the required values of ∆V and H, respectively. Both constraints are
multiplied by a penalty coefficient of 100,000 for ∆V and 10,000 for H. If the constraints are
violated, then the measure of violation will be non-zero. If the constraints are not violated
then the measure of violation will be zero as the penalty coefficient multiplication has
no effect.

The upper and lower bounds for the three variables: F, pc and ∆t are given in Table 3.
These variables are the same for both GG and SC cycles.

Table 3. Values of Variables used for GG and SC cycles.

Bounds F (kN) pc (bar) ∆t (s)

Upper 300 280 150
Lower 1.0 0.5 1.0

The number of iterations per run for all techniques was kept at 1000, except for PSO
and GA-Swarm where each run had 150 iterations. For PSO, the number of particles in
the ‘swarm’ was 50; the number of ‘pigeons’ in PIO was 128; CSA algorithm contained
125 ‘nests’, and both GA and GA-Swarm algorithms had 150 ’chromosomes’.

3. Results
3.1. Model Validation

Shahab-3 is an Iranian-designed single-stage GG rocket. The first documented flight
was in 1998; however, this rocket is currently still in use. Table 4 lists the approximate
engine performance parameters as sourced from the open literature [37].

Table 4. Shahab-3 performance parameters and dimensions.

Shahab-3

Cycle GG
Fuel RP1

Oxidizer RFNA
Range (km) 1350–1500
Payload (kg) 760–1158
GLOW (kg) 15,832–16,250

Diameter (m) 1.32–1.35
Length (m) 15.852–16.0

F (kN) 260–262
Isp (s) 230
∆t (s) 110

pc (bar) 55

The values of the variables used to calculate c∗, CF, Tc, γ, M and ε as per Equations (1)–(3)
are provided in Table 5. A graphical visualization of this data is included in Figure A1.

Two optimized results are included in Table 6 using PSO as the optimization technique.
PSO is an established optimization technique and has provided consistent results for all
four OFs used in this research. Hence, PSO is used to optimize the given model. The first
result gives the lowest GLOW as per the OF used in the optimization technique. The second
result also used GLOW as OF; however, the pc returned is close to the claimed pc value
of Shahab-3 as per the literature. The reason behind including this second set of results is
to highlight that optimization techniques can return a range of values within the solution
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space. Therefore, according to this particular optimization technique and the OF used, this
engine could have a lower GLOW but with a higher Isp for the same propellant pair and
cycle. The result with a similar pc (48 bar) to the actual engine also calculated a similar
GLOW compared to the reported engine values.

Table 5. Fitted data for RFNA and RP1; pe 0.7 bar.

Variable a b c

MR 2.92 0.62 −0.14
c∗ (m/s) 1493.41 54.97 −40.97

CF 0.77 0.51 −1.07
Tc (K) 2364.71 448.96 −199.64

γ 1.19 0.03 0.01
M 20.87 2.10 −0.69
ε 0.37 0.41 0.77

Differences in results compared to the actual engine are due to a range of factors. The
choice of material for tanks and engine, L/D used, turbine speed and actual turbine power
produced in the actual engine are possible causes that account for the difference in values.

Table 6. Comparison of Shahab-3 performance parameters and dimensions with the research model.

Parameters Shahab-3 Calculated Optimized Optimized with Similar pc

GLOW (kg) 15,832–16,250 15,650 14,312 15,973
Diameter (m) 1.32–1.35 1.06 1.03 1.07
Length (m) 15.852–16.0 17.45 16.89 17.58
F (kN) 260–262 309 2.91 306
Isp (s) 230 258 266 255
∆t (s) 110 110 109 112
pc (bar) 55 55 79 48
L/D 11.85 16.46 16.39 16.43
T/W 16.12 19.74 20.33 19.15

A visual summary of the optimized parameters is given in Figure 3.

3.2. Gas Generator Cycle: Comparison of Techniques and Objective Functions

Four different objective functions and seven optimization techniques are tested on a
RFNA-RP1 GG cycle with mission constraints ∆V 3800 m/s and an H of 120 km, as shown
in Figure 4, with a payload of 1000 kg. A ’box’ is included in each graph to depict the
operating range of pc generally ascribed to GG cycle engines, as compiled by [11]. The
results of three OF (minimum GLOW, maximum Isp and maximum T/W) are provided in
Figure 4, plotting the optimum values of each OF against pc. The results of the fourth OF
are displayed separately in Figure 5.

The purpose of testing multiple objective functions and techniques is to determine the
most suitable function and technique for the GG LPRE cycle.

3.2.1. Nelder Mead

With reference to Figure 4a, the NM technique returned results that met the mission’s
constraints for two out of three OFs. Therefore, the results for maximizing the Thrust-
to-Weight ratio have been excluded. A probable reason for this inability to meet the
constraints is due to NM’s susceptibility to the initial guess. This technique searches for the
local maximum within the vicinity of the initial guess. Therefore, if the initial guess is close
to the global maximum, the probability of NM converging on the local maxima is higher
than when the initial guess is further away from the global maximum.
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Combustion pressure = pc = 79.9 bar
Burn time = ∆ t = 109.2 s

Other propulsion parameters
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Inert mass fraction = 0.0856
Propellant mass = 12165.9
Gross liftoff weight = 14312.7

Figure 3. Optimized Engine Parameters, dimensions and masses for Shahab-3.
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Figure 4. Optimization results for the GG Cycle with mission ∆V = 3800 m/s and H = 120 km using
all 7 techniques and 3 OFs. (a) Nelder Mead (NM). (b) Simulated Annealing (SA). (c) Cuckoo Search
Algorithm (CSA). (d) Particle Swarm Optimization (PSO). (e) Pigeon-Inspired Optimization (PIO).
(f) Genetic Algorithm (GA). (g) GA-Swarm.
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Figure 5. GG Cycle: T/W vs. Isp for all techniques.

Out of these results for NM, the best-performing OF is Isp, as the optimum result both
clearly lies within the accepted operating range of pc for a GG cycle, and occurs at a pc of
71 bar, which is lower than the minima obtained using GLOW OF. For GLOW OF, there
are distinct bands of results at 20, 30 and 40 bar pc, with the minima lying at 97 bar. This
minima lies within the operating pc range for a GG cycle; however, it is relatively higher
than the pc obtained using Isp as the OF. Using Isp as an OF provided a relatively larger
cluster of results between 11 and 18 bar pc, which is an infeasible operating range for GG
cycle. Another smaller band of results between 40 and 45 bar pc coincided with a similar
band of results when using GLOW as the OF. Results of both OFs demonstrate the presence
of multiple local minima in the solution space.

3.2.2. Simulated Annealing

Figure 4b shows the results for three OFs using the Simulated Annealing technique.
Using GLOW as the OF provides a band of results between 70 and 74 bar pc. The results
also follow a fairly linear path within the GG cycle pc operating range. However, this
technique and OF return results between 12 and 13 bar and one result at 479 bar, all outside
the accepted pc’s operating range for this LPRE cycle.

Similarly to the NM technique, using Isp as the OF provides a relatively greater number
of results below the acceptable pc range for this cycle as compared to results within the
accpetable pc range. In contrast, the T/W function follows the same trend as GLOW by
providing a greater range of results within the acceptable pc range. The T/W function
provides a greater number of results between 43 and 60 bar. These bands demonstrate SA’s
strength in avoiding local maxima.

These technique required multiple runs in order to generate a sufficient data set for
analysis as the technique did not meet the constraints on every run. Therefore, although re-
sults are promising, this technique is not recommended due to the additional computational
time involved in generating numerous runs and filtering out erroneous data.

3.2.3. Cuckoo Search Algorithm

Looking at Figure 4c, the majority of CSA results lie between pc of 29 and 86 bar for all
three OF. There is relatively less variation between the minimum and maximum pc for all
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three OFs, as compared to NM and SA. The maximum pc achieved with any of the three
OF using CSA is 84 bar, unlike NM and SA where a pc of greater than 90 bar was noted.
Similarly to SA, the three OFs provide an optimum result within a relatively close pc range:
minimum GLOW at 86 bar, maximum T/W at 84 bar and maximum Isp at 77 bar. This
narrow range of results highlights CSA’s immunity to the objective function.

The values for GLOW lie on a fairly linear curve with distinct clusters of results:
39–41 bar, 56–63 bar, 70–72 bar and 78–83 bar. Isp also provides a cluster of results in a
similar pc range of 69–72 bar. The curve for T/W highlights two clusters: 44–55 bar and
64–75 bar. Therefore, unlike NM and SA, all three OFs return clusters of results near the
global optimum result, highlighting the presence of multiple solutions near the optima
within the solution space. Apart from GLOW OF, CSA failed to meet the constraints for
the other two OFs on numerous runs; hence, multiple runs were required to generate a
sufficient data set of results.

3.2.4. Particle Swarm Optimization

In Figure 4d, the trend for all three OFs using the PSO technique follows that of SA
and NM with a wide range of values returned. Although the majority of results for all OFs
lie within the GG cycle pc’s operating range, both Isp and T/W OFs return results below
and above this range. In particular, the global maxima for both OFs lies above the operating
pc range, with a maximum Isp at 192 bar and maximum T/W at 175 bar, whereas GLOW
OF returns a global minima at 112 bar.

The results for GLOW OF are contained in two distinct clusters: 30–33 bar and
57–65 bar. Isp also returns a cluster of results at a similar pc range of 54–56 bar, underlining
the existence of multiple local minima in the solution space. T/W also returns results in
three clusters: 23–26 bar, 52–59 bar and 81–89 bar.

It is pertinent to mention that this technique returned results for T/W (111 bar) and Isp
(114 bar) functions at a value of pc near 112 bar (the pc that resulted in minimum GLOW).
Therefore, this indicates the presence of an optimal value for each OF in the search space.
CSA also meets the mission constraints for each optimization run.

3.2.5. Pigeon-Inspired Optimization

In Figure 4e, similarly to CSA, the results for all three OFs using the PIO technique
vary between a relatively short range: 23 bar to 95 bar. Despite multiple runs, the technique
failed to meet both constraints on numerous occasions; therefore, only a limited number of
values that met both constraints are included in this research study. However, the majority
of these limited values lie within the operating pc range for a GG cycle. GLOW OF returns
a minima at 84.5 bar pc, whereas a maximum Isp is attained at 95.7 bar and maximum T/W
is attained at 97 bar.

The data points for each OF are in small clusters, demonstrating multiple local minima.
With GLOW OF, there is a cluster near the global minima between 79 and 84 bar. The T/W
function returns three groups of values at the following: 30–25 bar, 55–61 bar and 93–97
bar. There is one cluster of values for Isp ranging from 48 to 61 bar, which overlaps with a
similar (but smaller) cluster using T/W as the OF.

3.2.6. Genetic Algorithm

The results for all OF using the GA technique, as shown in Figure 4f, are similar to
CSA as all results lie within a relatively narrow range of pc (38–89 bar) compared to other
techniques. However, unlike CSA, all results for GA lie within the operating pc range for
this cycle. The minimum GLOW that meets the constraints is at 96 bar pc, the maximum
Isp occurs at 89.9 bar and the maximum T/W occurs at a lower pc value of 75 bar.

For Isp as the OF, the results are in three distinct clusters, 38–48 bar, followed by an
equal number in the 58–67 bar and then 80–89 bar range. T/W also returns a dense group
of results between 62 and 68 bar, as does GLOW (59–68 bar), reinforcing the presence of
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multiple local minima. This clustering shows that GA does not become stuck in multiple
local minima.

3.2.7. GA-Swarm

The results of the final technique, GA-Swarm, are displayed in Figure 4g. Due to the
hybrid nature of this technique, it not only meets the constraints for each run but also
provides results with minimal variance and within a relatively narrow range of pc, similarly
to GA. The maximum Isp that meets the constraints is at 86 bar, the minimum GLOW is at
87 bar pc, and the maximum T/W occurrs at a lower pc value of 79 bar. These values are
similar to those obtained using the GA technique.

Unlike GA, the values obtained using Isp as OF are not grouped as distinct clusters,
however, a dense group of results is observed between 63–66 bar pc and 71 bar. Using T/W
as an OF returns three clusters at: 38–45 bar, 63–68 bar and 71–77 bar. The results for GLOW
as OF follow a similar trend as the GA technique, with a relatively large cluster between
50 and 59 bar.

3.2.8. Objective Function: T/W vs. Isp

The results of a fourth OF used on GG cycle are shown in Figure 5 where maximizing
Isp and T/W are both given equal weightage. Values of the global optima for each technique
are given in Table 7. Five techniques return results with a maximum Isp between 262 and
272 s; however, only CSA and SA provide theoretically higher performance values for this
Objective Function. F is directly proportional to Isp; therefore, a linear trend is expected if
T/W is plotted against Isp, which is verified by the results as shown in Figure 5. This
Objective Function is included in this research to validate the seven techniques. All
techniques returned a similar trend line, as shown in Figure 5. If a technique had not
returned values other than those shown in Figure 5, the Objective Function would, therefore,
have invalidated that particular technique.

Table 7. GG Cycle: Values of Variables at max Isp and T/W for each technique.

TWISP
OF

GG Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 256 251 264 271 257 257 259
∆t (s) 101.1 97.3 103.1 95.3 101.5 101.6 102.0
pc (bar) 105.4 369.7 66.2 1149.5 95.2 94.6 84.2
Isp (s) 272.6 302.2 262.3 332.9 270.3 270.2 267.6
GLOW (tonnes) 11.6 10.1 12.6 9.8 11.8 11.8 12.1
T/W 2.24 2.52 2.13 2.80 2.21 2.21 2.19

3.3. Evaluating Objective Functions and Techniques

Results for all techniques are shown in Tables 8–10. When comparing the OF results
from each technique, some techniques such as CSA, PIO and GA-Swarm are immune to the
influence of one technique over another as the results returned are within a narrow range
regardless of the OF. However, PIO (along with NM and SA) and CSA will still be regarded
as techniques that fail to meet the mission constraints on numerous occasions. GA-Swarm
meets the mission constraints on each run.
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Table 8. GG Cycle: Values of Variables at min GLOW for each technique.

GLOW
OF

GG Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 257 269 259 255 259 257 259
∆t (s) 101.4 104.4 101.9 100.9 102.0 101.5 101.8
pc (bar) 96.9 52.4 86.9 112.6 84.5 96.2 87.8
Isp (s) 270.7 257.1 268.3 274.1 267.7 270.5 268.5
GLOW (tonnes) 11.8 13.3 12.0 11.6 12.1 11.8 12.0
T/W 2.22 2.07 2.19 2.25 2.19 2.21 2.19

Table 9. GG Cycle: Values of Variables at max Isp for each technique.

Isp
OF

GG Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 262 257 261 251 257 258 259
∆t (s) 102.7 101.5 102.4 99.1 101.5 101.8 101.9
pc (bar) 71.5 96.0 77.6 192.1 95.7 89.9 86.4
Isp (s) 264.0 270.5 265.8 286.3 270.4 269.0 268.2
GLOW (tonnes) 12.4 11.8 12.2 10.8 11.8 11.9 12.0
T/W 2.14 2.22 2.17 2.37 2.22 2.20 2.19

Table 10. GG Cycle: Values of Variables at max T/W for each technique.

T/W
OF

GG Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) - 280 259 251 257 261 260
∆t (s) - 106.7 102.1 99.3 101.4 102.6 102.3
pc (bar) - 36.5 84.3 175.2 97.4 75.4 79.7
Isp (s) - 249.1 267.6 284.2 270.8 265.1 266.4
GLOW (tonnes) - 14.4 12.1 10.9 11.8 12.3 12.2
T/W - 1.98 2.19 2.35 2.22 2.16 2.17

Using GLOW as an OF provides relatively few results which lie near the global
minimum (as clusters are observed in local minima). However, when comparing the results
for each technique, results from T/W provided a maxima at a relatively lower pc when
using GA-Swarm compared to the other OF. Based on experience, the end user prefers
an OF with emphasis on low pc. Therefore, using T/W as an OF may be more feasible as
compared to using GLOW.

3.4. Staged Combustion Cycle: Comparison of Techniques and Objective Functions

Similarly to Section 3.2, the same objective functions and optimization techniques are
tested on an RFNA–RP1 SC cycle. Mission constraints and payload remain the same and
the results for three OF are shown in Figure 6. A ‘box’ is included in each graph to depict
the operating range of pc generally ascribed to SC cycle engines [11].

This given mission has returned values (for all techniques and objective functions) that
lie below the operating pc range for SC cycles. However, for the purposes of this research,
as the SC cycle is compared to GG cycle for a given mission, the overall trends and results
for each technique will be discussed.
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Figure 6. Optimization results for SC Cycle with mission ∆V = 3800 m/s and H = 120 km using all
7 techniques and 3 OFs. (a) Nelder Mead (NM). (b) Simulated Annealing (SA). (c) Cuckoo Search
Algorithm (CSA). (d) Particle Swarm Optimization (PSO). (e) Pigeon-Inspired Optimization (PIO).
(f) Genetic Algorithm (GA). (g) GA-Swarm.

3.4.1. Nelder Mead

With reference to Figure 6a, unlike for GG cycle, the NM technique returned results
that met the mission constraints for all functions. The minimum GLOW is obtained at a
pc of 122 bar, while with Isp as the OF, the maximum Isp is determined at 99 bar and the
maximum T/W occurs at 92 bar.

For Isp OF, there are distinct bands of results from 26 to 33 bar, 47 to 52 bar and 65
to 82 bar. These clusters coincide with similar groups of results when T/W is used as OF,
highlighting the presence of local minima in the solution space.The results for GLOW as
an OF follow a fairly linear trend without clusters of results. There is also relatively less
variance in values as compared to the other two OFs.
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3.4.2. Simulated Annealing

Figure 6b shows the results for the three OFs using the Simulated Annealing technique.
All three OFs return the optimum result within a relatively close pc range: minimum GLOW
at 94 bar, maximum T/W at 96 bar and maximum Isp at 96 bar.

The results for all three OFs using the SA technique display visible clusters of re-
sults, once again highlighting the effectiveness of this technique in evading local minima.
However, this technique is unable to meet the mission constraints for all OFs on each run,
requiring additional runs in order to obtain a minimum data set of points.

3.4.3. Cuckoo Search Algorithm

The results from CSA technique are shown in Figure 6c. This technique follows the
same trend as when run for GG cycle, with results for the three OFs lying within a relatively
narrow range of pc, between 46 bar and 92 bar.

Another similarity between the results of both cycles using this technique is the
presence of multiple clusters using all three OFs. Once again, the clusters are close to the
global optimum’s result, which demonstrates CSA’s superior search ability compared to
NM and SA.

3.4.4. Particle Swarm Optimization

The trend for all three OFs using PSO technique is shown in Figure 6d. The graph
shows similar results for GG cycle using this technique. Although each run meets exactly
the mission’s constraints, however, a wide range of values are returned, which eventually
converge on the global optimum solution.

This technique also returns optimum results for each function at a relatively higher pc
compared to other techniques: minimum GLOW at 133 bar, maximum T/W at 111 bar and
maximum Isp at 110 bar.

3.4.5. Pigeon-Inspired Optimization

The results for PIO, as shown in Figure 6e, are similar to both CSA and PSO. The
similarity with CSA lies in the fact that the results for all three OFs using the PIO technique
vary between a relatively short range: 30 bar to 104 bar. Similarly to PSO, there are no
distinct clusters of results (as shown in CSA, SA and NM); instead, results show a gradual
convergence to the optimum solution for each technique. This is also a contrast to the GG
cycle where data were shown in clusters. Moreover, PIO managed to meet the criteria in
each run, unlike for the GG cycle.

3.4.6. Genetic Algorithm

For SC cycle, the results of all OF with GA techniques are shown in Figure 6f. For
GLOW and Isp functions, the technique failed to meet the constraints on numerous runs.
There are only a limited number of data points shown. For T/W, the results show clusters,
with a relatively dense cluster between 47 and 70 bar. This cluster coincides with two and
one data points using GLOW and Isp functions, respectively, demonstrating that for this
particular cycle, T/W is a relatively better function for the GA technique.

3.4.7. GA-Swarm

For the hybrid technique, GA-Swarm results are shown in Figure 6g. There is a marked
improvement compared to GA results as this technique met the mission constraints for
each run, which is a characteristic of the PSO technique. In addition, unlike PSO, GA-
Swarm provided results in a relatively narrow range, demonstrating qualities similar to
GA. The maximum Isp that meets the constraints is at 93 bar, and the minimum GLOW and
maximum T/W both occur at a lower pc value of 81 bar and 86 bar, respectively.

Unlike GA, the values obtained using Isp as OF are not grouped as distinct clusters;
however, a density of results is observed between 63 and 66 bar pc and 71 bar. Using T/W
as an OF returns three clusters at 38–45 bar, 63–68 bar and 71–77 bar. The results for GLOW
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as OF follow a similar trend as the GA technique, with a relatively large cluster between
50 and 59 bar.

3.4.8. Objective Function: T/W vs Isp

In Figure 7, the results of all seven techniques using the fourth OF on SC cycle are
displayed. Table 11 displays values for each variable at max Isp and T/W. For this cycle,
NM returns the maximum result for Isp and T/W; however, due to NM’s susceptability to
the initial guess, these results are disregarded. SA, CSA and GA-Swarm returned similar
values of Isp while SA and GA-Swarm also returned same values of T/W. As mentioned in
Section 3.2.8, this Objective Function was specifically included in order to further validate
each technique. Similarly to Figure 5, all techniques follow a similar trend with T/W
linearly increasing with Isp. As the same mission was optimized using both cycles, the
magnitude of results for GG and SC using this Objective Function is also similar.
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Figure 7. SC Cycle: T/W vs Isp for all techniques.

Table 11. SC Cycle: Values of Variables at max Isp and T/W for each technique.

TWISP
OF

SC Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 267 273 271 270 269 277 271
∆t (s) 99.0 99.7 99.8 99.5 99.4 100.8 99.7
pc (bar) 110.7 92.1 90.2 97.1 99.9 70.8 91.9
Isp (s) 273.7 269.6 269.1 270.8 271.4 263.7 269.6
GLOW (tonnes) 11.8 12.3 12.3 12.2 12.1 12.8 12.2
T/W 2.29 2.26 2.25 2.26 2.27 2.19 2.26

3.5. Evaluating Objective Functions and Techniques

The results for all techniques are shown in Tables 12–14. The most promising tech-
niques for SC cycle are CSA, PSO, PIO and GA-Swarm. All four techniques consistently
met the mission’s constraints and provided a wide range of results. Apart from PSO, the
use of GLOW as an OF returns the lowest value of pc compared to the other two OFs, with
F and Isp values remaining nearly equal. Therefore, if the mission designer requires a low
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pc that still provides high engine performance, then GLOW should be used as an OF for
the SC cycle.

Table 12. SC Cycle: Values of Variables at min GLOW for each technique.

GLOW
OF

SC Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 265 270 264 267.3 269 264 274
∆t (s) 98.7 99.6 102.6 98.4 99.5 102.7 100.2
pc (bar) 122.3 94.2 74.2 133.1 97.0 73.7 81.9
Isp (s) 275.9 270.1 264.8 277.9 270.7 264.6 267.0
GLOW (tonnes) 11.7 12.2 12.5 11.5 12.1 12.5 12.5
T/W 2.32 2.59 2.16 2.34 2.27 2.16 2.23

Table 13. SC Cycle: Values of Variables at max Isp for each technique.

Isp
OF

SC Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 269 271 271 269 270 270 271
∆t (s) 99.4 99.8 99.7 99.0 99.4 99.6 99.7
pc (bar) 99.7 90.4 92.6 110.7 99.0 95.0 93.0
Isp (s) 271.3 269.2 269.7 273.7 271.2 270.3 269.8
GLOW (tonnes) 12.1 12.2 12.2 11.9 12.1 12.1 12.2
T/W 2.27 2.25 2.26 2.30 2.27 2.26 2.26

Table 14. Values of Variables at max T/W for each technique.

T/W
OF

SC Cycle
NM SA CSA PSO PIO GA GA-Swarm

F (kN) 271 269 272 267 269 269 272
∆t (s) 99.6 99.6 99.9 99.0 99.5 99.5 100.0
pc (bar) 95.5 96.1 88.5 111.4 98.2 97.7 86.3
Isp (s) 270.4 270.5 268.7 273.8 271.0 270.9 268.1
GLOW (tonnes) 12.2 12.1 12.3 11.8 12.1 12.1 12.4
T/W 2.26 2.26 2.25 2.30 2.27 2.27 2.24

3.6. GG vs. SC Cycle for Given Mission

The primary aim of comparing GG cycle and SC cycle with the same mission re-
quirements is to aid the mission designer in decision making when faced with the task of
selecting a particular engine cycle for a mission.

For GG cycles, all techniques using GLOW OF returned a minima between 52 and
112 bar pc and an average F of 259 kN. The same techniques on SC, however, resulted in
the minima at a relatively higher pc of 98 to 102 bar with a resulting average increase in F
to 272 kN. This higher pc is still within the operating range for an SC cycle engine.

Therefore, for this mission, a GG cycle would be more beneficial as the same GLOW
can be achieved at a relatively lower pc without a significant loss of F. In addition, the
additional design, manufacture and operational complexity of a SC cycle engine do not
need to meet the requirements of this mission.

4. Conclusions

This research includes a preliminary design of a conceptual pump-fed LPRE cycle,
including mass and dimension estimates of all sub-systems using mathematical models
and not empirical models. Unlike previous research, the only inputs required for this
model were the mission requirements (H and ∆V) and the propellant pair. The model
then calculates the optimum set of engine performance parameters. In addition, seven
optimization techniques and four Objective Functions were analyzed in order to provide
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the maximum performance of the cycle for a given mission, propellant pair and payload.
An Objective Function simultaneously maximizing both Isp and T/W was used to validate
all techniques. One of the optimization techniques, GA-Swarm, used was a novel technique.
This research concludes that the best-performing OF for the GG cycle was T/W as the
optimized engine performance values for all variables were better compared to using
GLOW as an Objective Function. The best-performing Objective Function for SC was
GLOW. However, when comparing two cycles, the benchmark OF to consider for both
is GLOW.

Looking at the optimization techniques, Nelder Mead is extremely susceptible to initial
guess across both cycles and, therefore, cannot be used for an initial optimization. Simulated
Annealing shows variance, provides a wide range of values and also returns results in
clusters, highlighting that the results are immune to local minima. However, Simulated
Annealing does not match the constraints on each run and, therefore, requires additional
computational time to generate a data set of values for analysis. Cuckoo Search Algorithm
technique works well for SC cycle only. PSO again shows variance by providing a wide
range of results for all cycles and missions; however, this technique meets the mission
constraints for each run. Pigeon-Inspired Optimization provided optimum performances
for the SC cycle only. Similarly to CSA, for the GG cycle, this technique struggled to meet
constraints and provided a greater scatter effect in the results. GA provides results within a
wider range of acceptability. However, the constraints were not met on multiple instances.
Therefore, although this is a robust technique, the additional computational time negates
the use of this technique. GA-Swarm, due to its hybrid nature, combines the search ability
of GA by efficiently exploring the solution space with the fast convergence of PSO for
all cycles and OFs. In conclusion, GA-Swarm performs better than GA for all cycles and
both PSO and GA-Swarm provide a set of optimum results for each objective function for
all cycles.

Suggestions for future work would include running the optimizer using different
propellant pairs to check if GG is still the more feasible cycle for this mission. This model
can be modified to model a pressure-fed LPRE cycle and to incorporate multiple stage
LVs. A database can be developed by comparing various LPRE cycles against each other for
different missions. In addition, the application of GA-Swarm for a variety of engineering
problems is also recommended in order to further estabish its robustness.
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Appendix A. CPropEP Graphical Calculations for Shahab-3

The equations for calculating the thermodynamic properties for RFNA-RP1 at the
optimum MR are shown in Figure A1.
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Figure A1. Curve-Fitting Results for RFNA-RP1 at 0.7 bar pe.
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