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Abstract: Echocardiography (echo) is a commonly utilized tool in the diagnosis of various forms of
valvular heart disease for its ability to detect types of cardiac regurgitation. Regurgitation represents
irregularities in cardiac function and the early detection of regurgitation is necessary to avoid invasive
cardiovascular surgery. In this paper, we focussed on the classification of regurgitations from video-
graphic echo images. Three different types of regurgitation are considered in this work, namely, aortic
regurgitation (AR), mitral regurgitation (MR), and tricuspid regurgitation (TR). From the echo images,
texture features are extracted, and classification is performed using Random Forest (RF) classifier.
Extraction of keyframe is performed from the video file using two approaches: a reference frame
keyframe extraction technique and a redundant frame removal technique. To check the robustness
of the model, we have considered both segmented and nonsegmented frames. Segmentation is
carried out after keyframe extraction using the Level Set (LS) with Fuzzy C-means (FCM) approach.
Performances are evaluated in terms of accuracy, precision, recall, and F1-score and compared for
both reference frame and redundant frame extraction techniques. K-fold cross-validation is used to
examine the performance of the model. The performance result shows that our proposed approach
outperforms other state-of-art machine learning approaches in terms of accuracy, precision, recall,
and F1-score.

Keywords: videographic echo; regurgitation; level set; random forest

1. Introduction

Images are captured, preprocessed, and segmented to extract shape, texture, and
color information, providing us clear knowledge of images. This will aid in detecting
and classifying any abnormalities or diseases that may be present in an image. Medical
imaging is one of the most effective tools that can provide proper treatment for any disease.
Electrocardiograph (ECG), echocardiogram (echo), and computed tomography (CT) scans
or angiograms are few of the medical imaging tools a physician can use to screen out
any heart abnormalities [1]. One of the standard methods for diagnosing heart-related
abnormalities or diseases is an echo. It is a non-invasive, radiation-free, and cost-effective
procedure [2]. Cardiologists often use it to visualize heart structure, including walls,
aorta, and other blood vessels [3]. It is used primarily for early diagnosis. Depending on
the transducer deployed, echo can be transesophageal or transthoracic, that is, insertion
through the throat or placing externally on the chest, respectively [4].

Echo has become a prominent choice used in examining valvular heart disease or
regurgitation, one of the most common diseases in the cardiovascular system. Regurgitation
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is leakage caused in the heart valves, which is caused by incorrect closing of the leaflets
where blood flows back, or blood leaks through. It can be congenital or acquired. Acquired
cases are mainly caused due to smoking, tobacco consumption, lack of exercise, and
others. Aortic regurgitation (AR), mitral regurgitation (MR), and tricuspid regurgitation
(TR) are the three most common types of regurgitation, which are shown in Figure 1.
When it comes to rheumatic heart disorders and youngsters, MR is the most frequent
valvular involvement [5]. It is the most typical type of heart valve disease. In MR, the
valve between the left heart chambers does not completely close, which causes blood to
leak backward across the valve. It is known that AR occurs less frequently than MR. The
disease of the aortic leaflets or the aortic root causes the leaflets to distort and hinder
their proper apposition, which causes AR, for which careful analysis of the aortic valve is
necessary. Rheumatic fever, bicuspid aortic valve, infective endocarditis, and senile leaflet
calcifications are common causes of leaflet abnormalities that lead to AR [6]. TR, on the
other hand, is a condition where the valve between the right ventricle and right atrium does
not close completely. Blood leaks backward into the upper right chamber as a result [6].

(a) (b) (c)

Figure 1. Diagram showing Doppler echo from the dataset of patients having (a) aortic regurgitation
(AR), (b) mitral regurgitation (MR), and (c) tricuspid regurgitation (TR), respectively.

These data are obtained using the transthoracic procedure in the left lateral decubitus [7].
The data are 3D color Doppler videographic images. Using color Doppler, regurgitation
can be identified based on the color jets characteristics. Other abnormalities, such as aortic
stenosis (AS), mitral stenosis (MS), and tricuspid stenosis (TS), and other cardiovascular
disorders, can be distinguished from regurgitation [8]. Echo can be used to access, detect,
and diagnose regurgitation at an early stage. Regurgitation can range from mild to severe.
Mild and moderate regurgitation can usually be treated without surgery; however, severe
regurgitation may require surgery or cauterization [9]. For most of the population, espe-
cially in developing and rural economies, this procedure is expensive and unaffordable [10].
Regurgitation can make it difficult for a person to breathe because of the blood’s improper
inflow and outflow, which is a concern. A cardiologist can determine whether a person is
healthy or has any regurgitation or disorders using visualization and knowledge which
needs precise identification of many images before accurately predicting such abnormalities.
As a result, if regurgitation can be detected early, proper diagnosis and treatment can be
provided. This can be accomplished with the use of automated tools and approaches.

The usage of automated tools is critical since it reduces human effort, reduces the
necessity of invasive procedures and allows more precise prediction of various problems in
the heart. It has become prominent in medical imaging due to its accessibility, efficiency
and effectiveness. Different techniques can achieve automatic disease diagnosis, such
as traditional methods, machine learning, deep learning, and reinforcement learning.
Significant research and analysis are required before applying such tools in medical imaging.
Many researchers are trying to find a suitable application that will make human intervention
easier and possibly obsolete. To date, no such application has been established which is
applicable in clinics and hospitals. Work in classification and prediction of the type of
regurgitation employing automated technologies is ongoing, and traditional approaches or
advanced state-of-art techniques are being used.

Here, work is done for classification using a simpler model involving preprocessing,
keyframe extraction, segmentation, feature extraction, and classification. This step-by-
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step procedure is significant for a detailed analysis and prognosis of heart abnormalities
as a whole. These are the main steps in automated diagnosis. In addition, keyframe
extraction has been included in this work. The pictorial representation of the steps involved
is shown in Figure 2. Preprocessing is a phase in image processing that helps to reduce
the presence of noise and other undesirable data and artifacts in an image. Preprocessing
allows for greater clarity and understanding of the image, resulting in a more effective
result. There are many techniques for preprocessing, some of which are filtering techniques,
morphological operations, and statistical techniques [11,12]. Keyframe extraction is a
crucial step in video analysis which is efficient in indexing [13]. It is usually applied in
movies, sports videos, low-quality videos, etc. [14]. It is a step used to extract keyframes to
suffice comprehensive analysis of videos by eliminating replication. It is also sometimes
used to reduce the number of frames instead of using all of them. Some techniques used are
clustering techniques, color-based techniques, hash function, global comparison, motion-
based, and others [13–15]. Segmentation is one of the most important aspects in diagnosis
of disease for detecting a region or regions where abnormalities are located. Techniques
commonly used in segmentation are threshold based techniques, clustering techniques,
statistical methods [12], and other methods such as deep learning. A ground truth image
is required when employing deep learning methodology, which can be a disadvantage
in some circumstances where one is not available. Feature extraction is a step to extract
useful information based on properties such as texture, shape, and color. This process is
essential in classifying images as it provides a more meaningful representation of the image.
A specific region can be localized or globalized according to a particular application [12].
Classification is a step that classifies the images or a region into different classes. Classes can
be predefined (supervised) or random (unsupervised) [5]. It usually involves data division
into training (training phase) and testing (testing phase) data. In some cases validation
data can also be taken into account. Different techniques available are K-nearest neighbor
(KNN), Naive Bayesian [16], etc. A pictorial representation of this process is shown in
Figure 2.

Figure 2. Flowchart of steps involved in diagnosis of diseases.

In this work, an automated approach is proposed to classify the three types of re-
gurgitation (AR, MR and TR). This approach is efficient for detecting location as well as
prediction. Here, preprocessing is used to remove speckle noise which acts as a barrier and
poses a wrong perception about the image, followed by keyframe extraction where the
frames are free from redundancy. In addition to redundancy removal, the reference frame
is obtained by comparing the frames that has been extracted from all the other frames in a
video to an original reference frame. Since no ground truth is available, segmentation is
carried out to locate the regions containing regurgitation using an unsupervised deformable
model. The Level set method is used as it is well suited in the segmentation of the heart and
its different parts [17–19]. After segmentation, different texture features are extracted using
Gray Level Coocurrence Matrix (GLCM) and Haralick feature extraction methods. Here,
the integration of various features is carried out instead of a specific type of feature. Since
no prior knowledge of image patterns is required, such features will make the classification
more reliable. The use of features here illustrates the differences between each video frame.
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After that, classification is performed where different heart regurgitation (AR, MR, and
TR) are classified. We utilized Random forest for classification because it has been used in
various fields of computer vision and medical imaging [20–23]. Even though deep learning
methodologies have taken over the traditional approach due to their performance and
training time, we have depended on traditional ways to classify our data because deep
learning does not perform well when the data set is not large. Here, traditional methodolo-
gies that have achieved effective results in various fields related to medical imaging and
have properties that are suited for heart classification are used. Moreover, a comparison to
other techniques currently in use in the field is provided.

Contributions

The main contributions of the paper are as follows:

1. An automated system is designed to classify valvular regurgitation using echo with all
the steps involved, such as preprocessing, keyframe extraction, segmentation, feature
extraction, and classification.

2. In contrast to most of the existing work where authors use image file format, here, we
have used videographic images to classify valvular regurgitation.

3. Using videographic images, the number of frames is large, and there may be similar
frames. In this work, we have used the keyframe extraction technique, which reduces
the number of frames from video and also minimizes redundancy. This is the begin-
ning of the application of keyframe extraction in regurgitation classification. Here, the
reference keyframe extraction and redundant frame keyframe extraction techniques
have been incorporated.

4. The data used are validated by a cardiologist in the case of classification.
5. The utilization of videographic images, keyframe extraction, and methodologies

such as Level set, Haralick features, and GLCM with Random Forest distinguish this
research from others.

6. To evaluate the robustness of the model, we have used both segmented images and
non-segmented images and evaluate the performance of the model.

7. The results of the proposed method are compared to several existing methodologies,
and the results show that our implemented method provides higher performance
accuracy than other state-of-art techniques.

The rest of the paper is organized as follows: Works related to regurgitation and
heart-related classification are described in Section 2. In Section 3, the methodologies used
are explained in brief. Section 4 provides the experimental result, and Section 5 includes
the conclusion and future work.

2. Related Works

The heart is a sophisticated structure that requires a trained cardiologist for the proper
diagnosis of any abnormalities. Some of the works that deal with the heart perspective
related to our work are described below.

Pinjari [8] worked with valvular regurgitation using color Doppler images. Two types
of regurgitation were considered, namely MR and AR, whereby the images were first
converted into YCbCr space. Two filters were used for noise removal, namely the Wiener
filter and Gaussian filter. After filtering using Fuzzy K Means and anisotropic diffusion,
segmentation was carried out, and Proximal Isovelocity Surface Area Method (PISA)
was used for quantification, which classifies regurgitation into mild mitral regurgitation,
moderate aortic regurgitation, and severe aortic regurgitation. Allan et al. [12] used 2D
echo and proposed an approach for information extraction in apical view. The procedure
takes the information of patients and image for classification into volume and label. For
finding intensity and label, Joint Independent Component Analysis (JICA) was used. The
approach classified moderate MR with an accuracy of 82%.

Varghese and Jayanthi [24] used an approach for segmentation of echo from videos.
A closed curve was used to detect heart boundary and Gaussian Mixture Model (GMM)
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clustering for segmentation. Balaji et al. [3] worked on view classification using echo. Two
features were used namely histogram features and statistical features to classify of four
standard views, namely, parasternal short axis (PSAX), parasternal long axis (PLAX), apical
two chambers (A2C), and apical four chambers (A4C), was carried out. For 200 images, an
accuracy of 87.5% was achieved. Another work by Balaji et al. in [25], similar to that in [3],
on view classification was done. Mathematical morphology was used before segmentation
using Connected Components Labeling (CCL). Classification of three standard cardiac
views, namely parasternal short axis (PSAX), apical two chambers (A2C), and four-chamber
(A4C) views, was carried out with an accuracy of 94.56%. Nandagopalan [16] has worked
on view classification using a Bayesian classifier. Danilov et al. worked on preprocessing
using median filter and Ramponi filter and segmentation using active contours. Supha [26]
dealt with the left ventricle (LV) segmentation by detecting LV boundary using fuzzy logic
and watershed algorithm along with hidden Markov model-based scheme. Oo et al. [17]
used a level set method for LV boundary detection. Mazaheri et al. [18] also worked with
LV boundary segmentation and reviewed using level set, active contour, and active shape
models. In [27], heart valve disease for aortic stenosis (AS) was assessed. A review on
machine learning techniques for heart disease prediction can be seen in [28], and work
based on heartbeat counts for the classification of heart diseases could be observed in [29].

In the next section, a discussion on the different existing methods and the proposed
approach used for the classification of regurgitation into AR, MR and TR can be observed.

3. Methodology
3.1. Existing Methodologies Used in Proposed Methodology
3.1.1. Gray Level Cooccurrence Matrix (GLCM) and Haralick Texture Features

GLCM is a statistical method of extracting texture features that considers the spatial
relationship of pixels in an image. A square matrix of size N × N defines gray level values
of pixels at a different position. For the image, I(i, j), the intensity features and texture
features that were extracted are Energy, Correlation, Entropy, Contrast, Homogeneity,
Mean, Standard Deviation, Root Mean Square (RMS), Skewness, Variance, Smoothness,
Kurtosis, shade, prominence and Inverse Difference Normalized, Inverse Difference Mo-
ment Normalized (IDM) [30,31]. Haralick texture features are also texture descriptors of an
image that specify the spatial relationship among the neighboring pixels in an image [32].
Haralick features are calculated using GLCM and widely used due to their simplicity and
perceptive interpretations [33]. The different extracted Haralick features are angular second
moment, sum of squares, sum average, sum variance, sum entropy, difference variance,
difference entropy, Info measure of correlation 1, and info measure of correlation 2 [34].
Texture features are selected because they provide information about the intensities of an
image. Such features partition images into the region of interest and classify them.

3.1.2. Random Forest (RF)

RF is used as it is a stable algorithm having multiple trees and is not biased. It can
even take care of missing values in data. RF is a supervised classification technique used in
solving classification and regression problems. Two stages are present in the RF algorithm:
one is to create the forest, and another is to predict the forest. The RF model calculates a
response variable from the randomly created number of decision trees and then puts each
feature set to be modeled down each decision tree. The response is then determined by
evaluating the responses from all of the trees. At each internal node of the decision tree,
entropy is given by the formula in Equation (1) [35].

Entropy = −
n

∑
i=1

piXlogpi (1)

where n = number of classes and pi is the probability of each given classes.
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3.1.3. Level Set Methodology (LSM)

It is a method developed in the 1980s that has become popular in imaging processing
and computer vision that is used to analyze shapes and surfaces [36,37]. It is used for
segmentation where a surface (x) is taken, and a contour is obtained as its output. The
front (the point where the surface is at its zero levels) is defined as a zero level set (x = 0).
This technique provides accurate numerical as well as adhering to topological changes
as well [36]. The intersection of x with the plane creates a contour. For a point, p(a,b)
the derived quantity p(t) is its position over time. The evolution of the level set function
resembles that of the Hamilton Jacobi equation [38]. It is dependent on partial differential
equations, where different parameters are combined to obtain an interface for image seg-
mentation [19]. LSM can be defined in Equations (2)–(4) as follows:

x(a, b, t) < 0 i f (a, b) ∈ φ̄ (2)

x(a, b, t) = 0 i f (a, b) ∈ τ (3)

x(a, b, t) > 0 i f (a, b) ∈ φ̄ (4)

where φ denotes sub region inside τ and φ̄.

3.2. Proposed Methodology

The major computational steps in the proposed approach are image preprocessing,
keyframe extraction, unsupervised segmentation (without ground truth), feature extraction,
and classification. The overall flowchart of the algorithm used in the proposed methodology
is given in Figure 3, and is explained in subsequent sections.

Figure 3. Flowchart of proposed Methodology.

3.2.1. Image Preprocessing

In this paper, the echo obtained are in Audio Video Interleave (AVI) format which
were extracted into frames. To improve feature extraction, the image in the dataset is
preprocessed before the extraction of features. The first operation is to normalize the image
size, and all the images are resized to 224× 224 number of pixels. The next step is to
convert the RGB image to a grayscale image for better representation of an image. To
make the uniform background, a masking operation is performed and finds the region of
interest (ROI). Median filtering technique is used to remove the noises and some connected
components. Some morphological operations, such as erosion and dilation, are performed
to remove the unnecessary pixels, add boundary pixels, and fill small holes in the masked
image. After that the following steps are performed:
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1. Binarize the image; get the membership of each pixel using label_image.
2. Using regionprops, the area of each object in an image is calculated. It measures image

quantities and features.
3. Sort the area and calculate the centroid of the image.
4. Using ismember, the desired image is computed.
5. Store the frames into a folder for each video.

3.2.2. Image Keyframe Extraction

This method overcomes any irregularities in an image boundary and helps reduce
and eliminate any artifacts. The obtained frames are then stored in a folder, and keyframe
extraction is applied. Two types of frame extraction are used in this paper. Firstly, using
reference frame extraction, a static image captured during videographic echo is taken as a
reference frame and compared with the frames obtained from the videographic echo. Math-
ematically, a reference frame Re fi for each patient Pi is compared to frames F1, F2, . . . , Fn
where n is the number of frames present for each patient i. For this, we have used Euclidean
distance to obtain a single or few frames from the videographic echo by eliminating images
having a lower similarity index [39]. Similar frames will have a low value, and dissimilar
frames will have higher values. The top one or three best values are taken and used for
our implementation purpose. This is useful when a reference frame is available to compare
but not suitable for videos with no frame as a valid reference frame. Since we have an
available reference frame for each video we can compare to every frame of a particular
video. Mathematically it can be represented as Equation (5):

dist(i, j) =

√√√√ N

∑
j=1

M

∑
i=1

(i− j) (5)

where i = Reference frame extracted by an expert, j = A single frame in a video, N = Total
number of reference frames and M = Total number of frames.

For video frames having no reference frame, uniform sampling is used where skipping
every two frames has been done. This helps in removing redundancy between images. For
this, for each frame F in F1, F2, . . . , Fn select Fi + 3 where i = 0 upto n. Mathematically for all
videos (Vid) it can be written as shown in Equation (6)

n

∑
i=1

Vidi =
k

∑
j=1

Fj + 3 (6)

where j = 1 to k, k = total number of frames present in a video. After keyframe extraction,
extraction of features is performed. We have extracted the features from the keyframe in
two different forms: one is extraction of features with segmenting the ROI, another one is
extraction of features directly from the keyframe.

3.2.3. Image Segmentation

Currently, there are a variety of tools accessible for manually segmenting an image.
Such manual work is time-consuming and may potentially result in erroneous results. Here,
an unsupervised technique is used for segmentation. Segmentation is carried out using the
LSM [17], which is a commonly used deformable model combined with Fuzzy C Means
(FCM) [19]. LSM is computationally intensive, but performance-wise has a powerful impact.
Segmentation starts with the FCM algorithm, followed by LSM as per [19]. It is used when
shapes and contours are involved and can help detect the presence of any regurgitation in
an image. Nonetheless, segmentation for nonuniform images is still complex, and research
is still being carried out to date.
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3.2.4. Feature Extraction Using GLCM Texture Features and Haralick Texture Feature

Different features are extracted from videographic images to describe the image, which
is further used for classification. We have used GLCM texture features and Haralick texture
feature in our work. These features are selected due to their performance, GLCM is a widely
used statistical texture feature and Haralick is an extension to GLCM that develops spatial
indices that can be interpreted easily and are correlated. These are inspired by [31,32,40,41].
In this work, a set of 19 statistical texture features are extracted from the segmented and
non-segmented images as shown in Table 1 with their mathematical expressions [32–34].

Table 1. Features extracted with their mathematical expressions.

Sl. No. Name of Features Mathematical Expression

1 Contrast f1 = ∑N
i=1 ∑N

j=1(i− j)2Pi,j

2 Dissimilarity f2 = ∑N
i=1 ∑N

j=1 Pi,j|i− j|
3 Energy f3 = ∑i ∑j P2

i,j
4 Entropy f4 = −∑N

i=1 ∑N
j=1 Pi,jlgPi,j

5 Correlation f5 = ∑N
i=1 ‖

(i−µi)(j−µi)√
σ

2
i σ2

j
‖

6 Homogeneity f6 = ∑N
i=1 ∑N

j=1
Pi,j

1−P2
i,j

7 Variance f7 = ∑N
i=1 Pi,j(1− µ)2)

8 Autocorrelation f8 = ∑N
i=1 i, jPi,j

9 Sum average f9 = ∑2N
l=2 l.Px+yl

10 Sum entropy f10 = −∑2N
n=2 Px+y,nlog(Px+y,n)

11 Sum variance f11 = ∑2N
l=2(l − f4)

2Px+yl
12 Difference entropy f12 = −∑N−1

l=0 Px−ylPx+yl
13 Difference variance f13 = ∑N−1

l=0 l2Px+yl
14 Information measure of correlation 1 f14 = HXY−HXY1

max(HX,HY)
15 Information measure of correlation 2 f15 =

√
(1− exp(−2(HXY2−HXY)))

16 Cluster Prominence f16 = ∑N
i=1 ∑N

j=1(i + j− µxµy)4Pi,j

17 Cluster Shade f17 = ∑N
i=1 ∑N

j=1(i + j− µxµy)3Pi,j

18 Inverse Difference Normalized f18 = ∑N
i=1 ∑N

j=1
P(i,j)
1+ k

n

19 Inverse Difference Moment Normal-
ization

f19 = ∑N
i=1 ∑N

j=1
P(i,j)

1+ k2
n2

Due to the lack of segmentation using features such as GLCM and Haralick features,
the segmentation can be reliable. These are robust methods. The features are extracted from
the segmented and nonsegmented images, and the values are stored in a comma-separated
values (CSV) file.

3.2.5. Classification

Classification is carried out using Random Forest (RF). RF is preferred over other clas-
sifiers such as SVM as this paper involves multiclass classification, not binary classification
where it is known to perform better [42–44]. It also gives us the probability of belonging
to the class. It can also handle imbalanced data such as those relied upon in this work. It
is robust to outliers [44]. RF classifier works well in small datasets and outperform other
ensemble classifier as has the ability to tackle overfitting issues.

The CSV file is read using the readcsv command from the panda library. The data
is split into training and testing using the k-fold split command, and then this is fed to a
random forest classifier that classifies the testing data into three classes 0, 1, and 2 (AR, MR,
and TR, respectively).
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4. Experimental Results
4.1. Experimental Setup

For running the program, we have used Python programming. It is implemented using
Google Colab, an online, freely-available platform. The libraries and modules used are
Matplotlib, Keras, Sklearn and PIL. The detailed specifications of Google Colab hardware
used are provided in Appendix A. The different results obtained are given next. The
proposed technique follow the same block diagram as shown in Figure 3.

4.2. Dataset

For carrying out the experiment and analysis, data were obtained from Hope Clinic,
Shillong. A color Doppler data consisting of five patients’ data in video format was used
for each regurgitation. The number of data obtained after reference frame extraction is 170,
where for 20% testing data data division is 136 for training and 34 for testing, and the data
count obtained after redundant frame extraction is 532, where for 20% testing data data
division is 424 for training and 106 for testing. Here, data are divided into 10%, 20%, 30%,
40% and 50% from the total obtained data as testing data. Using k-fold cross-validation,
the number of folds is 2, 3, 5, and 8 folds cross-validation. K-fold cross-validation helps
to avoid overfitting and resampling of data which aids in assessing the performance of a
model. The input images after cropping and resizing can be seen in Figure 4.

Figure 4. Input images for AR, MR, and TR.

4.3. Output of Proposed Methodology
4.3.1. Preprocessing and Segmentation Output

After cropping and resizing, preprocessing is carried out. A preprocessed boundary
detection has been applied, and the result can be seen in Figure 5. The figure includes the
original images and the preprocessed images. After which segmentation is carried out for
both redundant and reference frames. The purpose of this is to test whether segmentation
provides a better result or not in later phases of diagnosis, mainly in predicting the presence
or absence of any regurgitation in an image.

The output showing segmented images to that of the original images is given in
Figure 5. Segmentation is not validated as ground truth is not available for videos. However,
the segmented region is carried out for feature extraction, where values of each image are
obtained. These values provide the differences and similarities of each frame to one another.
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Figure 5. The first row shows the input image, second row the preprocessed images and third row
the segmented images for AR, MR and TR respectively.

4.3.2. Features Extracted

The different GLCM and Haralick features extracted using Table 1 are stored in a CSV
file which look like the image provided in Figure 6. The figure shows obtained features
for selected frames. The 19 different features are contrast as contr, dissimilarity as dissi,
energy as energ, entropy as entro, correlation as corrp, homogeneity as homom, variance as
sosvh, autocorrelation as autoc, sum average as savgh, sum entropy as senth, sum variance
as svarh, difference entropy as denth, difference variance as dvarth, information measure of
correlation 1 as in f o1, information measure of correlation 2 as in f o2, cluster prominence
as cprom, cluster shade as cshad, inverse difference normalized as maxpr and inverse
difference moment normalized as idmnc. With the features, class label is also provided for
training phase where 0 is for AR, 1 is for MR and 2 is for TR.

Figure 6. Features obtained for frames 1-20, as represented in the CSV file.

4.3.3. Classification Output

After feature extraction, RF is used to classify the images into three types of regurgi-
tation, namely AR, MR, and TR. Here, two types of classification are carried out which
is reference frame classification and redundant frame classification. For each type of clas-
sification, two approaches have been used, the segmentation approach and the without
segmentation approach. It is crucial to determine whether or not segmentation is an essen-
tial factor in classifying regurgitation in the heart. It also gives us a clear idea of validation
and analysis of images in the future.

The classification was assessed using four measures based on the confusion matrix.
These are Accuracy, Precision, Recall, and F1-score [45]. Classification is implemented
using k-fold cross-validation for statistical purposes since data used are not massive.
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1. Accuracy: It is the measure of correctly classified images as a percentage. It can be
calculated using Equation (7).

Accuracy =
TP + TN

TP + FP + TN + FP
(7)

2. Precision: It is the fraction of True Positives (TP) and False Positives (FP). Precision
can be calculated using Equation (8).

Precision =
TP

TP + FP
(8)

3. Recall: It represents the fraction of True Positives (TP) and False Negatives (FN). It can
be calculated using Equation (9).

Recall =
TP

TP + FN
(9)

4. F1-score: It is a harmonic mean of precision and recall. It is given by Equation (10).

F1-Score= 2× Precision× Recall

Precision+ Recall
(10)

The following observations were made based on the output obtained from Tables 2–7.

1. Using reference frame extraction, two-fold cross-validation highest accuracy obtained
is 85.29% and 91.17% for with segmentation and without segmentation, respectively,
and three-, five-, and eight-fold cross-validation highest accuracy is 100% in both cases.

2. Using redundant frame extraction, the best accuracy for two-fold is 87.73% and 98.76%,
three-fold is 85.91% and 94.36%, five-fold is 85.71% and 100%, and eight-fold is 84.61%
and 100% for with segmentation and without segmentation, respectively.

3. The overall accuracy for two-fold is 76.64% and 83.52%, three-fold is 88.69% and
86.95%, five-fold is 89.22% and 96.46%, and eight-fold is 77.50% and 95% for with
segmentation and without segmentation, respectively, in the case of the reference
frame, and two-fold is 69.36% and 92.39%, three-fold is 71.26% and 92.71%, five-fold
is 63.14% and 96.23%, and eight-fold is 72.30% and 100% for with segmentation and
without segmentation respectively in the case of the redundant frame. The overall
accuracy of two-, three-, five-, and eight-fold for with and without segmentation for
reference frame is 83.56% and 90.48%, respectively. The overall accuracy of two-,
three-, five-, and eight-fold for with and without segmentation for reference frame is
69.01% and 95.33%, respectively.

4. Using five folds provided the best result when testing data are divided into 10%, 20%,
30%, 40%and 50%.

5. Based on the output obtained on the accuracy, precision, recall, and F1-score, it can be
seen that in most cases, without segmentation gives a better result compared to with
segmentation approach. The result that reflects this can be visualized using eight-fold
cross-validation, a smaller data distribution using a reference frame.

6. It can be concluded that without using segmentation can also be applied to classify
regurgitation in the heart. This might not be the case for all types of diagnosis. It
might not be valid for cases of data having ground truth segmentation as well. This
can be true for fully unsupervised segmentation techniques and not for supervised or
semisupervised segmentation. Using the redundant frame approach provides better
accuracy in the case of without segmentation.
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Table 2. Reference frame without segmentation.

No. of
Fold % Precision Recall F1-Score

P0 P1 P2 R0 R1 R2 F0 F1 F2

2-folds

10 100 78.57 100 76.92 100 100 86.95 87.99 100
20 100 84.61 77.77 100 84.61 77.77 100 84.61 77.77
30 72.72 81.81 58.33 80.00 75.00 58.33 76.18 78.25 58.33
40 75.00 81.81 81.61 100 64.28 81.81 85.71 71.99 81.81
50 84.61 100 77.77 84.61 100 77.77 84.61 100 77.77

3-folds

10 50.00 100 100 100 50.00 100 66.66 66.66 100
20 100 66.66 87.5 100 80.00 77.77 100 72.72 82.34
30 75.00 60.00 100 100 100 71.42 85.71 75.00 83.32
40 100 100 100 100 100 100 100 100 100
50 100 71.42 75.00 100 71.42 75.00 100 71.42 75.00

5-folds

10 66.66 100 100 100 60.00 100 79.99 75.00 100
20 100 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100
50 100 85.71 100 80.00 100 100 88.88 92.30 100

8-folds

10 100 100 0 100 75.00 0 100 85.71 0
20 100 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100
50 100 100 50.00 100 66.66 100 100 79.99 66.66

Table 3. Reference frame with segmentation.

No. of
Fold % Precision Recall F1-Score

P0 P1 P2 R0 R1 R2 F0 F1 F2

2-folds

10 100 28.57 90.00 55.55 100 75.00 71.42 44.44 81.81
20 83.33 69.23 77.77 83.33 100 53.84 83.33 81.81 63.62
30 81.81 72.72 75.00 60.00 100 81.81 69.22 84.20 73.68
40 75.00 72.72 100 75.00 72.72 100 75.00 72.72 100
50 100 58.33 100 86.66 100 75.00 92.85 73.68 85.71

3-folds

10 100 50.00 72.72 72.72 100 80.00 84.20 66.66 76.18
20 88.88 50.00 100 72.72 100 88.88 79.99 66.66 94.11
30 100 100 100 100 100 100 100 100 100
40 100 66.66 100 100 100 75.00 100 79.99 85.71
50 100 100 87.50 88.88 100 100 94.11 100 93.33

5-folds

10 100 100 100 100 100 100 100 100 100
20 100 66.66 0 55.55 100 0 71.42 79.99 0
30 100 100 75.00 89.71 100 100 94.57 100 85.71
40 100 100 60.00 66.66 100 100 79.99 100 75.00
50 100 100 100 100 100 100 100 100 100

8-folds

10 100 33.33 100 100 100 33.33 100 49.99 49.99
20 100 100 100 100 100 100 100 100 100
30 33.33 100 50.00 100 20.00 100 49.99 33.33 66.66
40 100 100 75.00 66.66 100 100 79.99 100 85.71
50 50.00 100 100 100 50.00 100 66.66 66.66 100
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Table 4. Redundant frame without segmentation.

No. of
Fold % Precision Recall F1-Score

P0 P1 P2 R0 R1 R2 F0 F1 F2

2-folds

10 95.23 96.77 90.90 97.56 90.90 93.75 96.38 93.74 92.30
20 95.74 99.17 100 97.82 99.58 94.44 96.76 99.37 97.14
30 88.88 71.42 93.93 86.95 86.95 83.78 87.90 78.42 88.56
40 85.00 96.77 80.00 91.89 78.94 90.32 88.31 86.95 84.84
50 94.59 96.66 97.50 100 93.54 95.12 97.21 95.07 96.29

3-folds

10 93.75 88.23 95.65 96.77 88.23 91.66 95.23 88.23 93.61
20 92.59 90.00 91.66 96.15 85.71 91.66 94.33 87.80 91.66
30 91.66 90.90 88.46 84.61 90.90 95.83 87.99 90.90 91.99
40 96.55 95.23 90.47 96.55 95.23 90.47 96.55 95.23 90.47
50 94.44 92.85 95.23 94.44 86.66 100 94.44 89.65 97.55

5-folds

10 100 100 100 100 100 100 100 100 100
20 94.11 83.33 92.30 88.88 90.90 92.30 91.42 86.95 92.30
30 100 100 100 100 100 100 100 100 100
40 86.66 87.50 95.00 92.85 77.77 95.00 89.64 82.34 95.00
50 100 100 100 100 100 100 100 100 100

8-folds

10 100 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100 100
30 100 100 100 100 100 100 100 100 100
40 100 100 100 100 100 100 100 100 100
50 100 100 100 100 100 100 100 100 100

Table 5. Redundant frame with segmentation.

No. of
Fold % Precision Recall F1-Score

P0 P1 P2 R0 R1 R2 F0 F1 F2

2-folds

10 80.95 64.51 48.27 79.07 50.00 73.68 79.99 56.33 58.87
20 76.59 72.00 58.82 81.81 56.25 66.66 79.11 63.15 62.49
30 88.88 71.42 100 95.23 86.95 80.48 91.94 78.42 89.18
40 75.00 77.41 31.42 62.50 57.14 68.75 68.18 65.74 43.12
50 81.08 55.17 42.50 62.50 59.25 61.29 70.58 57.13 50.19

3-folds

10 87.50 81.25 86.95 87.50 68.42 100 87.50 74.28 93.01
20 48.14 45.00 58.33 54.16 39.13 58.33 50.97 41.86 58.33
30 78.26 63.66 84.61 69.23 73.68 84.61 73.46 68.28 84.61
40 65.51 71.42 66.66 70.37 62.50 70.00 67.85 66.66 68.28
50 83.33 71.42 66.66 85.71 52.63 82.35 84.60 60.60 73.67

5-folds

10 77.77 66.66 66.66 77.77 61.53 72.72 77.77 63.99 69.55
20 82.35 58.33 75.00 77.77 63.63 75.00 79.99 60.86 75.00
30 85.71 80.00 88.88 80.00 72.72 100 82.75 76.18 94.11
40 60.00 62.50 36.84 52.94 35.71 63.63 56.24 71.61 46.66
50 62.50 69.23 84.61 83.83 52.94 84.61 71.61 59.99 84.61

8-folds

10 66.66 71.42 40.00 60.00 50.00 66.66 63.15 58.82 49.99
20 55.55 71.42 60.00 55.55 55.55 75.00 55.55 62.49 66.66
30 77.77 62.50 77.77 87.50 62.50 70.00 82.34 62.50 73.68
40 81.81 90.00 80.00 90.00 81.81 80.00 85.70 85.70 80.00
50 86.66 80.00 83.33 92.85 80.00 71.42 89.64 80.00 76.91
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Table 6. Performance metrics for 10%, 20%, 30%, 40% and 50% testing data using Reference frame
extraction for with and without segmentation for two, three, five, and eight folds.

Fold Performance
Metrics

With Segmentation Without Segmentation
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

2-folds

Accuracy 67.64 76.47 76.47 82.35 85.29 91.17 88.23 70.58 79.41 88.23
Precision 72.85 76.77 76.51 82.57 86.11 92.85 87.46 70.95 79.54 87.46
Recall 76.85 79.05 80.60 82.57 87.22 92.30 87.45 71.11 82.03 87.46
F1-score 65.89 76.25 75.70 82.57 84.08 91.64 87.46 70.92 79.83 87.46

3-folds

Accuracy 78.26 82.60 100 86.95 95.65 82.60 86.95 82.60 100 82.60
Precision 74.24 79.62 100 88.88 95.83 83.33 84.72 78.33 100 82.14
Recall 84.24 87.20 100 91.66 96.29 83.33 85.92 90.47 100 82.14
F1-score 81.65 80.25 100 88.56 95.81 77.77 85.02 81.34 100 82.14

5-folds

Accuracy 100 69.23 92.30 84.61 100 90.00 100 100 100 92.30
Precision 100 55.55 91.66 86.66 100 88.88 100 100 100 95.23
Recall 100 51.85 96.57 88.88 100 86.66 100 100 100 93.33
F1-score 100 50.47 93.42 84.99 100 84.99 100 100 100 93.72

8-folds

Accuracy 75.00 100 50.00 87.50 75.00 87.50 100 100 100 87.50
Precision 77.77 100 77.77 91.66 83.33 66.66 100 100 100 83.33
Recall 77.77 100 73.33 88.88 83.33 58.33 100 100 100 88.88
F1-score 66.66 100 49.99 88.56 77.77 61.90 100 100 100 82.21

Table 7. Performance metrics for 10%, 20%, 30%, 40% and 50% testing data using Redundant frame
extraction for with and without segmentation for two, three, five, and eight folds.

Fold Performance
Metrics

With Segmentation Without Segmentation
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

2-folds

Accuracy 66.66 69.81 87.73 61.32 61.32 94.34 98.76 85.84 86.79 96.26
Precision 64.57 69.13 86.76 61.27 59.58 94.30 98.30 84.74 87.25 96.25
Recall 67.58 68.24 87.55 62.79 61.01 94.07 97.28 85.89 87.05 96.22
F1-score 65.06 68.25 86.51 59.01 59.30 94.14 97.75 84.96 86.70 96.19

3-folds

Accuracy 85.91 50.70 76.05 67.60 76.05 93.05 91.54 90.27 94.36 94.36
Precision 85.23 50.49 75.51 67.86 73.80 92.54 91.41 90.34 94.08 94.17
Recall 85.30 50.54 75.84 67.62 73.56 92.22 91.17 90.44 94.08 93.70
F1-score 84.93 50.38 75.45 67.59 72.92 92.35 91.26 90.29 94.08 93.88

5-folds

Accuracy 71.42 73.17 85.71 50.00 71.42 100 90.47 100 90.69 100
Precision 70.36 71.89 84.86 53.11 72.11 100 89.91 100 89.72 100
Recall 70.67 72.13 84.24 50.59 73.79 100 90.69 100 88.54 100
F1-score 70.43 71.95 84.34 58.17 72.07 100 90.22 100 90.22 100

8-folds

Accuracy 57.69 61.53 73.07 84.61 84.61 100 100 100 100 100
Precision 66.02 62.32 72.68 83.93 83.33 100 100 100 100 100
Recall 58.88 62.03 73.33 83.93 81.42 100 100 100 100 100
F1-score 57.32 61.56 72.84 83.80 82.18 100 100 100 100 100

4.4. Classification Comparison with Existing Methodologies

To classify AR, MR and TR, the results are compared with SVM and PCA-SVM, which
were previously used to classify normal and abnormal images or types of regurgitations.
The results of our model is compared with the two methodologies as shown in Table 8. For
comparison with other methodologies, taking the average best accuracy of our method,
it can be observed that the proposed method is better than the existing method as shown
in Table 8. Other parameters are not compared as they are not available in other papers.
Moreover, using our data, a comparison is made with PCA + SVM and SVM as a method.
Classification is performed using five folds for the existing methodologies, based on the
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output obtained from Tables 6 and 7 for the proposed methodology, in which five folds
show promising results compared to other folds. The result is provided in Table 9.

Table 8. Comparison table for all the methodologies in the classification of heart abnormalities.

Author Methodologies Used Types of Classification Type of Images Accuracy (%)

Allan [12] (2017) JICA, PCA, SVM Types of regurgitation Static 82

Kumar [11] (2010)
Affine transform,

Histogram, Pyramid
matching, SVM

Normal or abnormal
(hypokinesis) Static 90.5

Proposed
Binarization, Levelset
method, Haralick and

GLCM, Random Forest
Types of regurgitation Videographic

95.33 (Highest obtained
accuracy in case of

reference frame
without segmentation)

Table 9. Performance metrics for 10%, 20%, 30%, 40% and 50% testing data using Reference frame as
*Ref and redundant frame as *Red for with and without segmentation.

Method Performance
Metrics

With Segmentation Without Segmentation
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

SVM (Ref)

Accuracy 0.88 0.66 0.50 0.51 0.50 1 0.57 0.47 0.42 0.34
Precision 0.90 0.66 0.56 0.52 0.56 1 0.55 0.46 0.44 0.34
Recall 0.90 0.73 0.50 0.48 0.17 1 0.60 0.53 0.53 0.51
F1-score 0.88 0.63 0.50 0.48 0.43 1 0.56 0.43 0.43 0.73

PCA-SVM (Ref)

Accuracy 0.70 0.71 0.71 0.64 0.57 0.85 0.57 0.52 0.50 0.51
Precision 0.66 0.69 0.75 0.66 0.58 0.89 0.72 0.51 0.52 0.51
Recall 0.50 0.83 0.81 0.74 0.58 0.89 0.49 0.57 0.64 0.70
F1-score 0.89 0.63 0.50 0.48 0.43 0.86 0.64 0.52 0.50 0.46

SVM (Red)

Accuracy 0.33 0.40 0.42 0.40 0.33 0.90 0.88 0.90 0.90 0.94
Precision 0.33 0.33 0.66 0.58 0.46 0.77 0.79 0.83 0.83 0.92
Recall 0.16 0.16 0.27 0.26 0.25 0.91 0.90 0.92 0.92 0.94
F1-score 0.22 0.22 0.38 0.37 0.32 0.84 0.84 0.87 0.87 0.93

PCA-SVM (Red)

Accuracy 0.54 0.58 0.47 0.51 0.47 1 0.93 0.95 0.93 0.69
Precision 0.51 0.56 0.47 0.40 0.48 1 0.93 0.94 0.91 0.73
Recall 0.54 0.57 0.47 0.40 0.48 1 0.93 0.96 0.94 0.80
F1-score 0.53 0.56 0.46 0.50 0.48 1 0.93 0.95 0.92 0.77

Proposed (Ref)

Accuracy 1 0.69 0.92 0.84 1 0.90 1 1 1 0.92
Precision 1 0.55 0.91 0.86 1 0.88 1 1 1 0.95
Recall 1 0.51 0.96 0.88 1 0.86 1 1 1 0.93
F1-score 1 0.50 0.93 0.84 1 0.84 1 1 1 0.93

Proposed (Red)

Accuracy 0.71 0.73 0.85 0.50 0.71 1 0.90 1 0.90 1
Precision 0.70 0.71 0.84 0.53 0.72 1 0.89 1 0.89 1
Recall 0.70 0.72 0.84 0.50 0.73 1 0.90 1 0.88 1
F1-score 0.70 0.71 0.84 0.58 0.72 1 0.90 1 0.90 1

The following summary has been observed after implementing the SVM, PCA-SVM,
and the proposed approach.

1. From Table 9, it can be observed that our method provides a better result in most cases
compared to PCA-SVM and SVM without segmentation and better accuracy to both
the methods in the case when using segmentation.

2. In the majority of cases, using 10% testing data provides more promising results than
when using 20% or more data. This is mainly due to the data size, which is small in
our case.
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3. The highest accuracy obtained in SVM, PCA-SVM and the proposed approach is
100% which occurs once in SVM and PCA-SVM and eight times using the pro-
posed approach.

4. Another observation is made where it can be seen that using the redundant frame
extraction method, the result is better when using without any segmentation while
using reference frame it is better to use with segmentation. This shows that segmenta-
tion is more valid and reliable with a known parameter like ground truth than without
any ground truth. Furthermore, this is an important aspect of clinical usage.

4.5. Benefits and Limitations of the Proposed Approach

An expert has validated the classification output. Although no deep learning method-
ologies are used, based on the few datasets using RF as a classifier has overcome that of the
SVM classifier, whereas, for binary classification, SVM has been the most used classification
technique. RF is used here since it has the capability of distinguishing multiple classes.
Overall, the proposed model works as the primary purpose is classification. Segmentation,
in this case, is a step that help reduces the size of our data that can be used for feature
extraction. Frame extraction, on the other hand, helps reduces slices of data which is crucial
as we want only essential slices and not every slice. Our data already consisted of a frame
where the exact location of regurgitation appears, but no ground truth was obtained from it.

Data is not large, and no data augmentation is used to test the model’s capability. This
deteriorates the performance of a model like deep learning; therefore, a machine learning
RF classifier with texture features is used instead of CNN and other relevant models.
This work may not be applicable for larger data or any other data as methodologies used
are specifically for heart-related field like the LS method. Segmentation output is fully
unsupervised, which is not viable for detecting the region of interest. This model is not
clinically validated.

Additionally, this effort is technical and not clinical. Clinical usage of a method needs
to be precise with efficiency and effectiveness. If more data are fed, the system might
not perform well, and we may require a denser model, like deep-learning model that can
handle this easily.

5. Conclusions

The use of automated techniques in echo to classify heart regurgitation and its di-
agnosis has recently emerged in cardiology. In most of the work, researchers identified
regurgitation from the image file. In this work, we have designed an automated machine
learning-based technique that can be useful in echo regurgitation detection and diagnosis
from a video file. Three different types of regurgitation, namely AR, MR, and TR, are
considered in this work. One of the advantages of this approach is that the generation
of keyframes from the video file which reduces the total number of frames by a large
margin. From the results, it is observed that in some folds using segmentation and without
segmentation in both reference and redundant frames, the accuracy obtained accuracy
is 100% with an overall highest accuracy of 95.33%. In comparison to other techniques
proposed by the researchers, as shown in Table 9, the output obtained using our approach
is much higher in terms of performance accuracies. Identifying regurgitation from real-time
video images in clinics is a crucial future aspect in this area. Though the model gives higher
performance accuracies, the dataset used to train and validate the results is small. Using
this model in a real-time clinic requires a large number of data to train and validate the
model. So, dataset collection based on real-time data is essential in this area.

Using such algorithms will provide a solution to the cardiologist, which will aid in
diagnosis and may even assist or replace human efforts in the future. A traditional approach
is applied here, which can be studied with additional advanced techniques in the future.
Future work also includes the classification of regurgitation severity and early detection
of regurgitation, which will reduce the chances of damage to the valves. Also, work with
more videographic images and experimentation using deep learning and reinforcement
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learning models, which are not explored in valvular disease, can be an important aspect
of research in this field. These state-of-the-art techniques can tackle and provide higher
accuracy, scalability, and efficiency when used correctly.
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Appendix A

Specifications of Google Colab.
Filesystem Size Used Avail Use% Mounted on
overlay 108G 38G 71G 35% /
tmpfs 64M 0 64M 0% /dev
shm 5.8G 0 5.8G 0% /dev/shm
/dev/root 2.0G 1.1G 910M 54% /sbin/docker-init
tmpfs 6.4G 32K 6.4G 1% /var/colab
/dev/sda1 55G 38G 17G 70% /etc/hosts
tmpfs 6.4G 0 6.4G 0% /proc/acpi
tmpfs 6.4G 0 6.4G 0% /proc/scsi
tmpfs 6.4G 0 6.4G 0% /sys/firmware

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU @ 2.20GHz
stepping : 0
microcode : 0x1
cpu MHz : 2199.998
cache size : 56320 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl
xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1
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sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnow-
prefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2
erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
bugs :cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs taa
mmio_stale_data retbleed
bogomips : 4399.99
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:

processor : 1
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU @ 2.20GHz
stepping : 0
microcode : 0x1
cpu MHz : 2199.998
cache size : 56320 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 1
apicid : 1
initial apicid : 1
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush
mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology
nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic
movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invp-
cid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid
rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs taa
mmio_stale_data retbleed bogomips : 4399.99
clflush size : 64
cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:

MemTotal: 13297228 kB
MemFree: 10934088 kB
MemAvailable: 12479992 kB
Buffers: 58388 kB
Cached: 1655996 kB
SwapCached: 0 kB
Active: 492796 kB
Inactive: 1688232 kB
Active(anon): 984 kB
Inactive(anon): 432992 kB
Active(file): 491812 kB
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Inactive(file): 1255240 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 196 kB
Writeback: 0 kB
AnonPages: 466716 kB
Mapped: 227304 kB
Shmem: 1272 kB
KReclaimable: 80608 kB
Slab: 109852 kB
SReclaimable: 80608 kB
SUnreclaim: 29244 kB
KernelStack: 4592 kB
PageTables: 8732 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 6648612 kB
Committed_AS: 2882592 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 9412 kB
VmallocChunk: 0 kB
Percpu: 1416 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
FileHugePages: 0 kB
FilePmdMapped: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 0 kB
DirectMap4k: 82752 kB
DirectMap2M: 5156864 kB
DirectMap1G: 10485760 kB
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