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Abstract: Federated learning is becoming increasingly popular to enable automated learning in
distributed networks of autonomous partners without sharing raw data. Many works focus on
supervised learning, while the area of federated unsupervised learning, similar to federated clustering,
is still less explored. In this paper, we introduce a federated clustering framework that solves three
challenges: determine the number of global clusters in a federated dataset, obtain a partition of
the data via a federated fuzzy c-means algorithm, and validate the clustering through a federated
fuzzy Davies–Bouldin index. The complete framework is evaluated through numerical experiments
on artificial and real-world datasets. The observed results are promising, as in most cases the
federated clustering framework’s results are consistent with its nonfederated equivalent. Moreover,
we embed an alternative federated fuzzy c-means formulation into our framework and observe that
our formulation is more reliable in case the data are noni.i.d., while the performance is on par in the
i.i.d. case.

Keywords: federated learning; framework; cluster analysis; cluster number determination; federated
fuzzy Davies–Bouldin index; federated cluster validation metric; federated fuzzy c-means

1. Introduction

The success of machine learning (ML) can partly be attributed to the availability of
good and sufficiently sized training datasets. Often, the data are stored on a central server,
where ML models are trained. However, the data might initially be distributed among
many clients (e.g., smartphones, companies, etc.). There are situations where gathering the
data on a central server is not feasible, e.g., due to privacy regulations (such as GDPR) [1]),
the amount of data, or other reasons. Federated learning (FL) is an approach that allows
clients to jointly learn ML models while keeping all data local [2]. Authors describe the
generic FL training process by five steps:

1. Client selection: Select clients participating in the training.
2. Broadcast: A central server initializes a global model and shares it with the clients.
3. Client computation: Each client updates the global model by applying a training

protocol and shares the updates with the central server.
4. Aggregation: The central server applies an aggregation function to update the

global model.
5. Model update: The updated global model is shared with the clients.

This protocol can be repeated multiple times until a convergence criterion is met. Train-
ing a model following such a process has been successfully applied to a variety of use cases,
e.g., for next-word predictions on smartphones [3], vehicle image classification [4], data
collaboration in the healthcare industry [5,6], on IoT data [7–9], and many more. For com-
prehensive surveys please refer to [2,10] or [11]. Many works focus on supervised learning
while the area of federated unsupervised learning, similar to federated clustering, is less
explored. Cluster analysis is widely applied across many different disciplines as diverse as
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medical research [12], social and behavioral sciences [13,14], strategic management [15], or
marketing [16,17], just to name a few. In all of these areas of application, the data could
be initially distributed and hard to centralize. Hence, they are all potential application
areas for a federated cluster analysis framework. Ref. [18] described cluster analysis as
seven steps that need to be performed in order to derive insights (Section 2.1). In federated
clustering, only one step has been (explicitly) addressed, i.e., the clustering method [19–22].
Other important steps, such as cluster validation or determining the number of clusters,
have no federated equivalent yet.

Federated clustering is an FL setting, where the goal is to group together (local)
data points that are globally similar to each other. That is, data points are distributed
among multiple clients and are clustered based on a global similarity measure, while
all data remain local on client devices. Existing works largely focus on developing and
applying a federated clustering method, i.e., partitioning the data given the number of
(global) clusters K. While being an important step in the clustering framework, the lack of
more comprehensive frameworks (for example, including determination of the number of
clusters and cluster validation) might hinder application in practice.

We contribute to closing this gap by introducing a multistep federated (fuzzy) clus-
tering analysis framework for the first time. In particular, we propose a federated version
of the well-known (fuzzy) Davies–Bouldin index for cluster validation, show how to use
it for the determination of the number of clusters, and apply a federated fuzzy c-means
algorithm to solve the soft clustering problem. Even though independently developed, we
note that our federated fuzzy c-means algorithm is closely related to other works in the
area of federated clustering [19–22]. It combines local fuzzy c-means on the client side with
k-means on the global server side. Each idea in itself is not new, but the combination is,
and we observe that our formulation is more reliable than other federated fuzzy clustering
methods in case the data are non-i.i.d. To the best of our knowledge, there exists no cluster
validation index for federated cluster validation yet. Moreover, no work addressing the
problem of determining the number of clusters in a federated setting is known to us.

In the remainder of this section, we demonstrate the need for a federated clustering
framework. In subsequent sections, we review relevant works from nonfederated and
federated cluster research in Section 2.1. In Section 2.2, we introduce the individual pieces of
our framework before fitting them together. Section 3 contains an experimental evaluation
on real-world and artificial data to demonstrate the framework’s effectiveness and uncover
shortcomings. Finally, Section 4 concludes this work.

1.1. Motivational Example

Previous works in federated clustering mostly assume application scenarios to be
given. However, it is not necessarily obvious that sophisticated federated cluster analysis
algorithms are indeed required and, for example, exchanging locally optimal cluster analy-
sis results is not sufficient. This motivational example is designed to close the gap. In the
following example, locally optimal results obtained by nonfederated fuzzy c-means do
not reveal the global cluster structure. We illustrate this example by outlining a potential
practical application.

Imagine a multinational company with several local markets selling similar consumer
goods in all markets. Each local market has data about their customers (e.g., age, place
of residency, sold good, etc.) and applies (fuzzy) clustering algorithms to generate cus-
tomer segments. The cluster analysis insights are utilized to steer marketing activities.
The company wishes to derive global clusters to better understand their global customer
base and identify unlocked potential in the local markets. Due to strict privacy regulations,
the company is not allowed to gather all data in a central database (e.g., European customer
data are not allowed to be transferred to most countries outside of Europe). The company
could ask each local market to share their local cluster centers, but this approach disregards
that clusters might only become apparent when the data are combined. Such a situation
exists, as we will show. For the purpose of this example, we spare the details of the dataset
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creation, because a detailed explanation can be found in Section 3.2.1. It is enough to know
that there are five global clusters in the dataset, because of how it was created. Four of
the clusters have relatively high cardinality, and the fifth cluster has fewer points. We
verify that the correct number of clusters is detected in the centralized dataset. To achieve
this, the (nonfederated) fuzzy c-means algorithm (Section 2.1.2) is applied with multiple
(potential) number of clusters K, and the result is evaluated with the fuzzy Davies–Bouldin
index (Section 2.1.3). The best fuzzy Davies–Bouldin score is achieved with K = 5, and we
can conclude that the correct number of clusters can be found in the centralized case.

This example is designed to prove that global structure in federated data can hide
behind locally optimal solutions. To create a federated setting, the data are distributed
among three clients in a certain way: each client receives data from two of the four bigger
clusters and a few points from the smaller cluster (see Figure 1 for a visualization). Next,
we calculate the number of local clusters for all clients using the same method as before
(nonfederated fuzzy c-means in combination with nonfederated Davies–Bouldin). For each
client now, the best number of clusters is 2 (as it gives the best DB index score) and none
identify the smaller cluster present in their data. That calls for a federated cluster analysis
(federated clustering method and federated cluster validation metric) that is able to detect
the global structure.

In the multinational company example, the smaller cluster could represent a group of
customers that each local market falsely assigned to their bigger clusters. As a consequence,
the company targets those customers with inappropriate marketing activities. Exploiting
insights from the global cluster analysis could lead to new, more targeted marketing
strategies and unlock (previously hidden) potential.

This work is concerned with introducing the federated fuzzy Davies–Bouldin (Fed-
FuzzDB) index as a federated cluster validation metric. It can be leveraged to identify
all five clusters in the data without the need for sharing the raw data, as we will see in
Section 3.2.1. To the best of our knowledge, there exists no other federated cluster validation
metric in the literature. Another, equally important, challenge is to correctly identify the
global cluster structure given the number of clusters. Our framework applies a federated
fuzzy c-means algorithm with k-means averaging (FedFCM, Section 2.2.3) to address this
challenge. We will see that the combination of FedFuzzDB and FedFCM leads to promising
results, but note that the framework could also be used with other clustering algorithms.

(a) (b)

(c) (d)

Figure 1. Motivational example. (a) The centralized dataset. Colors correspond to ground truth partitions.
(b–d) The distributed dataset. Crosses denote the clustering result of the federated clustering framework.
Original cluster centers are recovered even though no client alone was able to do so.

2. Materials and Methods

Our overall framework consists of federated versions of the fuzzy c-means with k-
means averaging and a federated version of the (fuzzy) Davies–Bouldin index. Therefore,
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we revisit these well-known concepts in the next subsections (Sections 2.1.1–2.1.3). More-
over, we provide a brief overview of works about federated clustering (Section 2.1.4).
Finally, we introduce our new framework in Section 2.2 and corresponding subsections.

2.1. Background: Related Work
2.1.1. Nonfederated k-Means Clustering

Let X be a given dataset. The objective of the k-means clustering is to find cluster cen-
ters c = (c1, c2, . . . , cK) (and corresponding assignments) such that the following expression
is minimized (see, e.g., [23]):

Ĵ(c) =
K

∑
k=1

∑
x∈X

I(x, k)||x− ck||2 (1)

I(x, k) =

{
1, x is assigned to cluster k,
0, otherwise.

Each data point x is assigned to its closest cluster center, where closeness is defined by
Euclidean distance. The assignment is given by function a : X× {c1, . . . , cK} → {1, . . . , K}:

a(x, {ck}K
k=1) := arg min

1≤k≤K
||ck − x||2 (2)

A widely used iterative algorithm for finding such a clustering works is as follows [23]:

1. Initialize cluster centers c1, . . . , cK.
2. Assign clusters for all x ∈ X according to a(x, {ck}K

k=1) (Equation (2)).
3. Recalculate cluster centers ck by solving the following problem, i.e., calculating the

mean of points assigned to the same cluster:

ck = min
m∈Rd

∑
x∈X:a(x)=k

||x−m||2, k = 1, . . . , K.

4. Check if the convergence criterion is met, i.e., whether the assignment did not change

(much) compared to the previous iteration. Let a(t−1)
i be the assignment vector of

the previous iteration for data point xi ∈ X, i.e., the k-th entry is 1 if a(xi, {ck}) = k,
and zero otherwise. Let a(t)i be the assignment of the current iteration. Further, let

A(t−1) and A(t) be the assignment matrices, where the i-th row equals a(t−1)
i and

a(t)i , respectively. Then, the algorithm converges if the difference between the two
assignment matrices is smaller than some predefined ε:

||A(t−1) − A(t)||2 < ε. (3)

If the algorithm did not converge yet, move back to step 2. If it did converge, terminate.

Ĵ(c) is monotonously decreasing with each iteration, but it is known that the algorithm
might become stuck in a local minimum. In fact, it does not offer any performance guar-
antee, and [24] argues that it often fails due to its sensitivity to the initialization method.
In [24], the still-popular initialization method k-means++ is introduced. It subsequently
chooses random cluster centers that are likely to be far from already chosen centers. In our
experiments, we use the scikit-learn implementation that applies the k-means++ initializa-
tion method, too [25].

2.1.2. Nonfederated Fuzzy c-Means Clustering

Fuzzy c-means is a well-known soft clustering method that assigns a membership
index uij for clusters j = 1, . . . , K to data points xi ∈ X such that ∑K

j uij = 1 ∀i = 1, . . . , N.
The term soft clustering refers to the fact that points are allowed to belong to more than
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one cluster. In contrast, a hard clustering method such as k-means assigns each point to
exactly one cluster.

For given data X, the objective is to find cluster centers cj and membership matrix
U = [uij] such that the following expression is minimized [26]:

Jm(U, c) =
N

∑
i=1

K

∑
j=1

(uij)
m||xi − cj||2, (4)

uij :=
1

∑K
k=1(

||xi−cj ||2
||xi−ck ||2

)
2

m−1

, (5)

where ||y|| :=
√

∑n
l=1 y2

l . It is closely related to the k-means clustering, and the main
difference lies in the assignment matrices A in k-means versus U in fuzzy c-means.

Parameter m > 1 controls how fuzzy the cluster assignments should be. The greater
the m, the more fuzziness in the assignment, i.e., points are assigned to more clusters with
smaller values. A common choice that we also employ in all of our experiments is m = 2.

A widely used algorithm to find a solution to the optimization problem was introduced
by [26] and follows four basic steps:

1. Initialize matrix U := U0.
2. In iteration t, (re)calculate cluster centers cj according to:

cj =
∑i um

ij xi

∑i um
ij

(6)

3. Update membership matrix Ut+1 according to Equation (5).
4. Check if the convergence criterion is met: ||Ut+1 −Ut|| ≤ ε for some predefined ε,

i.e., did the memberships change by at most ε? If it was not met, return to step 2 after
setting Ut = Ut+1. Terminate if it was met.

The time-complexity of the algorithm is quadratic in the number of clusters K, and meth-
ods to reduce the complexity have been proposed [27]. Similar to k-means, other short-
comings of the algorithm are sensitivity to the cluster initialization and sensitivity to noise,
as noted in [28]. Those challenges have been addressed by subsequent works, but each
auxiliary method comes with its own shortcomings [28]. Clustering in high-dimensional
spaces is another well-known challenge for clustering algorithms in general [29], and fuzzy
c-means in particular [30], due to high sparsity in high-dimensional spaces. Authors of [30]
show that fuzzy c-means centers are likely to converge to the center of mass of the whole
dataset in high-dimensional spaces. It remains up to the practitioners to decide on a suitable
method for their specific problems.

For the introduction of federated fuzzy c-means, we focus on the original formulation
and extend it to the federated setting.

2.1.3. Davies–Bouldin Index

The Davies–Bouldin index was introduced in [31] as a method to measure cluster
validity. One of its advantages is that it only requires distances between a “vector charac-
teristic of a cluster” (i.e., cluster center) and the vectors belonging to the cluster, as opposed
to pairwise distances between all vectors in the dataset, as in other cluster validation
methods. That makes it also particularly interesting for the federated clustering setting,
where a pairwise distance matrix is hard to obtain, but distances to the cluster center can
be calculated locally, shared, and averaged by the central server.

Informally speaking, the validation measures how well “cluster spread” is balanced
against “dissimilarity between cluster centers”. A good clustering is achieved with low
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spread and high cluster center dissimilarity, but these goals are potentially conflicting.
Formally, in [31], the nonfederated measure for a hard clustering is defined as:

R̄ :=
1
K

K

∑
i=1

Ri (7)

Ri := max
i 6=j

Rij (8)

Rij :=
Si + Sj

Mij
(9)

Si := (
1
Ti

Ti

∑
j=1
||xj − ci||q)

1
q “cluster spread” (10)

Mij := (
D

∑
k=1
|ci[k]− cj[k]|p)

1
p “center distances”, (11)

where ci is the characteristic vector (read: center) of cluster i, and D is the dimension of
the data. Note that Rij is big when two cluster centers are close to each other (small Mij),
or the “spread” of the clusters is big (big Si). Additionally, the cluster spread is usually
smaller if we have many clusters. However, this often comes at the expense of closer centers.
Roughly speaking, the index measures how well those two characteristics are balanced,
and a smaller value indicates a better cluster result. In our experiments, we chose p = 2
and q = 1 for our computations.

A soft version of the Davies–Bouldin index for fuzzy clustering was introduced in [32].
In soft clustering, every point can belong to every cluster, but in Equation (10), only points
belonging to the same cluster are considered. Hence, the “spread” of a cluster must be
defined differently. Authors of [32] propose the following adaptation:

S f
i := Ui(

1
N

N

∑
j=1
||xj − ci||q)

1
q , (12)

Ui :=
1
N

N

∑
j=1

uij. (13)

Each x ∈ X can belong to each cluster i. As a consequence, the spread of each cluster needs
to be calculated by considering the whole dataset and is then multiplied by the average
assignment for cluster i, i.e., Ui. The calculation of the index R̄ proceeds as outlined above,
with S f

i instead of Si.

2.1.4. Federated Clustering

Due to the similarity in terminology, we start by contrasting clustered federation with
federated clustering. Clustered federation is concerned with identifying clusters of clients
or model updates that are suitable to be grouped for a focused update of global supervised
FL models. It has been proven to be effective when addressing issues caused by non-i.i.d.
data among clients [33–36].

In contrast, federated clustering is concerned with identifying global clusters in dis-
tributed data without sharing the data and, to the best of our knowledge, has not been
explored as much. In [19], the k-means algorithm was extended to the federated setting.
Client devices execute the k-means algorithm and share cluster centers with the central
server. Authors propose a global averaging function that calculates a weighted mean of
local cluster centers in order to update global cluster centers. The weights are given by the
number of local data points assigned to the clusters. Further, the federated fuzzy clustering
equivalent of that approach was introduced in [20] and similarly in [21]. In this approach,
the clients execute the fuzzy c-means algorithm and share the results. Then, the fuzzy
assignment vectors are used as weights instead of number of data points given by the hard
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assignments. In their experimental sections, both works focus on scenarios where the data
are uniformly distributed among the clients. Ref. [20] found that the federated clustering
result was consistent with centralized clustering result, the algorithm converged quickly,
and the clustering result was not impacted much by the number of clients participating.
Additionally, Ref. [21] observed that even if clients became unavailable during the federa-
tion, the algorithm still found good results. However, these findings are limited to scenarios
where the data are uniformly distributed among clients. Finally, we acknowledge that [20]
also introduced a formulation for vertical FL, which is beyond the scope of this work.

A different approach on averaging the local cluster centers to obtain global cluster
centers was taken in [22] in the context of one-shot learning. The clients performed k-means
clustering. On the central server, the global cluster centers were computed by applying the
k-means algorithm again to the shared local cluster centers. Besides numerical experiments,
they also provided proof that the result was similar to an “oracle clustering” (e.g., clustering
on the assumed centralixed dataset). The federated k-means algorithm by [19] appears
to be the first work in the area of federated clustering. All other papers were published
around the same time and appear to be independent of each other.

In [18], the cluster analysis framework is described in terms of seven steps: selecting
training examples for the cluster analysis, selecting variables for the cluster analysis,
preprocessing (e.g., standardizing) the data, selecting a (dis)similarity measure, selecting a
clustering method, determining the number of clusters, and interpreting and validating
the results. Note that the aforementioned works are mostly concerned with the clustering
method and (implicitly) with the dissimilarity measure in a federated setting. With this
work, we aim to also contribute to determining the number of clusters and cluster validation
in a federated setting; however, similar to the other works, we assume the experimental
datasets to be preprocessed and prepared for analysis.

2.2. The Federated Fuzzy Clustering Framework

In this section, we build upon the previous section and introduce the federated ver-
sions of the fuzzy c-means algorithm (Section 2.2.1) and fuzzy Davies–Bouldin index
(Section 2.2.2). In Section 2.2.3 the pieces are assembled to form a cluster analysis frame-
work performing three steps: determine the number of clusters K, derive a clustering for K,
and validate the clustering through a federated cluster validation metric.

2.2.1. Federated Fuzzy c-Means with k-Means Averaging

Our proposed federated fuzzy c-means algorithm (FedFCM) is an extension of the iter-
ative fuzzy c-means algorithm to the federated learning setting similar to [20,21], but with
a different take on the global cluster center calculation. The global cluster calculation is
similar to the one proposed in [22], where it is applied in the context of federated one-shot
k-means. This idea was first mentioned and discussed in our preliminary work [37].

In the federated scenario, the data are not stored in a centralized database, but dis-
tributed among multiple clients. The goal is to learn a global clustering that is similar to
the clustering of the centralized data while the data stay private. The general procedure is
as follows: Each client runs a number of fuzzy c-means iterations locally, and sends the
resulting cluster centers to a central server. The central server is responsible for calculating
meaningful global clusters from the local learners’ results. After calculating the global
centers, they are shared with the clients that use them to recalculate their local centers,
which in turn are shared with the central server, and so forth. That procedure is repeated
until the global centers remain stable.

The creation of a global model from clients’ local model updates was first introduced
by [38] and is known as federated averaging (FedAvg). Our averaging method is a k-means
averaging that was independently developed and applied in the context of federated
one-shot clustering in [22].

Let data X be distributed among P parties (clients), i.e., X =
⋃P

l=1 X(l). The protocol
reads as follows:
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1. The central server initializes K global cluster centers c1, . . . , cK.
2. The central server shares c1, . . . , cK with the clients.
3. Client l calculates membership matrix Ut+1

l according to Equation (5) and generates

local cluster centers c(l)1 , . . . , c(l)K according to Equation (6) (l = 1, . . . , P) and repeats
until local convergence.

4. Client l shares c(l)1 , . . . , c(l)K for j = 1, . . . , K and l = 1, . . . , P.

5. The central server updates c1, . . . , cK by applying an averaging function avg([c(l)1 ,

. . . , c(l)K ]Pl=1).
6. The central server checks a convergence criterion. If not converged, go back to step 2.

Since the central server has only access to the local cluster centers c(l)k , the previous
convergence criterion can not be applied. As an alternative, we check whether the cluster
centers changed by less than ε between two iterations. Let ckt be the global cluster center k
after time step t. Then, the convergence criterion can be formulated as follows: ∑K

k=1 ||ckt −
ckt+1 || ≤ ε. Note that this new criterion might lead to different cluster centers than in the
previous formulation. It might let the centers move closer to the center of mass even though
the assignments might have stabilized already.

In order to find meaningful global clusters, it is essential to find a good averaging
function avg(·) used in step 5 of the framework outlined above.

To address this challenge, we apply a k-means averaging function, similar to the one
in [22]:

avg : RP×d×K → Rd×K

avg([c(l)k ]k,l) := kmeans([c(l)k ]k,l), (14)

= [ck]k,

where kmeans(·) denotes a function that applies the k-means clustering algorithm and
outputs the k cluster centers it converged to. This averaging function applies the k-means
algorithm to all reported local cluster centers to find new global cluster centers. It does
introduce increased complexity compared to federated fuzzy c-means in [20,21], but we
observed robust results in preliminary experiments [37]. At the same time, sharing only the
local cluster centers (as opposed to local centers and assignment vectors such as in [19–21])
increases the privacy of the data.

We know that both the fuzzy c-means and k-means algorithm converge (even though
possibly to local optima) when applied separately. Convergence means that the centers
and assignment vectors are guaranteed to stabilize after finitely many iterations. Our
federated algorithm converged if the global cluster centers stabilized. For that to happen,
the local cluster centers must have stabilized. The local cluster center, in turn, stabilizes
if the global centers do not change much between two iterations. We want to provide
intuition on why we observe such a behavior in our experiments. Each clients starts with
calculating local cluster centers in the first iteration and reports them back to the central
server. The central server essentially groups together all centers that are close to each
other, calculates the average of close centers, and reports those averages back to the clients
as their new centers. Due to this averaging, it is likely that for any previous local center
there is a new nearby global center (which is a function of that previous center). The client
updates the global center with its local data. Since it is close to a previously reported center,
the new local centers do not deviate much from the global center, and the update is small.
If a new center has low cluster membership, the update is naturally small. With small
updates, however, we know the k-means algorithm to converge. Usually, the updates can
be quite big after the first global round, but are small thereafter, which is consistent with
the behavior of k-means one-shot learning with k-means averaging [22]. Even though this
is not a formal convergence proof, we hope to provide insights into how the algorithm is
expected to behave.



Appl. Sci. 2022, 12, 10455 9 of 21

2.2.2. Federated Fuzzy Davies–Bouldin Index

As described in the introduction (Section 1.1, Figure 1), there is a need for federated
cluster validation metrics. It is not enough to calculate metrics such as the Davies–Bouldin
index locally and draw conclusions from there. Therefore, we formulate a federated version
of the index. In the federated setting, the global server does not have access to the clients’
data. That means that it cannot carry out the calculation of the soft Davies–Bouldin index
R̄ directly. Specifically, the central server can not directly calculate the cluster spread S f

i
(Equation (12)) that requires the calculation of distances between cluster centers ci and
data points xj. Through a simple transformation we see that sharing the data points is
not required:

S f
i = Ui(

1
N

N

∑
j=1
||xj − ci||q)

1
q (15)

= Ui(
1

∑P
l=1 Nl

P

∑
l=1

Nl

∑
j=1
||x(l)j − ci||q)

1
q (16)

Ui =
1

∑P
l=1 Nl

P

∑
l=1

Nl

∑
j=1

u(l)
ij (17)

Hence, for the calculation of S f
i , each client l needs to share its number of data points Nl ,

its local local cluster spread ∑Nl
j=1 ||x

(l)
j − ci||q, and its local average assignment vectors

∑Nl
j=1 u(l)

ij for i = 1, . . . , K. With that information, the global server can calculate S f
i . Since

the global server calculates (and knows) the cluster centers, it can also calculate Mij, i.e., the
distances between centers ci and cj (Equation (11)), and, finally, Rij for all (i, j), Ri and
the index R̄. Note that the federated and nonfederated versions of the Davies–Bouldin
index produce the same result given X =

⋃N
l=1 X(l), and the nonfederated and federated

cluster centers are the same. Generally, the first assumption holds in our experiments
while the second one is the subject of study and cannot be guaranteed. In fact, due to
different convergence criteria in the nonfederated and federated fuzzy c-means algorithms,
the centers are often different. Generally, however, we expect federated clustering and
nonfederated algorithms to converge to similar centers.

2.2.3. The Complete Framework

Our proposed framework for federated clustering addresses three core challenges:
Estimate the number of clusters in the federated dataset, obtain a cluster result (i.e., centers
and a data partitioning) that is similar (or not worse) to the one on the same but centralized
dataset, and assess the federated cluster result via a federated validation metric. Note that
the challenges are closely related. In order to compare two clustering results (for example,
with different numbers of clusters), there must be an evaluation metric. This evaluation
metric is the FedFuzzDB index. To obtain the federated clustering result, a federated
clustering method must be applied. In our case, this is FedFCM (and for comparison
federated fuzzy c-means with federated averaging). The overall framework applies the
following steps:

1. Decide on a range for number of clusters K to test: [Kmin, Kmax].
2. For each K ∈ [Kmin, Kmax]:

(a) Obtain a clustering with FedFCM as described in Section 2.2.1.
(b) Calculate the FedFuzzDB index of that clustering as described in Section 2.2.2

and store the result.

3. Choose K ∈ [Kmin, Kmax] with the minimum FedFuzzDB index as the number of
clusters or apply the elbow method (see, e.g., [39]).
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The initial guess for [Kmin, Kmax] is not subject to a more principled study in this work,
but we acknowledge that choosing a good range is crucial. It is known that the Davies–
Bouldin index sometimes favors higher number of clusters [40]. Therefore, introducing a
tight upper bound can be important. In a federated setting, this is even harder, as some
clusters might not even be present in any client’s data, but only form when the data are
combined (Sections 1.1 and 3.2.1). As a rule of thumb, we note that the minimum number of
global clusters is given by the minimum number any client could identify on its own (note
that two local clusters might turn out to belong to the same cluster in the global dataset).
The maximum is (roughly) given by ∑P

l=1 Kl + f orming− overlapping. Kl is the number
of clusters locally in client l, f orming is the number of clusters that only form when the
data are combined, and overlapping is the number of clusters that overlap. f orming and
overlapping are the hardest to estimate, even with knowledge from an initial local-only
clustering. As a very rough rule of thumb, we apply Kmax ≈ minl K(l) + maxl K(l) in our
real-world experiment.

Before continuing with experiments, we note that there is a potential privacy risk and
suggest a simple prevention mechanism. Let us summarize the local information that is
required to be shared with the central server for the overall framework. For the execution of
federated fuzzy c-means with k-means averaging, only the local cluster centers need to be
shared, which is already a privacy improvement over some of the existing methods. For the
calculation of the FedFuzzDB index, however, each client l needs to share more information:
its number of total data points Nl , the total spread ∑Nl

j=1 ||x
(l)
j − ci||q, and the local average

assignment vectors ∑Nl
j=1 u(l)

ij for all clusters i = 1, . . . , K. As noted in [21], this information

can be used to formulate a system of nonlinear equations where data x(l)i are the only
unknowns (i = 1, . . . , Nl , l = 1, . . . , P). While not necessarily easy to solve, this imposes
a privacy risk. In [21], the server does not know Nl , which is an effective prevention, as
they explain. Hence, if we hide Nl from the central server, we prevent the privacy risk.
Luckily, the calculation of the FedFuzzDB index only requires ∑P

l=1 Nl . If we outsource
the calculation of ∑P

l=1 Nl to an intermediate server, we can circumvent the risk. Another
option is to perform the clustering and the validation on different servers that cannot
communicate with each other, as the system cannot be solved for X without the cluster
center information, either. However, that would require that the distances between clusters
i and j (Mij) need to submitted to the cluster validation server, e.g., by one of the clients. All
of that might not be required if the central server can be completely trusted (for example,
when local markets cooperate under the orchestration of the parent company). Usually, it
is assumed that the central server only keeps updates for immediate aggregation. Hence,
the cluster center information is supposed to be not available anymore when FedFuzzDB
is calculated.

3. Results

Our framework is evaluated on three different groups of data. Firstly, we handcraft a
non-i.i.d. clustering scenario and apply the complete clustering framework to it. The em-
phasis in this experiment is on demonstrating and motivating the use of the federated
clustering framework to obtain a global cluster structure without sharing the raw data.
Secondly, we create federated scenarios from 100 well-known cluster benchmark datasets
from the literature [41] by uniformly distributing the data to clients. This set of experiments
allows us to study how the framework performs with data of different dimensionality and
different spread, and how it behaves with increasing number of clients, but fixed number of
total data points. We will see that high sparsity is harmful and big cluster overlap is harmful
in the federated and nonfederated setting. Thirdly, we apply the complete framework to
more real-world-inspired data and demonstrate how to use it in practice. We will see that
the federated and nonfederated results are mostly consistent, and the federated clustering
is even slightly better in terms of FedFuzzDB.
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Moreover, we compare our federated fuzzy c-means with k-means averaging to fed-
erated fuzzy c-means, as introduced in [20,21]. We note that scenarios where the data are
nonuniformly distributed among clients are not investigated by these works. In fact, we
observe that the method does not converge reliably in such scenarios (see Section 3.2.1
and our preliminary work [37]). Further, note that we do not compare the method to hard
clustering methods such as [19] or [22], because we only introduced the fuzzy version of
the federated Davies–Bouldin index.

Before describing each dataset in more detail and reporting the results, we introduce
the evaluation methods for our experiments.

3.1. Evaluation Method

There are two main questions we want to answer with our evaluation.

1. How reliably can the framework detect the correct number of clusters in federated
datasets?

2. How good is the federated clustering result, and how does it compare to an assumed
central clustering result?

To answer the first question, we first need to define the “correct” number of clusters. In the
first two sets of experiments (Sections 3.2.1 and 3.2.2), we know the ground truth number of
clusters, because the data are artificially created by sampling from Gaussian distributions.
Given the ground truth number of clusters Ktrue and the detected number of clusters Ki

det
in experiment i, we simply count how often the correct number of clusters was found and
report the percentage of correct numbers:

pcorrect =
∑

Nexp
i=1 1{Ki

det=Ktrue}

Nexp
, (18)

where Nexp is the total number of experiments. Moreover, we want to study how feder-
ated clustering compares to nonfederated clustering. Therefore, we report pcorrect for the
federated dataset and for the same centralized dataset.

The second challenge is to evaluate the clustering result itself. On the one hand, we
use the (federated) Davies–Bouldin index introduced in this work. Moreover, we calculate
a “knowledge gap” metric whenever ground truth cluster centers are known:

gap :=
K

∑
k=1

√√√√ D

∑
i

(c̃k[i]− ck[i])2

Var(x[i])
, (19)

between two sets of cluster centers c̃ = (c̃1, . . . , c̃K), and c = (c1, . . . , cK) and Var(x[i])
denotes the variance in the i-th dimension. This gives us a normalized measure of the
distance between the cluster centers and another indication of whether the algorithm
converged to a meaningful result.

3.2. Experiments

As our parameter setup, we chose ε = 0.001 in the centralized case, for local conver-
gence, and for global convergence. As noted before, we chose m = 2, p = 2, and q = 1 for
all experiments. Code to reproduce the results is available (https://github.com/stallmo/
federated_clustering).

3.2.1. Framework Demonstration on Artificial Data

We revisit the motivational example from the introduction (Section 1.1). In this exam-
ple, we start with a centrally created dataset by drawing from five Gaussian distributions:
500 examples each drawn from distributions centered at µ1 = (0, 0), µ3 = (1, 1), 1000 ex-
amples each drawn from distributions centered at µ2 = (0, 1), µ4 = (1, 0) and standard
deviation σ1 = 0.2, 120 examples drawn from a distribution centered at µ5 = (0.5, 0.5) and

https://github.com/stallmo/federated_clustering
https://github.com/stallmo/federated_clustering
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σ2 = 0.01 (see also Figure 1). Hence, there are five ground truth centers. First, we verify that
the five ground truth centers can indeed be found in a nonfederated scenario. We obtain
clustering results for K = 2, . . . , 7 and calculate the (nonfederated) Davies–Bouldin index
for each result. As expected, the index is smallest for K = 5 (Table 1). Second, the data
are distributed to three clients such that all clients have data from three clusters in total:
two of the four bigger clusters and a few points from the smaller cluster. In particular,
each client receives 40 points from distribution (µ5, σ2). Client 1 receives 500 points each
from distributions (µ1, σ1) and (µ2, σ1). Client 2 receives 500 points each from (µ2, σ1)
and (µ4, σ1). Client 3 receives 500 points each from (µ3, σ1) and (µ4, σ1). Next, each client
applies the (nonfederated) fuzzy c-means separately on their local data for K ∈ {2, 3, 4, 5}
and calculates the (nonfederated) fuzzy Davies–Bouldin index. In this experimental setup,
all clients would conclude that they have only two clusters, as K = 2 results in the smallest
Davies–Bouldin index (Table 1). The clients only detect the two bigger clusters in their
data and disregard the smaller cluster. When applying the federated clustering frame-
work outlined in Section 2.2, the correct number of clusters K = 5 is found. Please refer
to Table 1 for an overview of the results. This experiment shows that the framework is
capable of identifying global cluster structure even though it is hidden behind local op-
tima without sharing the raw data. For comparison, we repeat the same experiment with
the federated fuzzy c-means formulation that applies federated averaging, as introduced
in [20,21] (see also Section 2.1). Note that the setting is non-i.i.d. in the sense that not
all clients have data from the same clusters and that such a situation was not part of the
analysis in [20,21]. For an overview of the results, please refer to Table 2. We observe that
the federated averaging formulation struggles to identify the ground truth centers in this
setting. The Davies–Bouldin index is generally higher with federated averaging than with
k-means averaging. This indicates that the clustering can be considered less meaningful.
The same is indicated by the higher ground truth gap, i.e., the ground truth centers could
not be found. Consequently, this also leads to a wrong estimate for the number of global
cluster centers. All in all, the results with federated averaging appear to be less reliable
than k-means averaging on non-i.i.d. data. However, as we will see in the next section,
the results on i.i.d. data are similar and, therefore, consistent with [20,21].

The drop in performance can be explained by the lack of a “grouping mechanism”.
The grouping mechanism must identify a group of local centers that belong to the same
global center and, hence, are used to update that global center. In the case that each
client has data from the same clusters (thus, finds and reports similar centers locally), that
matching is (implicitly) given. Since all clients have points from the same clusters, all local
updates will move in the same direction and there is no ambiguity. With widely different
data locally, the local updates will also be very different and there must be a mechanism
to deal with the ambiguity, e.g., a grouping of local updates. Using k-means as averaging
function directly provides such a mechanism and, as a consequence, produces more reliable
results in non-i.i.d. settings.

Table 1. Local and federated clustering results on the motivational dataset with k-means averaging.
The best result per experiment (column) is bold.

Fuzzy
Davies–
Bouldin

Central
(Nonfederated) Federated Local

Client 1
Local
Client 2

Local
Client 3

K = 2 0.8707 0.8179 0.6426 0.6437 0.6381
K = 3 0.5687 0.6055 0.7289 0.6991 0.7704
K = 4 0.4869 0.4951 1.0637 1.0706 1.1248
K = 5 0.4348 0.4289 0.9260 0.8927 0.9496
K = 6 0.5440 0.6202 — — —
K = 7 0.6707 0.5072 — — —
K = 8 0.5680 0.6221 — — —
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Table 2. Local and federated clustering results on the motivational dataset with federated averaging.
The best result per experiment (column) is bold

Fuzzy
Davies–
Bouldin

Central
(Nonfederated) Federated Local

Client 1
Local
Client 2

Local
Client 3

K = 2 0.8707 1.0047 1.0356 0.8620 0.9685
K = 3 0.5687 0.9143 0.8880 0.8370 0.8647
K = 4 0.4869 1.1683 1.1924 0.9221 1.1662
K = 5 0.4348 2.9158 2.8867 2.4132 2.9538
K = 6 0.5440 1.5063 — — —
K = 7 0.6707 0.9248 — — —
K = 8 0.5680 1.2115 — — —

3.2.2. Evaluation on Benchmark Data

We test our framework on cluster benchmark sets from an online repository (http:
//cs.uef.fi/sipu/datasets/, accessed on 17 March 2022) [41]. In particular, the G2 sets
were introduced in [42] and each set was generated by drawing 2048 samples from two
Gaussian distributions with different means, i.e., each set contains two ground truth centers.
The Gaussians are centered at µ1 = (500, 500, . . . ) and µ2 = (600, 600, . . . ) with standard
deviations σ ∈ {10, 20, . . . , 100} and dimension D ∈ {2, 4, 8, . . . , 1024}. In total, there
are 100 sets with varying dimension and standard deviation. In order to evaluate the
federated clustering framework, we randomly (but uniformly) distribute the points among
P ∈ {2, 5, 10} clients. Note that the number of samples is fixed to be 2048 such that with an
increasing number of clients, each clients has fewer samples. Each experiment is repeated
20 times and the averages over the runs are reported.

The first step is to determine the correct number of clusters for each G2 set. We follow
the procedure described in Section 2.2.3 for K ∈ [2, . . . , 6] and choose the minimum as
the framework’s guess. An overview of the results can be found in Table 3 and Figures 2
and 3 for the framework with k-means averaging. Moreover, the complete framework is
evaluated with the federated averaging method for comparison. Results are summarized in
Table 3 as well. For the calculation of the correct number of cluster guesses metric in Table 3,
we only consider datasets with clustering results with a federated fuzzy Davies–Bouldin
index below 1.3. Through exploratory analysis we found that a higher Davies–Bouldin
index often shows that the algorithm could not converge (which we also discuss later in this
section). In such cases, the framework’s cluster number guess is meaningless, because the
clustering itself is not meaningful. Note that the value of 1.3 coincides with the 75% quantile
in all scenarios (central, k-means averaging, and federated averaging) such that the number
of considered datasets is similar for all evaluations.

First, we observe that in the nonfederated, central clustering case, the correct number
of clusters can be found in 92.2% of all cases with an federated fuzzy DB index below
1.3. This detection rate is slightly lower in the federated case. Generally, it decreases with
an increasing number of clients (while keeping the number of data points fixed). This
effect is independent of the clustering method. The effect can be explained by sparsity, as
we discuss at the end of this section. High sparsity leads to decreased cluster algorithm
performance and, as a consequence, to less meaningful number of cluster detection.

Table 3. Correct cluster guesses with different numbers of clients (DB index below 1.3).

Correct Central Two Clients Five Clients Ten Clients

k-means avg. 92.9% 91.4% 88.0% 87.2%
Federated avg. 90.4% 89.5% 88.9%

http://cs.uef.fi/sipu/datasets/
http://cs.uef.fi/sipu/datasets/
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Figure 2. Correct number of cluster guesses on all 100 G2 sets per standard deviation σ. The values
are averaged over all dimensions and runs. We observe a decline of correct number of cluster guesses
with increasing σ. The figure shows results of the k-means averaging, but they are similar with
federated averaging.
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Figure 3. Correct number of cluster guesses on all 100 G2 sets per dimension. The values are averaged
over all values of σ and runs. We observe few correct guesses in the two dimensional case, a peak for
D = 8, then a decline that stabilizes after D = 64. The overall trend is similar for all number of clients.
The figure shows results of the k-means averaging, but they are similar with federated averaging.

We want to demonstrate the effect of sparsity by taking a closer look at the full G2
set for the k-means averaging. The performance generally worsens with increasing σ
(Figure 3; averaged over all D), independent of the number of clients. For σ ∈ {10, 20, 30},
the detection rate is close to one. For σ ∈ {40, 50, 60, 70, 80}, the detection rate is between
0.8 and 0.9 with lower numbers for higher number of clients. Finally, there is a noticeable
performance drop when σ ∈ {90, 100}with the steepest decline when P ∈ {5, 10}, where in
the majority of cases, the correct number of cases is not detected. Moreover, we also observe
detection rates varying across dimensions (Figure 3; averaged over all σ). For D = 2, the
correct number of clusters is only detected in 0.25 to 0.3 of all cases. Then, it peaks with a
detection rate close to 1 for D = 8 before decreasing and stabilizing at D = 64 and being
constant thereafter. The trend is similar for all P, with small exceptions for P = 2. However,
the level of detection rate is smallest for P ∈ {5, 10}, with the exception of D = 2, where it
is even slightly higher than in the central case.

Second, we report the results of the clustering itself in terms of (federated) fuzzy
Davies–Boulding index and knowledge gap . Overall, we see that the results are mostly
similar in the central case and in the federated scenarios for P ∈ {2, 5, 10} for either
clustering method: The 0.25, 0.5, and 0.75 quantiles and the minimum values for both
metrics are similar. However, the maximum value for the federated fuzzy Davies–Bouldin
index shows some variation (Tables 4 and 5). Similarly, the knowledge gap statistics are
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consistent, but not the same (Tables 6 and 7). Hence, in some cases, FedFCM converges
to different centers. As we will explain, the differences mostly occur due to sparsity. It is
important to note that those are the cases where FedFCM did not find a good clustering
(high knowledge gap and high FedFuzzDB) in either the central case or in the federated
settings. Overall, we conclude that the clustering results on i.i.d. data are similar in the
central case and with both federated clustering methods.

Table 4. Statistics of the (federated) fuzzy Davies–Bouldin index on 100 G2 test sets with k-means av-
eraging.

Fuzzy Davies–
Bouldin (K = 2) Central Two

Clients
Five
Clients

Ten
Clients

25%
Quantile 0.6762 0.6771 0.6766 0.6766

50%
Quantile 0.8640 0.8638 0.8627 0.8627

75%
Quantile 1.3092 1.3073 1.2961 1.2944

Minimum 0.5460 0.5459 0.5459 0.5458

Maximum 56,784.5518 57.6910 23.6987 20.0192

Table 5. Statistics of the (federated) fuzzy Davies–Bouldin index on 100 G2 test sets with federated av-
eraging.

Fuzzy Davies–
Bouldin (K = 2) Central Two

Clients
Five
Clients

Ten
Clients

25%
Quantile 0.6762 0.6767 0.6766 0.6766

50%
Quantile 0.8640 0.8627 0.8623 0.8620

75%
Quantile 1.3092 1.2997 1.2990 1.2934

Minimum 0.5460 0.5460 0.5459 0.5459

Maximum 56,784.55 31,307.76 54,809.42 9021.3485

Table 6. Statistics of the knowledge gap on the 100 G2 test sets with k-means averaging.

Knowledge
Gap (K = 2) Central Two

Clients
Five
Clients

Ten
Clients

25%
Quantile 0.2850 0.2724 0.2700 0.2587

50%
Quantile 0.8904 0.8897 0.8900 0.8898

75%
Quantile 5.9544 5.9272 5.8335 5.4764

Minimum 0.0286 0.0278 0.0265 0.0253

Maximum 77.6472 77.540 77.7092 76.0134
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Table 7. Statistics of the knowledge gap on the 100 G2 test sets with federated averaging.

Knowledge
Gap (K = 2) Central Two

Clients
Five
Clients

Ten
Clients

25%
Quantile 0.2850 0.2729 0.2693 0.2679

50%
Quantile 0.8904 0.8888 0.8902 0.8899

75%
Quantile 5.9544 5.5436 5.4888 5.4320

Minimum 0.0286 0.0285 0.0283 0.0281

Maximum 77.6472 77.6472 77.6472 77.6472
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Figure 4. The federated Davies–Bouldin index on 100 G2 sets per standard deviation σ. The values
are averaged over all values of D and runs. As expected, we see an increasing index with higher
σ. However, the index suggests that it is hard to find good clusterings with FedFCM for σ ≥ 80.
The values outside this plot are 434.4732 and 2463.9748 (central).

With this in mind, we enter the discussion of the results and offer an explanation for
some of the observations. First, we want to understand why the cluster number detection
rate is lower for higher values of σ. Recall that the Davies–Bouldin index is the ratio of
“cluster spread” and “center closeness”. Hence, the index is high for clusters that naturally
have a high spread, i.e., high σ as depicted in Figure 4 (while keeping the center distances
fixed, as in our experiments). In such cases, the index could be reduced by introducing
a new cluster, because the gain through the lower spread is relatively big. This behavior
is intensified by the poor performance of fuzzy c-means on sparse data. In such cases,
(local) fuzzy c-means centers (regardless of K) tend to converge to the center of mass of
the whole dataset [30]. Hence, the global centers are also all close to the center of mass,
and, thus, to each other. This leads to favoring a higher number of clusters. With fewer
data points per client (i.e., more clients in our experiments), the data become even more
sparse and the effect more severe. Overall, we attribute the lower detection rate to poor
performance of FedFuzzDB and FedFCM in sparse spaces. Note that this is a shortcoming
of the nonfederated equivalents as well. Second, we want to understand why the cluster
number detection rate is so much lower in the two-dimensional case (Figure 3). As opposed
to the high-dimensional case, in two dimensions, we are faced with a very dense space and
a significant cluster overlap even for smaller values of σ. Through visual inspection, we
found that in some cases it is even questionable whether there exist two clusters, because of
the high overlap. Even though FedFCM identifies cluster centers correctly for K = 2 (small
knowledge gap), the FedFuzzDB can be reduced by introducing more clusters because of
the high spread, even for smaller values of σ. We attribute the low detection rate in the
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two-dimensional G2 sets to the FedFuzzDB index and its bias towards more clusters in
data with high overlap. Again, the federated and nonfederated versions both suffer from
this effect alike.

In summary, with our experiments, we show that the federated and nonfederated
fuzzy Davies–Bouldin in interplay with the federated and nonfederated fuzzy c-means
algorithms behave similarly in most tested situations. We tested the behavior on data with
big cluster overlap (high value of σ in low-dimensional spaces) or sparsity. Sparsity was
introduced through a big spread in high-dimensional spaces or an increased number of
clients with a fixed dataset size. While generally reliable, the federated and nonfederated
cluster algorithms struggle with extreme overlap or extreme sparsity. The federated and
nonfederated indices favor a higher number of clusters in such situations. Overall, we see
promising results and a good consistency between the federated and nonfederated settings.

3.2.3. Evaluation on Real-World Data

In the last two sections it was investigated how the framework behaves on artificial
data with well-controlled properties. With this final experiment, we want to evaluate the
framework on more real-world-inspired data and demonstrate how it could be used in
practice. The data for this experiment were first introduced in [43] and can be accessed
through the UCI machine learning repository (https://archive.ics.uci.edu/ml/datasets/
Bank+Marketing, accessed on 27 March 2022) and are about customers of a bank. In partic-
ular, we are interested in the customers’ recorded job, age, balance, and education. Based
on the job information, we split the data to create a federated setting. Each client has data
of only one job group. For example, one client has all records of students, another has
all data of retired persons and another has all records of managers, etc. In total, there
are 11 job categories such that there are 11 clients in the federated setting. Based on the
remaining columns (age, balance, education), we want to form groups of similar customers
using (federated) fuzzy c-means following the framework introduced in Section 2.2.3: deter-
mine the number of global clusters, derive a soft partitioning of the data, and validate the
clustering. For comparison, we also compute the partitioning on the full, but centralized,
dataset as well as the local-only datasets. Before applying the framework, we preprocess
the data: we translate education into numerical values (primary: 1, secondary: 2, tertiary:
3), roughly estimating the time spent in school/university, rows with unknown values are
dropped, and each column is standardized to have zero mean and standard deviation of
1. In total, we are left with 43,193 rows in the dataset. Each client holds data of only one
job group: job group “management” has 9216 examples, “technician” 7355, “entrepreneur”
1411, “retired” 2145, “admin” 5000, “services” 4004, “blue-collar” 9278, “self-employed”
1450, “unemployed” 1274, “housemaid” 1195, and “student” 775 examples.

First, we need to determine the number of clusters by executing the first step of
our framework. We set the minimum of clusters Kmin = 3. Each client has at least
3 clusters in its local-only data. We draw that conclusion from calculating the (nonfederated)
fuzzy Davies–Bouldin index and applying the elbow method (see Figure 5 for examples).
The maximum number of clusters is set to Kmax = 9, because it provides a buffer for
the identification of forming clusters. One of the clients (entrepreneur) reports that it
has six clusters and we choose Kmax = Kmin + maxl K(l) = 9 according to our rule of
thumb (Section 2.2.3). For each K ∈ [Kmin, Kmax], the partitioning using the federated
fuzzy c-means algorithm with k-means averaging and the FedFuzzDB index is calculated.
The results can be found in Figure 6. The elbow method suggests the number of global
clusters to be four, five, or six. Additionally, the figure contains the results of the same
analysis in the nonfederated setting. Similarly, the method suggests that there are four or six
in the centralized data, showing good consistency. As common in practice, the index only
gives a good indication on the number of clusters and the practitioner is left to make the
final call. Notably, the nonfederated and federated index values are not the same. Generally,
the FedFuzzDB index is slightly lower than the nonfederated index. That implies that the

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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federated method returns better centers (as measured by the Davies–Bouldin index) than
its nonfederated counterpart.
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Figure 5. Local-only Davies–Bouldin index for different (but not all) clients. According to the index
and the elbow method, each client has a different number clusters locally (management, K = 5;
technician, K = 4; student, K = 3).
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Figure 6. Federated fuzzy Davies–Bouldin index for different number of clusters.

Second, we want to understand why the federated index is lower than the nonfed-
erated index. Therefore, we compare the federated and nonfederated cluster centers for
K = 4. We note that three out of the four centers are almost identical. The three centers
all have similar values in feature direction “balance” and are very different in the other
dimensions “education” and “age”. Intuitively, this makes sense because the vast majority
of data have relatively low balance, and the other dimensions are key discriminators. The
fourth center is the center of wealthy customers (very high account balance) in the federated
and the nonfederated settings. However, in the federated setting, the center has a higher
value for “balance” (3.1) compared to the central clustering (2.4). For a visualization of the
centers, please refer to Figure 7. Hence, the center is further from the other centers, which
is is the reason for a lower FedFuzzDB index. In the central clustering case, the center does
not move as far in the balance direction, because the mass of all points has a value close
to zero. Recall that in fuzzy clustering all points are considered for the calculation of the
center. Hence, many points (even though with low weight for further points) still have a
noticeable effect. The key difference is that the federated clustering algorithm computes
global centers based on the local cluster centers, which changes the relative importance in
this case. To illustrate this, seven of 40 local-only cluster centers have a balance of >2.4,
which is 15.9% of all local-only cluster centers. In contrast, in the central dataset, only 3.9%
of all points have a balance of >2.4. This leads to higher cluster center dissimilarity Mij.
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The lower FedFuzzDB index lets us conclude that the effect on the spread (and, hence,
the assignments uij) is small.

(a) (b)

Figure 7. (a) Local-only clustering results for K = 4 of the clients in one plot. Each color corresponds
to one client. (b) Federated and centralized cluster centers for K = 4. The darker points are the
federated cluster centers and the brighter points are the central cluster centers.

In summary, we demonstrate how our cluster analysis framework can be applied to
gain insights from real-world datasets. We see that there is a good consistency between the
federated and the nonfederated cluster results, and the federated algorithm produces even
better results in terms of (federated) fuzzy Davies–Bouldin index.

4. Discussion

In this work, we introduce a federated clustering framework (Section 2.2) that solves
three challenges: determine the number of global clusters in a federated dataset, obtain
a global clustering via a federated fuzzy c-means algorithm (Section 2.2.1), and validate
the clustering through a federated cluster validation metric (Section 2.2.2). To the best of
our knowledge, there exists no other similar federated cluster analysis framework. Instead,
previous works mostly focus on the clustering method itself. The lack does not stem from
the lack of necessity, as we show with our motivational example (Section 1.1): There exist
situations where global clusters remain hidden behind local clients’ optima.

The complete framework is evaluated through numerical experiments on different
datasets (Section 3). We find that the framework identifies global cluster structures (correct
number of clusters and data partitions) that are hidden in non-i.i.d. data (Section 3.2.1). We
also find that the framework performs reliably if the data have certain properties, but fails
if they do not (Section 3.2.2). In particular, it struggles with sparse data as well as with high
cluster overlap. This is consistent with the equivalent nonfederated setting. In our last set
of experiments, we outline how the framework can be applied in practice. It shows a good
consistency with nonfederated clustering, and can even find better data partitions than in
the centralized case (as measured by the Davies–Bouldin index).

Lastly, we see multiple interesting research directions for future works. One direction
is to better understand the theoretical properties of the federated fuzzy c-means algorithm
with k-means averaging. Moreover, the calculation of the federated fuzzy Davies–Bouldin
index potentially creates a privacy risk. We suggest simple prevention mechanisms, but an
in-depth analysis could lead to more sophisticated mechanisms. Furthermore, the cluster
determination method still needs an initial range for the number of clusters, which can
be hard to obtain. We provide a rule of thumb, but a better understanding of when and
how federated clusters form could help to make this initial guess more accurate or even
automate the choice. Moreover, FedFuzzDB can be extended to a federated crisp clustering
or can be applied in combination with other clustering algorithms. Finally, the framework
can be extended to include more steps in cluster analysis, such as federated preprocessing
or feature selection.
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Overall, we propose the first federated cluster validation metric, a new federated clus-
tering approach based on existing works in the field, propose a comprehensive federated
cluster analysis framework, and demonstrate how it can be applied. In comprehensive
experiments, we observe promising results and identify shortcomings. Topics such as
theoretical properties of the clustering algorithm and privacy evaluation of the framework
have only been briefly discussed and can be addressed in more detail in future works.
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