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Abstract: The rapidly developing organic–inorganic hybrid chalcogenide solar cells have now become
a hot topic of interest. However, the bandgap of inorganic ferroelectric materials with a typical
chalcogenide structure is too wide to match the solar spectrum, while the ferroelectricity of organic-
inorganic hybrid chalcogenide materials with a narrow bandgap, meth amide–lead–iodine, is not
obvious, and the lead element causes environmental pollution. The recently discovered organic–
inorganic hybrid material [C6N2H18]BiI5 with good ferroelectricity and the narrowest bandgap of
molecular ferroelectrics can absorb visible light in the range of 380 nm to 660 nm, and compound
[C6N2H18]SbI5 with the Bi cognate element Sb was also synthesized. In this paper, we designed the
first experiment to prepare thin films by mixing and doping the above two materials in five different
molar ratios, and we comparatively studied the changes in crystal structure, surface morphology,
and photophysical properties of the prepared multicomponent hybrid films according to the mixing
ratio. A theoretical model was developed to calculate and analyze the bandgap of the hybrid doped
compounds and compare it with the experimental values. It was found that the absorption spectra of
the multicomponent hybrid films were red-shifted relative to the original material, indicating that the
forbidden bandwidth was reduced to absorb a wider range of visible light, and the reason for this
was thought to be the narrowing of the bandgap due to doping. When the mixing ratio was 0.4:0.6,
the bandgap was the narrowest and the light absorption was the best; the highest quality of the film
was obtained when the mixing ratio was 0.5:0.5.

Keywords: perovskite solar cell; multicomponent doping; forbidden bandwidth

1. Introduction

With the decrease in fossil fuels, green and renewable solar energy has become an
important part of the energy for human use. In recent years, organic–inorganic hybrid
chalcogenide solar cells have become a hot research topic [1–4]. However, the high cost, low
stability, and environmental pollution due to their lead content are non-negligible problems.
Typical inorganic oxide chalcogenide ferroelectric materials have the problems of too wide
a bandgap to match the solar spectrum and a more complicated preparation process [5].
Therefore, in this paper, a novel organic–inorganic hybrid molecular ferroelectric material
[C6N2H18]BiI5 (HDA-BiI5) was chosen, which not only has the narrowest bandgap of
1.89 eV of current molecular ferroelectric materials and can absorb visible light in the range
of 380–660 nm, but also has good ferroelectricity, representing a nonpolluting, low-cost,
and stable ferroelectric photovoltaic material [6].
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A high-quality ferroelectric film is a prerequisite for the preparation of high-performance
ferroelectric solar cells, which requires a large grain size, good crystallinity, and a flat
and dense film structure [7]. Currently, the recognized bandgap of the light-absorbing
layer of photovoltaic devices is in the range of 1.4–1.5 eV [8], and regulating the forbidden
bandwidth of ferroelectric materials and preserving their good ferroelectricity are the focus
of research. Elemental substitution and material mixing have been favored by researchers
as frequently used means in materials research, usually to change the forbidden band-
width of materials or to enhance the quality of thin films [9–12]. Ying Luo investigated the
modulation of the electronic structure of the two-dimensional ferroelectric semiconductor
α-In2Se3 by alternative doping of a single main group element using a first-principles cal-
culation system based on density generalized theory. It was proposed that the nonvolatile
regulation of the electronic structure of the system by the external electric field is achieved
by the asymmetric doping of two In atomic layers with different coordination environments
present in α-In2Se3 and the interchangeable properties of the coordination environments
of the two In atomic layers corresponding to their ferroelectric flipping [13]. Qing Zhang
prepared La-doped Bi4Ti3O12 ferroelectric thin films using a sol–gel method to study the
effects of different La doping amounts on the microstructure and photoelectric properties of
Bi4Ti3O12 ferroelectric thin films. The results showed that, with the increase in La element
doping, the diffraction peak gradually shifted to a higher angle, the grain size gradually
decreased, the absorption edge was blue-shifted, and the forbidden bandwidth slightly in-
creased. The photoelectric response of the La-doped Bi4Ti3O12 films was significantly better
than that of Bi4Ti3O12 [14]. The Fe-doped barium titanate BaTi1−xFexO3 (0.10 ≤ x ≤ 0.60)
samples were prepared using a high-temperature solid-phase reaction method, and their
structural, ferroelectric, and magnetic properties were investigated by Sun Huilai et al.
The BaTi1−xFexO3 material has both ferroelectric and ferromagnetic properties at room
temperature. With the increase in Fe doping from 10% to 60%, the magnetic moment
generated by a single Fe ion in the material increased from 0.70 µB to 1.55 µB [15].

In this paper, the organic–inorganic hybrid material [C6N2H18]SbI5 [16] was syn-
thesized by replacing the bismuth element in the ferroelectric material with its cognate
antimony element, and the two ferroelectric materials were mixed in different ratios so
that the ratios of Bi and Sb elements in different samples showed gradient changes; the
structure and morphology of the multicomponent ferroelectric hybrid films were stud-
ied comparatively, the photophysical properties of the prepared ferroelectric films were
characterized, including absorption spectra and steady-state fluorescence spectra, and a
theoretical model was developed to calculate the bandgap of the mixed doped compounds
for comparison with the experimental values to study the effect of multicomponent mixing
on the bandgap.

2. Experiment
Preparation of Multicomponent Hybrid Ferroelectric Films

The preparation of [C6N2H18]BiI5 and [C6N2H18]SbI5 ferroelectric powders is shown
in the supporting literature.

(1) The prepared [C6N2H18]BiI5 and [C6N2H18]SbI5 powders were removed and placed
on a hot plate for heating. The purpose of this step was to remove the moisture present
in the powders due to moisture and the excess HI.

(2) The molecular masses of the two materials [C6N2H18]BiI5 and [C6N2H18]SbI5 were cal-
culated and mixed in different molar ratios of 0.8:0.2, 0.6:0.4, 0.5:0.5, 0.4:0.6, and 0.2:0.8.

(3) The mixed powder was completely dissolved in DMF solution at a concentration of
500 mg/mL. Magnetic stirring or sonication could be used to speed up this process.

(4) The completely dissolved ferroelectric mixture was filtered through a 0.22 µm filter to
obtain a solution for spin-coating.

(5) The spin-coating method is described in the supporting literature and is not repeated here.
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3. Results and Discussion
3.1. X-ray Diffraction Characterization of Single Ferroelectric Films

The X-ray diffraction spectra of two ferroelectric materials, HDA-BiI5 and [C6N2H18]SbI5,
formed as thin films on glass/ITO substrates are given here for a structural analysis and
comparison with the literature. According to reports in the literature [16,17], [C6N2H18]BiI5
has a bandgap of 1.89 eV, which is claimed to be the narrowest bandgap among the
known ferroelectrics, implying an absorption range between 380 nm and 660 nm, capable
of absorbing most of the UV and visible light. [C6N2H18]SbI5, a molecular ferroelectric
electrode with a similar structure to [C6N2H18]BiI5, is being explored by researchers at
the initial stage [13]. The blue curve in Figure 1 shows the X-ray diffraction spectrum
of HDA-BiI5, and the crystallographic indices (110), (111), (120), (320), (322), (330), (113),
and (440) of the ferroelectric material can be observed, which almost exactly match the
XRD of the HDA-BiI5 film mentioned in the literature, indicating a good reduction of the
ferroelectric materials in the literature. The red curve shows the X-ray diffraction spectrum
of [C6N2H18]SbI5, and its peak position and peak intensity are in general agreement with
the X-ray diffraction spectrum (PXRD) of polycrystalline powder in the literature (the
XRD spectrum of this material is not given in the literature). Through observation and
comparison, it can be found that both [C6N2H18]SbI5 and [C6N2H18]BiI5 had the highest
peak intensities at a crystal orientation index of (110), i.e., the main peaks were in agreement.
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Figure 1. X-ray diffraction spectrum of single organic–inorganic hybrid ferroelectric materials. Where
* is the diffraction peak of the ITO material.

3.2. XRD Characterization of Multicomponent Hybrid Ferroelectric Films

A comparison of the X-ray diffraction patterns of multicomponent ferroelectric hybrid films
(deposited on glass/ITO substrates) with different molar ratios is shown in Figure 2. The selected
mixing ratios were 0.8:0.2, 0.6:0.4, 0.5:0.5, 0.4:0.6, and 0.2:0.8. Peaks with crystallographic
indices of (110), (111), (120), (320), (040), (330), (113), and (440) were found in the X-ray
diffraction spectra of each mixing ratio at almost all positions coinciding with the two
unmixed original materials. It can be observed that the peak positions and peak intensities
of the materials changed significantly at 2θ = 12.5◦, 2θ = 26.5◦, 2θ = 30◦, and 2θ = 34.5◦

upon increasing the proportion of Sb elements. By comparison, it can be found that the peak
intensity of ferroelectric materials containing Sb elements was generally higher than that of
the pure [C6N2H18]BiI5 material, and the peak intensity of the characteristic peak (2θ = 8◦)
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with a crystallographic index of (110) was higher than that of the two pure ferroelectric
materials when the mixing ratios were 0.6:0.4 and 0.2:0.8. When the mixing ratio was 0.6:0.4,
the peak intensities of the X-ray diffraction peaks of the materials were generally higher
than those of the unmixed ferroelectric materials.
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Figure 2. X-ray diffraction spectra of ferroelectric materials with different mixing ratios.

The atomic radius of the Sb element is smaller than that of the Bi element, and, in the
multicomponent mixed film, the Sb element partially replaces the Bi element. This leads
to the distortion of the crystal structure and, therefore, alters the X-ray diffraction peak
position and intensity (Figure 2).

The XRD pattern of Figure 2 was imported into Materials Studio software for re-
finement using the Rietveld method, and the established theoretical cell structure was
fine-tuned. The actual crystal structure parameters, including lattice constants and atomic
positions, were obtained (please refer to the attached crystal structure parameters).

3.3. Study on the Morphology of Multicomponent Hybrid Ferroelectric Films

The top SEM views of the above five ferroelectric films are shown in Figure 3, while
the left column shows the morphology of these five films at 15,000× magnification, and the
right column shows the morphology of these five films at 50,000× magnification. From
Figure 3a, it can be seen that, when the mixing ratio of Sb and Bi elements was 0.8:0.2, a
large number of cracks appeared on the surface of the ferroelectric films with a maximum
width of several tens of nanometers, and the whole films showed a cracked state; from the
morphological view at high magnification, it can be observed that there were still pores
of different depths on the surface of the films at this time, and their diameters were less
than 100 nm. In the C6N2H18]SbI5 film (Figure S1c), a large number of cracks appeared,
the number and diameter of pinholes decreased, and the flatness of the film was slightly
improved. With the increase in the molecular percentage of Bi elements, it can be observed
from Figure 3c,e,g that the surface of the films had several cracks with a width of several
tens of nanometers, without the presence of pores; by observing the morphological picture
at high magnification, it can be found that the ferroelectric films had a dense and flat surface,
and their film quality was improved, although cracks still existed. When the mixing ratio
was 0.2:0.8, i.e., the highest content of Bi, the film surface was almost crack-free, but some
accumulation of grains and some pinholes with diameters ranging from 20 nm to 50 nm
appeared, which reduced the flatness of the film surface.
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From the analysis of the above morphology, it can be found that the film surface was
dense and flat when the mixing ratio was 0.5:0.5, and the film quality was the highest.
However, the presence of cracks may have degraded the performance of the devices
prepared by this film. This may be related to the concentration of the solution, spin-coating
time, spin-coating speed, and annealing conditions during the film preparation process,
as the growth environment required for films with different mixing ratios varies. The
morphology of the ferroelectric film with a mixing ratio of 0.2:0.8 was similar to that of
the [C6N2H18]BiI5 film (Figure S1a), but the surface flatness was relatively poor and the
growth of grains was irregular, leading to an increase in the number of holes.
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3.4. Study of Photophysical Properties of Multicomponent Hybrid Ferroelectric Thin Films

Figure 4 shows the ultraviolet/visible (UV/Vis) absorption spectra of the multicom-
ponent ferroelectric hybrid films. It can be seen from the figure that the absorption edges
of these films were all in the range of 630 nm to 680 nm, which is the same trend as that
of the two ferroelectric films of HDA-BiI5 and [C6N2H18]SbI5 (Figure S2). In the range
from 450 nm to 600 nm, the light absorption intensity of the ferroelectric films with a
mixing ratio of 0.8:0.2 between Bi and Sb elements was slightly higher, and the absorption
spectra of the other films in this range almost overlapped. This trend reflects the transition
from [C6N2H18]BiI5 to [C6N2H18]SbI5 films, which can be well integrated with Figure S2.
Because the absorbance values of pure HDA-BiI5 and HDA-SbI5 differed very little in the
range of 400–550 nm, the absorbance values of the mixed materials almost overlapped after
changing the concentration of the combination. It is noteworthy that, when the mixing
ratio of Bi and Sb elements was 0.8:0.2, the position of the absorption edge of the film was
significantly different from the other mixing ratios. With the increase in the atomic ratio of
Sb elements, the absorption band edge of the film showed a tendency of red-shifting, even
toward the long wavelength compared with the [C6N2H18]BiI5 film of Figure S2.
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In order to determine the bandgap of the multicomponent mixed ferroelectric films,
the (ahV)1/2~hV relationship diagram is given in Figure 5, the calculation of which is
described in the supporting literature and is not repeated here. From the figure, it can be
observed that the bandgap of the ferroelectric film was about 2.02 eV when the mixing
ratio of Bi and Sb elements was 0.8:0.2. The bandgap of the ferroelectric films gradually
decreased with the increase in the atomic percentage of Sb elements, and the bandgaps of
the films were 1.94 eV, 1.93 eV, and 1.91 eV when the mixing ratios of Bi and Sb elements
were 0.6:0.4, 0.5:0.5, and 0.4:0.6, respectively. When the mixing ratio of Bi and Sb elements
was 0.2:0.8, the bandgap of the ferroelectric film increased again to 1.95 eV. By comparison,
it can be found that the mixing of two elements of group VA narrowed the bandgap of
ferroelectric films (in most cases). A narrow bandgap means that the material can absorb
a larger range of visible light, as shown in Figure 5, with an absorption band edge close
to 700 nm, which has important implications for the study of optical absorption layers in
ferroelectric photovoltaic devices. Optical absorption is closely related to the bandgap of
the material. Solar power materials are generated by absorbing photons in electron–hole
pairs so that electrons leap to the conduction band to become free electrons, generating
a flow of electricity; hence, the incident light energy hV must be greater than or equal to
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the bandgap Eg of the material used. An appropriate reduction in the bandgap value can
result in a higher utilization of light energy, which is conducive to light energy conversion.
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We believe that the reason for bandgap narrowing is mainly due to the mixture of
two ferroelectric materials, HDA-BiI5 and [C6N2H18]SbI5, where Bi2+ is replaced by Sb2+,
forming the [C6N2H18]Bi1−xSbxI5 compound. Since the B-site divalent metal ions in the
chalcogenide type material (ABX3) occupy the main electronic orbitals at the bottom of the
conduction band, it is obvious that B-site ion doping can tune the bandgap of chalcogenide
materials. By adding Sb3+ ions to increase the 6p electrons to fill the conduction band,
the bottom shift of the conduction band was achieved, thus reducing the bandgap. It
is noteworthy that the bandgaps of the films after mixing were narrower than those of
the two original organic–inorganic hybrid films (Figure S3), a phenomenon that has also
been observed in previous studies. One researcher reduced the bandgap of the films
by doping 5% K ions into CH3NH3PbI3, and this method reduced the bandgap of the
films [10]. However, in 2014, Filip et al. calculated the bandgap of KPbI3 as 1.70 eV using
density flooding theory (DFT), which is higher than the bandgap of CH3NH3PbI3 of 1.60 eV
calculated by previous researchers using absorption spectroscopy [18].

3.5. Calculation of Theoretical Bandgap Values for Multicomponent Hybrid Ferroelectric Materials

The theoretical bandgap values of the hybrid ferroelectric materials were calculated
using Materials Studio software, as shown in Figure 6. The specific calculation method
and super cell structure diagram (Figure S4) are described in the supporting literature.
As the two ferroelectric materials, HDA-BiI5 and [C6N2H18]SbI5, were mixed, Bi2+ was
replaced by Sb2+ to form the [C6N2H18]Bi1−xSbxI5 compound. The crystal structure of this
compound was modeled in MS software, the convergence calculations of the cutoff energy
were performed, and the bandgap maps of the compound with different doping ratios
were calculated and analyzed. As can be seen from Figure 6, the lowest point at the bottom
of the conduction band and the highest point at the top of the valence band of the materials
doped in various ratios were at the same position; hence, they were all direct bandgap
semiconductors. The Fermi energy levels of each material were as follows: [C6N2H18]SbI5,
1.34 eV; 0.2 Bi, 2.03 eV; 0.4 Bi, 2.02 eV; 0.5 Bi, 1.71 eV; 0.6 Bi, 1.70 eV; 0.8 Bi, 2.01 eV;
[C6N2H18]BiI5, 1.16 eV. When the ratio of Bi to Sb was 0.4:0.6, the narrowest bandgap of
the compound was 1.58 eV. Compared with the experimental values of the bandgap in
Figure 5, the bandgap values obtained from the theoretical calculations were smaller. This
is due to the electronic autocorrelation problem of the pure DFT method, the absence of
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derivative discontinuity in the exchange–correlation function, and the self-crossing error in
the density generalized theory calculation, which usually lead to low prediction results for
the bandgap of semiconductors or insulators. In addition, the actual preparation of hybrid
films may lead to large experimental bandgap values because the quality of the final film is
not completely ideal due to the environment and preparation techniques. However, the
trend of the measured bandgap values in the actual experiments with the change in the
ratio of Bi and Sb elements is consistent with the theoretical calculations. The purpose of
calculating the theoretical bandgap is to obtain the trend of the bandgap as a reference basis
for the experimental values, rather than specific values. It can be seen that the mixture of
two ferroelectric materials, HDA-BiI5 and [C6N2H18]SbI5, led to a decrease in the bandgap,
which is more favorable for the absorption of visible light in the film.
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4. Conclusions

This paper investigated the preparation methods, crystal structures, surface morphol-
ogy, and photophysical properties of different multicomponent organic–inorganic hybrid
films. For the study of semiconductor properties, the bandgaps of different hybrid films
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were calculated on the basis of the absorption edges of the absorption spectra. A theo-
retical model was developed to calculate the bandgaps of the mixed doping compounds
with different concentrations for comparison with the experimental values. It could be
calculated that the absorption edges of the hybrid films were red-shifted compared to
the [C6N2H18]BiI5 and [C6N2H18]SbI5 films, indicating that the bandgap was reduced,
consistent with theoretical values, which is more favorable for the absorption of visible
light in the films and is important for the preparation of photovoltaic devices. When the
mixing ratio of Bi and Sb elements was 0.5:0.5, the film surface was flat and dense, and the
film quality was optimal. When the mixing ratio was 0.4:0.6, the film had the narrowest
bandgap, which is most favorable for the absorption of visible light.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/app122010454/s1: Figure S1. Top view of a single organic–inorganic
hybrid ferroelectric film using scanning electron microscopy. (a,c) HDA-BiI5 and [C6N2H18]SbI5
ferroelectric films, respectively. (b,d) Enlarged images of (a,c), respectively; Figure S2. UV/Vis
absorption spectra and photoluminescence spectra of organic–inorganic hybrid ferroelectric thin
films; Figure S3. (ahν)1/2~hν relation of organic–inorganic hybrid ferroelectric thin films. (a) HDA-
BiI5; (b) [C6N2H18]SbI5; Figure S4. Optimized supercell diagram. (a) HAD-SbI5. (b) 0.2Bi + 0.8Sb.
(c) 0.4Bi + 0.6Sb. (d) 0.5Bi + 0.5Sb. (e) 0.6Bi + 0.4Sb. (f) 0.8Bi + 0.2Sb. (g) HAD-BiI5.
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