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Abstract: Due to the contrast of X-ray images being low, significant elements including organs, bones,
and nodules are very difficult to identify, so contrast enhancement is necessary. In this paper, an
X-ray image enhancement algorithm based on adaptive gradient domain guided image filtering
is proposed. The amplification factor in the gradient domain guided image filtering needs to be
set manually; it needs to constantly adjust the parameters to achieve the best enhancement effect,
and this also increases the computational complexity. In order to solve this problem, an adaptive
amplification factor is defined in this paper, and the proposed algorithm is applied to the X-ray image
enhancement. Experimental results demonstrate that the proposed method is superior to state-of-the
art algorithms in terms of detail enhancement and edge-preserving.

Keywords: X-ray image; contrast enhancement; gradient domain guided image filtering; edge-
preserving

1. Introduction

Inspecting X-ray images is an important element of medical diagnosis. Due to factors
of the imaging equipment and illumination, the contrast and definition of X-ray images are
low, and it is difficult for doctors to observe the tissues of patients, including organs, bones,
and nodules. Therefore, it is necessary to process the X-ray image using effective image
enhancement technology [1,2].

At present, image enhancement techniques can be roughly divided into the following
categories: Spatial domain, transform domain and edge-preserving filtering [3,4]. The tra-
ditional image enhancement methods based on spatial domain are histogram equalization
(HE) [5], gamma correction [6], unsharp filter [7] and multi-scale retinex [8], etc. The his-
togram equalization (HE) can produce over-enhancement when enhancing images. In order
to solve this problem, many improved algorithms based on histogram equalization are pro-
posed, such as contrast-limited adaptive histogram equalization (CLAHE) [9], brightness
preserving adaptive fuzzy histogram equalization (BPDFHE) [10], recursive exposure-
based sub-image histogram equalization (RESIHE) [11], etc. HE-based approaches aim to
automatically determine the global mapping function by maximizing the histogram entropy
of the enhanced image. The methods based on HE are effective, but when the histogram dis-
tribution has a peak, they tend to over enhance the image and produce unnatural artifacts.
Finally, these global tone mapping methods cannot adaptively enhance local image regions.
In terms of the transform domain, there are many image enhancement algorithms, based
on wavelet [12], dual-tree complex wavelet transform [13], contourlet [14], nonsubsam-
pled contourlet transform (NSCT) [15], shearlet [16], nonsubsampled shearlet transform
(NSST) [17], etc. Yang et al. [18] proposed an image enhancement method based on retinex
and dual-tree complex wavelet transform, and this method has a good performance in
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terms of contrast enhancement. Feng et al. [19] proposed an image enhancement technique
based on contourlet transform. This algorithm achieves enhancement by adjusting the
decomposed contourlet coefficients, but as the contourlet transform does not have shift-
invariance, this method can lead to the appearance of the pseudo-Gibbs phenomenon. The
NSCT is an improved version of contourlet transform, which has shift-invariance, and the
pseudo-Gibbs phenomenon can be effectively avoided in the application of image process-
ing. Li et al. [20] introduced an enhancement technique using NSCT; the gamma correction
and adaptive threshold are used to process the low-frequency and high-frequency compo-
nents, respectively. The unsharp filter is used to process the reconstructed image achieved
by inverse NSCT. The result is a dramatic advance in image contrast. The enhancement
methods based on NSCT show good performance, but NSCT has a high computational
complexity. Compared with the NSCT, shearlet has lower computational complexity and
better sparse representation characteristics. Li et al. [21] proposed a medical image enhance-
ment algorithm using singular value decomposition in NSST domain, and a good image
enhancement performance was achieved. Zhao et al. [22] introduced another enhancement
method utilizing nonsubsampled shearlet transform for X-ray images.

In recent years, guided image filtering is very popular in image processing fields [23],
such as image enhancement, image fusion, image classification, image restoration, image
super-resolution, image dehazing, etc. Based on guided image filtering, some extended
versions were proposed, such as weighted guided image filtering (WGIF) [24], gradi-
ent domain guided image filtering (GDGIF) [25], weighted guided image filtering with
steering kernel (SKWGIF) [26], anisotropic guided filtering (AnisGF) [27], effective guided
image filtering [28], side window guided filtering (SWGF) [29], weighted aggregation for
guided image filtering (WAGIF) [30], and robust double-weighted guided image filter-
ing [31]. Among them, the effect of gradient domain guided image filtering in image
enhancement has a good performance status. But the amplification factor in the GDGIF
needs to be set manually; it needs to constantly adjust parameters to obtain a better en-
hanced image. This also increases the computational complexity. In order to deal with
this weakness, an adaptive amplification factor is defined in this paper, and the proposed
algorithm is applied to X-ray image enhancement.

2. Related Works
Gradient Domain Guided Image Filtering

The gradient domain guided image filter is proposed by incorporating an explicit
first-order edge-aware constraint, and it overcomes the disadvantage of halo artifacts in the
guided image filter [25]. This method is widely used in image enhancement, image fusion,
and image defogging, etc. In the GDGIF method, we suppose the guidance image, input
image and output image as G, X and Ẑ, respectively [25]. The Ẑ is defined as follows:

Ẑ(p) = ap1 G(p) + bp1 ∀p ∈ Ωξ1(p1) (1)

where ap1 and bp1 are constants in the window Ωξ1(p1), the corresponding values can be
calculated by minimizing the cost function E

(
ap1 , bp1

)
, and it is computed by:

E = ∑
p∈Ωξ1

(p1)

[(
ap1 G(p) + bp1 − X(p)

)2
+

λ

Γ̂G(p1)

(
ap1 − γp1

)2
]

(2)

γp1 = 1− 1
1 + eη(χ(p1)−µχ,∞)

(3)

η =
4

µχ,∞ −min(χ(p))
(4)
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where Γ̂G(p1) depicts an edge-aware weighting, and it is computed by the following:

Γ̂G(p1) =
1
N

N

∑
p=1

χ(p1) + ε

χ(p) + ε
(5)

where χ(p1) is defined as σG,1(p1)σG,ξ1(p1).
The optimal values of ap1 and bp1 can be defined as follows:

ap1 =
µGΘX,ξ1(p1)− µG,ξ1(p1)µX,ξ1(p1) +

λ
Γ̂G(p1)

γp1

σ2
G,ξ1

(p1) +
λ

Γ̂G(p1)

(6)

bp1 = µX,ξ1(p1)− ap1 µG,ξ1(p1) (7)

The final value of the output image Ẑ(p) can be calculated by the following:

Ẑ(p) = apG(p) + bp (8)

where ap and bp represent the mean values of ap1 and bp1 in the window, respectively. The
corresponding formulas can be defined as follows:

ap =
1∣∣Ωξ1(p)

∣∣ ∑
p1∈Ωξ1

(p)
ap1 (9)

bp =
1∣∣Ωξ1(p)

∣∣ ∑
p1∈Ωξ1

(p)
bp1 (10)

where
∣∣Ωξ1(p1)

∣∣ represents the cardinality of Ωξ1(p1).

3. The Proposed Method

In this section, an adaptive amplification factor is proposed. From Section 2, we can
denote that the detail layer s is defined as the following [25,28]:

s = G− Ẑ (11)

where Ẑ presents the base layer.
Multiplying the detail layer by an amplification factor β, the corresponding equation

is defined as follows:
s1 = β× s = β×

(
G− Ẑ

)
(12)

where s1 shows the enhanced detail layer, and β is an adjustable parameter, which can
influence the enhanced result. In traditional gradient domain guided image filtering, the
value of β is set to 5 [25].

The output image f can be computed by the following:

f = Ẑ + s1 (13)

Substituting Equation (8) into Equation (12):

s1 = β×
(

G− aG− b
)
= β× (1− a)G− β× b (14)

The gradient of the enhanced detail layer can be defined as follows:

∇s1 = β× (1− a)×∇G (15)
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From Equation (1), we can define the gradient of base layer, and it is defined as follows:

∇Ẑ = a×∇G (16)

In general, the∇s1 is less than∇Ẑ. If not, the noise in the detail layer will be amplified.
We have the following equation:

∇s1 ≤ ∇Ẑ (17)

Substituting Equations (15) and (16) into Equation (17):

β.(1− a)×∇G ≤ a×∇G (18)

From Formula (18), we can have the following equation:

β ≤ a
1− a

(19)

When the value of β is large, the noise can be amplified; when the value of β is small,
the details will be suppressed. From the above analysis, we can see that a proper value of β
is very important to balance the noise suppression and detail enhancement. In this section,
the value of β is defined as follows:

β =
a

1− a
(20)

where β is an adaptive parameter, and its value does not need to be set manually.

4. Experimental Results

In order to demonstrate the effectiveness of the proposed method, we experimented
on a large number of X-ray images from the website http://acm.cs.nctu.edu.tw/ (accessed
on 20 September 2022) which was provided by Prof Ching-Chun Huang, and the fol-
lowing seven image enhancement approaches are compared: McCann [32], RLBHE [33],
RESIHE [11], TBCSSR [34], gradient domain guided image filtering (GDGIF) [25], statistical
methods with image processing concepts (SMIPC) [35], and improved type-II fuzzy set
(FuzzyII) [36]. Subjective and objective assessments are used to evaluate the performance
of different image enhancement methods. In terms of the objective index, the average
gradient (AG) [37], information entropy (H) [37], average local contrast (ALC) [38], spatial
frequency (SF) [37] and mean gradient [38] are used in the comparison. The bigger these
indexes are, the better the image enhancement effect is.

The average gradient (AG) is defined as follows [37]:

AG =
∑i ∑j

(
( f (i, j)− f (i + 1, j))2 + ( f (i, j)− f (i, j + 1))2

)1/2

mn
(21)

where f (i, j) shows the pixel intensity at (i, j), and m× n shows the size of the image.
Information entropy (H) estimates the amount of information in the image, and it is

calculated by the following [37]:

H = −∑255
k=0 pk log2(pk) (22)

where pk shows the probability of intensity value k in the image.

http://acm.cs.nctu.edu.tw/
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The average local contrast (ALC) of the image is achieved by calculating the average
value of the local contrast metric, and the local contrast is defined as follows [38]:

Cij =
σ2

w
µw

(23)

where the local mean of intensity µw is calculated for the pixels within the sliding 3 × 3
window centered on the pixel (i, j), and σ2

w shows the local variance of intensity.
Spatial frequency (SF) denotes the overall information level in the regions, and it is

defined as follows [37]:
SF =

√
RF2 + CF2 (24)

where

RF =

√
∑i ∑j( f (i, j)− f (i, j− 1))2

mn
(25)

CF =

√
∑i ∑j( f (i, j)− f (i− 1, j))2

mn
(26)

The mean gradient (MG) evaluates the edge information of image; it is defined as
follows [38]:

MG =
1

mn

n

∑
j=1

m

∑
i=1

Gij (27)

where Gij shows the magnitude of the gradient at the pixel location (i, j) in the image.
Figure 1 shows the enhancement images of eight methods experimented on X-ray

image 1. Figure 1a shows the original X-ray image 1; Figure 1b shows the image obtained by
McCann, and the image is too bright; Figure 1c shows the image achieved by RLBHE—the
image is too dark and the performance of enhancement is poor, the details of the image
are difficult to ascertain; Figure 1d is the result obtained by RESIHE—the definition of the
image is low; Figure 1e shows the image enhanced by TBCSSR; Figure 1f represents the
image obtained by GDGIF—the image has a lot of noise; Figures 1g and 1h show the result
enhanced by SMIPC and FuzzyII, respectively, and the images have poor enhancement
performance; Figure 1i is the image achieved by the proposed method—it has moderate
brightness and better clarity. Table 1 is the evaluation index values of various algorithms in
Figure 1. From this table, we can denote that the values of AG, ALC, SF and MG obtained
by the proposed technique are the best; the value of H achieved by SMIPC is the best, and
the corresponding value obtained by the proposed method is still ranked second.

Table 1. The metric data of eight methods on X-ray image 1.

AG H ALC SF MG

McCann 6.3692 7.6512 0.4712 10.9025 5.3625

RLBHE 3.8103 6.9851 0.1225 6.2601 3.2202

RESIHE 6.5199 7.6378 0.5963 10.9708 5.5011

TBCSSR 7.7360 6.4739 0.9298 13.2405 6.5689

GDGIF 8.0281 7.6542 0.9125 12.7309 6.7635

SMIPC 6.2976 7.7175 0.6225 10.8886 5.3096

FuzzyII 6.8285 7.4938 0.7476 11.8243 5.7914

Proposed 10.3812 7.7013 1.4911 17.6055 8.8347
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Figure 1. Comparison on X-ray image 1. (a) Original image; (b) McCann; (c) RLBHE; (d) RESIHE;
(e) TBCSSR; (f) GDGIF; (g) SMIPC; (h) FuzzyII; (i) Proposed method.

Figure 2 shows the enhancement images of eight approaches experimented on X-ray
image 2. Figure 2a shows the original X-ray image 2; Figure 2b is the result obtained by
McCann—the contrast is low; Figure 2c presents the image enhanced by RLBHE—it does
not achieve the effect of image enhancement, the image is too dark, and we can hardly get
effective information from it; Figure 2d shows the result achieved by RESIHE—the effect of
enhancement is not obvious; the images obtained by TBCSSR and FuzzyII are shown in
Figures 2e and 2h, respectively. The contrast and the definition are low; Figures 2f and 2g
show the results enhanced by GDGIF and SMIPC, respectively. The two images appear
to have noise amplification. The result enhanced by the proposed algorithm is shown in
Figure 2i—it reveals more image details and suppresses the noise. Bone information can
be clearly obtained, which is helpful for doctors to diagnose. Table 2 is the evaluation
index values of various methods in Figure 2. Except for H, our method is the best for
other indicators.
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Table 2. The metric data of eight methods on X-ray image 2.

AG H ALC SF MG

McCann 5.1281 7.4184 0.4665 12.5124 4.3633

RLBHE 2.3495 6.0856 0.4310 6.7396 1.9789

RESIHE 5.3859 7.1987 0.8933 13.3430 4.6023

TBCSSR 5.3069 5.8050 1.2322 15.4840 4.5424

GDGIF 6.9491 7.3688 1.3773 15.1471 5.8878

SMIPC 5.2131 7.2701 0.8633 13.1491 4.4709

FuzzyII 5.1984 7.0568 0.9300 14.1044 4.4660

Proposed 7.5621 7.1856 1.8069 20.1044 6.5175
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Figure 3 shows the enhancement images of eight approaches experimented on X-ray
image 3. Figure 3a shows the original X-ray image 3; Figure 3b shows the enhancement
result computed by McCann—the image is too bright, resulting in the loss of image details;
Figure 3c shows the image achieved by RLBHE—the image is too dark, the useful informa-
tion is lost; Figure 3d depicts the result achieved by RESIHE—the effect of enhancement is
not obvious; Figure 3e shows the image obtained by TBCSSR—the image becomes gray and
it is difficult to observe the details; the results enhanced by GDGIF, SMIPC, and FuzzyII are
shown in Figure 3f–h, respectively. They are very similar and the enhancement effect is
not prominent. Our method is depicted in Figure 3i—it performs well, and more details
are retained. Table 3 shows the evaluation index values of the methods in Figure 3. Our
method obtains the best values for all the metrics.
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Table 3. The metric data of eight methods on X-ray image 3.

AG H ALC SF MG

McCann 4.0123 7.5435 0.2870 8.9464 3.4352

RLBHE 2.2445 6.7002 0.0932 4.8208 1.8789

RESIHE 4.5401 7.3486 0.4647 9.6568 3.8846

TBCSSR 3.9534 5.8991 0.5479 9.4282 3.3742

GDGIF 5.1827 7.5822 0.8479 11.0629 4.4008

SMIPC 4.0469 7.4819 0.4668 9.1315 3.4699

FuzzyII 4.0409 7.3498 0.5045 9.2729 3.4821

Proposed 6.6297 7.5951 0.8829 12.9503 5.6974

Figure 4 shows the enhancement images of eight approaches experimented on X-ray
image 4. Figure 4a shows the original X-ray image 4; Figure 4b is the result computed by
McCann—the image is too bright; Figure 4c depicts the image enhanced by RLBHE—the
image is too dark; Figure 4d is the result achieved by RESIHE—the effect of enhancement
is not obvious; the image obtained by TBCSSR is shown in Figure 4e—the image is dark;
Figure 4f is the result enhanced by GDGIF—the details of the image are well preserved;
Figures 4g and 4h are the results enhanced by SMIPC and FuzzyII, respectively; Figure 4i is
the result calculated by our approach. Table 4 shows evaluation data in Figure 4, and we
can notice that the values of AG, H, ALC, SF and MG are the best.

Table 4. The metric data of eight methods on X-ray image 4.

AG H ALC SF MG

McCann 4.9747 7.3960 0.2901 9.1737 4.0981

RLBHE 2.4721 6.6451 0.0514 4.2870 2.0405

RESIHE 5.4976 7.6038 0.4383 9.8437 4.5322

TBCSSR 6.1722 6.6784 0.6021 11.0394 5.1153

GDGIF 7.0291 7.6321 0.6090 11.4703 5.7992

SMIPC 4.9663 7.6440 0.3823 9.1813 4.0798

FuzzyII 5.5589 7.4430 0.4732 10.0969 4.6027

Proposed 7.8310 7.7382 0.8196 13.7265 6.5771

We used eight image enhancement methods to experiment on 69 X-ray images, which
we collected from the website http://acm.cs.nctu.edu.tw/ (accessed on 20 September 2022),
and the corresponding average data are shown in Table 5. From this table, we can notice
that the values of AG, H, ALC SF and MG are the best. Through the above comprehensive
analysis, the experiment results show that our method has obvious advantages in terms of
both subjective and objective evaluations.

Table 5. The average metric data of eight methods on 69 X-ray images.

AG H ALC SF MG

McCann 4.5097 7.1685 0.2709 8.4758 3.7301

RLBHE 2.9646 6.4171 0.1004 5.3958 2.4631

RESIHE 5.3505 7.1441 0.4545 9.7358 4.4233

TBCSSR 5.8109 6.2229 0.5695 10.6472 4.8123

GDGIF 6.3404 7.2809 0.5814 10.5298 5.2334

http://acm.cs.nctu.edu.tw/
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Table 5. Cont.

AG H ALC SF MG

SMIPC 4.5190 7.2783 0.3798 8.5168 3.7244

FuzzyII 5.0117 7.1125 0.4527 9.3992 4.1508

Proposed 7.1445 7.3520 0.8475 13.3944 5.9647
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5. Conclusions

The low contrast of X-ray images makes it difficult to identify tiny and abnormal
details. In order to solve this problem, a novel X-ray image enhancement method based
on adaptive gradient domain guided image filtering is proposed, which solves the disad-
vantage that the amplification factor needs to be adjusted manually in traditional gradient
domain guided image filtering. The proposed adaptive amplification factor is adopted to
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gradient domain guided image filtering and can effectively suppress the noise and boost
the fine details in the detail layer. Compared to the state-of-the-art image enhancement
methods, the proposed algorithm can produce a good enhanced performance in terms of
the subjective and objective assessment. In follow-up work, we will apply this algorithm to
the enhancement of other medical images to help doctors carry out auxiliary diagnosis and
treatment for patients.
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