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Abstract: In large-scale disasters, such as earthquakes and tsunamis, quick and sufficient trans-
portation of emergency relief supplies is required. Logistics activities conducted to quickly provide
appropriate aid supplies (relief goods) to people affected by disasters are known as humanitarian
logistics (HL), and play an important role in terms of saving the lives of those affected. In the previous
last-mile distribution of HL, supplies are transported by trucks and helicopters, but these transport
methods are sometimes not feasible. Therefore, the use of unmanned aerial vehicles (UAVs) to
transport supplies is attracting attention due to their convenience regardless of the disaster conditions.
However, existing transportation planning that utilizes UAVs may not meet some of the require-
ments for post-disaster transport of supplies. Equitable distribution of supplies among affected
shelters is particularly important in a crisis situation, but it has not been a major consideration in
the logistics of UAVs in the existing study. Therefore, this study proposes transportation planning
by introducing three crucial performance metrics: (1) the rapidity of supplies, (2) the urgency of
supplies, and (3) the equity of supply amounts. We formulated the routing problem of UAVs as
the multi-objective, multi-trip, multi-item, and multi-UAV problem, and optimize the problem with
Q-learning (QL), one of the reinforcement learning methods. We performed reinforcement learning
for multiple cases with different rewards and quantitatively evaluated the transportation of each
countermeasure by comparing them. The results suggest that the model improved the stability of the
supply of emergency relief supplies to all evacuation centers when compared to other models.

Keywords: unmanned aerial vehicle (UAV); humanitarian logistics (HL); disaster resilience; emergency
relief supplies; vehicle routing problem (VRP); Q-learning (QL)

1. Introduction

When a disaster such as an earthquake or tsunami occurs, a quick and sufficient
distribution of emergency relief supply is required. The logistics activities carried out to
rapidly provide adequate aid supplies (relief goods) to people affected by disasters are
commonly known as humanitarian logistics (HL) [1]. The importance of HL cannot be
overstated, as it can affect the death tolls in regions suffering from disasters [2]. Post-disaster
HL involves multiple activities; donation soliciting, material convergence, and last-mile
distribution [3]. Donation soliciting refers to the collection of materials at donor sites,
whereas material convergence refers to the flow of materials from donor sites to the end
sites (distribution centers) inside disaster areas [4]. Last-mile distribution, which is the
final stage of the relief supply chain, refers to the delivery of materials from end sites
to survivors (to individual demand locations; e.g., shelters), and many disasters have
shown the challenges of Last-mile distribution [5,6]. In the Great East Japan Earthquake
of 11 March 2011, many problems occurred in the delivery of relief supplies, and, as a
result, hundreds of thousands of survivors were unable to receive relief supplies during
the first six days of the disaster [5,6]. One of the most important problems was the lack
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of sufficient transportation to meet the demands of all the shelters. Road transportation
of emergency relief supplies was difficult due to a lack of fuel oil [7] and disruptions in
the transportation network [8]. On the other hand, the number of helicopters that can
be used in an emergency is limited, and it would be difficult to transport supplies to all
shelters by helicopter alone, since helicopters are used for a variety of operations, such as
transporting supplies, assessing damage [9], and rescuing and searching for victims [6]. In
fact, in the disaster, the maximum number of bosai helicopters used was only 47 [10] for the
total of 1692 shelters (refugee centers) [6] in the three hardest-hit prefectures in Japan (Iwate,
Fukushima, and Miyagi). It is predicted that it will be difficult to use many helicopters
to transport supplies during a disaster. Thus, there is great interest in unmanned aerial
vehicles (UAVs) which can be used regardless of the damage to the roads and in large
numbers as a means for transportation.

UAVs, also known as drones, are currently applied in several fields, such as aerial
photography, surveying, and pesticide spraying. In addition, UAVs are used in the field
of logistics due to improvements in UAV performance and related technologies, such as
batteries [11]. Recently, there has been a growing interest in the field of logistics using
UAVs. For instance, Amazon and Walmart have each been working on new platforms that
use UAVs to deliver shipments to customers [12]. Similarly, other companies, such as DHL,
Google, and Alibaba, also began developing their own UAVs [13]. UAVs have also been
demonstrated to transport goods in emergency and disaster scenarios. Yakushiji et al. [14]
conducted a series of drone transport experiments to demonstrate the use of drones for
transporting emergency supplies. In Rwanda, Zipline transported blood, medicine, and vac-
cines to remote areas by drone [15]. On the other hand, most UAVs are smaller than heli-
copters, and the amount of items that can be transported at one time (maximum payload) is
limited. Therefore, when transporting emergency relief supplies using UAVs, it is necessary
to make the most effective use of the UAVs, taking into consideration their battery and
maximum payload limitations.

In recent years, there have been various studies on delivery using UAVs [11,16–27]. In
general, these problems are formulated as UAV routing problems (UAVRPs), which are a
special kind of vehicle routing problem (VRP) [16]. A VRP attempts to find the optimal
routes for one or more vehicles to deliver commodities to a set of locations [17]. In conven-
tional UAVRPs for delivery, the objective function is set as follows total traveling/delivery
time [17–20], total travel distance [21,22], total number of covered tasks [22], additional
costs due to outside delivery deadlines [21,23], location priority [18], and total disutility
for the delivery [24]. However, in the post-disaster HL situation, applying these objective
functions is not adequate. Equitable relief supplies distribution among recipients is also
a critical consideration in post-disaster HL [28]. This is due to the high stakes associated
with unsatisfied and/or late-satisfied demand [1]. Although considerations of equity are
featured in the land transportation literature [1,29], the authors are unaware of instances
where equity was considered in relation to UAVRPs. Considering equity cost as an objective
function in UAVRPs may allow for optimal transportation of goods in disaster situations.

In this study, motivated by challenges associated with the transportation of emergency
relief supplies to isolated areas by tsunami, we present a model for planning the transporta-
tion of supplies by multiple UAVs in unique situations during a disaster. In this case, not
only are many different types of supplies needed, but also the disparity in the amounts of
supplies to be transported to each shelter must be minimized. In this study, we formulated
the problem as an NP-hard UAV routing problem that determines the amount of supplies
to be transported by multiple UAVs and destination shelters and then used Q-learning
(QL) [30], a typical method of reinforcement learning (RL), to improve the efficiency of
planning the transportation of multiple UAVs. The purpose of this study is to propose
an efficient logistics planning strategy for disaster response using multiple UAVs. Our
proposed method considered the following three perspectives: (i) the rapid transport of
supplies, (ii) the urgency of supplies, and (iii) the equity (fairness) in the amount of supplies
for each shelter. The main contributions of this study are as follows:
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• In the UAVRPs, equity metric was implemented to take into account the post-disaster
HL situation, demonstrating that the disparity in supplies per evacuation center can
be eliminated;

• We proposed a QL algorithm for solving UAVRPs, discussed the parameter set-
tings of QL, and outperformed meta-heuristics methods in the conditions of the
previous study;

• We introduced three metrics that are considered important in the transportation of
supplies in a post-disaster HL. We tested several transport strategies with different
weights of the three metrics and evaluated the response of each strategy to each metric.

The remainder of this study is organized as follows: Section 2 reviews previous
studies related to disaster response using UAVs and the logistics of UAVs. Section 3 gives
an overview of the model constructed in this study. Section 4 describes the proposed
method, QL. Section 5 describes the comparison and validation of the methods used in this
study, the results, and the discussion. Section 6 gives the conclusion and future work.

2. Related Works

This study focuses on the potential of using UAVs in disaster response. A summary of
the UAV routing problems for logistics is presented in the following.

2.1. Potential of Using UAVs in Disaster Response

In recent years, many studies have discussed the use of big data and information
technology in disaster risk management [31,32].

Zacharie et al. [33] introduced a rapid human body detection method using image
processing from a UAV camera to save lives during natural disasters such as earthquakes.
They showed that irrespective of distance, a camera mounted on a UAV can clearly detect a
human body. Nagasawa et al. [34] proposed a path planning method for multiple UAVs to
aid in 3D building damage surveys or disaster situations. They proposed a methodology
that combines a fuzzy C-means method for assigning camera location points to each
UAV with a route optimization algorithm for calculating the visit order of the camera
location points for each UAV by solving the Multiple Traveling Salesmen Problem (MTSP).
Alhindi et al. [35] explored the potential of utilizing UAVs for crowd management during
emergency evacuations. They suggested a simulation model with two UAV guidance
approaches: partial guidance and full guidance. Klaine et al. [36] presented an intelligent
solution based on RL to find the best position for multiple UAVs to be used as cellular
hot spots in an emergency scenario. They maximized the number of users covered by
the system, while in this case, the UAVs were limited by both backhaul and radio access
network constraints. Chowdhury et al. [37] proposed a mixed-integer linear programming
model for a Heterogeneous Fixed Fleet Drone Routing problem (HFFDRP) that minimizes
the post-disaster inspection cost of a disaster-affected area.

As described above, various applications of UAVs are being considered in disaster
response, and there is a strong possibility that UAVs could be applied to the transportation
of emergency relief supplies during a disaster. This is because UAVs have the potential
to save time and cost compared to traditional means of transportation and to enable the
transport of emergency relief supplies to disconnected areas (e.g., tsunami inundation
areas) [18,38].

2.2. UAV Routing Problem for Logistics

There are two types of UAVRPs: drone-only problems, which use only UAVs, and truck-
drone problems [25,39–42], which combine UAVs and land transportation. In this section,
we review research on drone-only problems that are primarily relevant to this study, con-
sidering the disruption of transportation infrastructure in a disaster. As the VRP is an
NP-hard problem, exact algorithms are efficient only for small problem instances. Since
real-world problems tend to be quite large, heuristics and metaheuristics are often more
practical [43]. Hence, in the literature, many UAVRPs have been solved using heuristics
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and metaheuristics. Dorling et al. [17] proposed two multi-trip VRPs for UAV delivery
to minimize costs subject to a delivery time limit or minimize the overall delivery time
subject to a budget constraint. They proposed a cost function that considers an energy
consumption model and UAV reuse and then applied it in a simulated annealing (SA)
heuristic to find suboptimal solutions to practical scenarios. Song et al. [22] proposed a
mixed integer linear programming (MILP) formulation for the derivation of persistent UAV
delivery schedules and developed a receding horizon task assignment (RHTA) heuristic
with numerical examples for island-area delivery. They set the objective function to maxi-
mize the weighted sum of two objectives: the total number of customers covered and the
total traveling distance during the delivery service.

Similarly, Jiang et al. [21] established a model for UAV task assignment in logistics
that is solved by an improved particle swarm optimization (PSO) algorithm. Initially,
they set a time window at each node, imposed a penalty cost for delayed delivery and a
cost based on the total distance traveled by all UAVs, and then minimized the cost using
the PSO algorithm. Chowdhury et al. [25] proposed a continuous approximation (CA)
model that determines the optimal distribution center locations, their corresponding service
regions, and ordering quantities to minimize the overall distribution cost for disaster-relief
operations. Li et al. [23] focused on the issue of UAV logistics in urban environments
and developed an automatic delivery system to support the delivery of packages. They
optimized two objectives: customer satisfaction and total completion time. A variable
neighborhood search (VNS) algorithm framework is used to generate the approximate
optimal solution for their problem. Rabta et al. [18] considered UAV applications in last-
mile distribution in HL and presented an optimization model for the delivery of multiple
packages of lightweight relief items. They set the objective to minimize the total traveling
distance (or time/cost) of the UAV under payload and energy constraints. Shi et al. [19]
proposed a bi-objective mixed integer programming model for the multi-trip drone location
routing problem, which allows simultaneous pick-up and delivery, and shorten the time to
deliver medical supplies in the right place. Then, a modified NSGA-II (Non-dominated
Sorting Genetic Algorithm II) which includes double-layer coding, is designed to solve the
model. Ghelichi et al. [20] presented an optimization model to design the logistics for a
fleet of drones for timely delivery of medical packages to remote locations. They tackled
the problem of limited payload capacity by scheduling and sequencing a set of deliveries.
Gentili et al. [24] first addressed the problem of locating the platforms as well concurrently
determining which platform serves which demand points and in what order, in order to
minimize total disutility for product delivery. Then, the two-period problem where the
platforms can be relocated, using usable road network, after the first period.

UAVRPs have been studied for heterogeneous UAVs. Chen et al. [26] dealt with the
path planning problem of UAVs with different abilities in multi-region systems. Inspired by
density-based clustering methods, they first designed an algorithm to classify regions into
clusters and obtained approximate optimal point-to-point paths for UAVs, such that the
coverage task is performed correctly and efficiently. In the other study by Chen et al. [27],
they focused on the coverage path planning problem of heterogeneous UAVs, and present
an ant colony system (ACS)-based algorithm to obtain good enough paths for UAVs and
fully cover all regions efficiently.

These models are limited in assuming items only be transported by UAVs without
considering a concept of equity. In the transportation of items at the time of a disaster, often
referred to as post-disaster HL, it is necessary to consider equity in the distribution of relief
supplies as an important issue [1,44]. In addition, existing heuristic approaches are not
yet efficient enough to solve large-scale problems or problems in dynamic environments.
Therefore, this study focuses on a typical reinforcement learning method, QL, which is a
powerful approach to complex sequential decision-making problems with large or continu-
ous state and action spaces [45]. UAVRPs studied in this study is a multi-period sequential
decision problem with a large number of states and actions, which is suitable for QL. RL
method can be used to model the decision-making of agents that can adapt to dynamic
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environments based on learning from previous knowledge, and, thus, has potential for
application to dynamic real-world environments in post-disaster situations. For example,
RL have been studied in HL, such as the deployment of emergency infrastructure, the se-
lection of rescue paths and the prediction of relief demand [46]. However, there are few
studies in which reinforcement learning has been applied to UAVRPs in post-disaster HL,
so this study developed a QL method for planning the transportation of supplies. This
study aims to optimize transport in static scenarios where the state of the environment does
not change, but the methods in this study can be extended and applied to optimization in
dynamic scenarios.

3. Model Description

In this section, we describe a model that assumes the transportation of supplies
during a disaster. The model is composed of an environment and agents that move in
the environment.

Notations are summarized in Table 1.

Table 1. Notations description.

Notation Description

Environment
NS Number of shelters
j, k Indices for shelters

S = {0, 1, 2, . . . , NS} Set of shelters including the depot (j = 0)
NI Number of item types
i Index for item types

I = {1, 2, . . . , NI} Set of item types
dijt Demand of the item i of the shelter j at time instant t

Djt = {d1jt, d2jt, . . . , dNI jt} Set of demands of the shelter j at instant t
Yt = {D1t, D2t, . . . , DNst} Set of the remaining demand of all shelters at instant t

hjk Distance between shelter j and k
pij Penalty cost of item i
bij Time limit of the item i of the shelter j

Agent
NU Number of UAVs

l Index for UAVs
U = {1, 2, . . . , NU} Set of UAVs

wijklmn
Amount of item i transport from shelter j to k as nth location in

the trip m by UAV l
Nl Number of trips of UAV l
m Index for trip

Mlm Number of location that UAV l traveled in trip m (include depot)
n Index for number of location
C Maximum payload of UAV
E Maximum amount of energy
a Acceleration

Vmax Maximum speed
ttake Take-off time
tland Landing time
tserve Servicing time
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Table 1. Cont.

Notation Description

tjk Flight time between shelter j and k
f jk Transportation cost from shelter j to k
v Amount of UAV payload
δ0 Energy needed for take-off and landing for an empty UAV [18]

δ
Additional energy amount needed for take-off and landing with

an additional item [18]
ρ0 Energy to fly one distance unit for an empty UAV [18]

ρ
Additional energy amount needed to fly one distance unit with

one item [18]
Lm Destination shelter of UAV m at instant t

ujlm Time when UAV l transport items for shelter j in trip m

Algorithm
t instant

At Action at certain instant t
St Agent state at certain instant t
Rt Reward at certain instant t
Q Action-value function
α Learning rate
γ Discount factor
ε Chance of choosing a random action

NE Number of episodes
T Termination time

3.1. Problem Definition

In this study, we assumed a scenario in which last-mile distribution to isolated shelters
due to tsunami inundation is performed. In this scenario, multi-rotor UAVs are used due
to its ability to provide vertical take-off and landing (VTOL). It was assumed that sufficient
quantities of relief supplies and batteries for recharging were stored at the nearest depot
(distribution center) and that the demands of the isolated shelters were known in advance.
To determine the UAV transport routes and the transport supplies strategy, we formulated
the UAVRPs as multi-objective, multi-trip, multi-item, and multi-UAVs. Each UAV is
subject to battery and payload limitations and cannot meet the demands of all shelters
in a single trip; therefore, it makes multiple round trips between shelters and a depot
until it completes. The case of road blockage that limits land access and the unavailability
of helicopters for air supply transportation is also considered in the presented scenario.
Therefore, the exclusive use of multi-UAVs is presented here. We acknowledge that the
future incorporation of multi-UAVs in disaster response require specific protocols for the
coordination and organization of these units together with other human-operated vehicles
and aircrafts. A more detailed explanation is given below.

3.2. Environment

To estimate the transportation of supplies in the event of a disaster, we selected the
depot and shelters at the Ushioe district in Kochi City, Kochi Prefecture, Japan. The map
of the Ushioe district is shown in Figure 1. In the case of the occurrence of the Nankai
Trough earthquake, this area is expected to be inundated by tsunamis (Figure 2) and to
face land subsidence caused by the earthquake. It is assumed that long-term inundation
will continue even after the tsunami recedes. Therefore, relief activities in isolated disaster
areas are an important issue. According to the tsunami inundation forecast data of the
Ministry of Land, Infrastructure, Transport and Tourism of Japan (MILT) [47], six of the
seven designated tsunami shelters in the target area are expected to be inundated by the
tsunami and flooded for a long period of time. Since there are no heliports at the shelters,
it is likely that vehicles, such as trucks, and aircraft, such as helicopters, cannot transport
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emergency relief supplies during inundation. In this scenario, multiple UAVs can transport
the supplies in the area.

Figure 1. Depot (red) and shelters (blue) in Ushioe district in Kochi City, Kochi Prefecture, Japan.

A set of shelters S = {0, 1, 2, . . . , NS} are set up in the area, where (j = 0) is the
depot and the set of {1, 2, . . . , NS} represents shelters where emergency relief supplies
are delivered. In this study, one shelter, which is not inundated by the tsunami, is set as
depot (j = 0) for the transportation of supplies, and a logistics model is developed for
transporting supplies from the depot to the other six shelters (NS = 6).

In the event of a disaster, there will be shortages of various types of supplies, such
as medicine, medical equipment, sanitary materials, food, water, and clothes. However,
the priority and amount of each type of supply will differ. Therefore, it is important to
consider the order of transportation and the amount to be transported according to the
priority of the supplies in the transportation plan for emergency relief supplies. In this
study, we focus on the duration of the “three-day crucial rescue period”, which is the first
72 h after a disaster [48], and plan to transport several kinds of lightweight and urgent
emergency relief supplies (e.g., medicine, medical equipment, and sanitary materials).

As a mathematical formulation, I = {1, 2, . . . , NI} represents the set of item types,
Djt = {d1jt, d2jt, . . . , dijt, . . . , dNI jt} represents the set of each shelter’s demand at instant t,
and i is the index for item types. We assume that the demand of each item is more than one
unit (dijt(t=0) > 1 ∀i ∈ I, ∀j ∈ S).

In addition, to consider the priority of the supplies, we set the priority rate as the
weight pij and the time limit bij for the item i of the shelter j. Here, the “time limit” of an
item is the “expiration time” at which the item is no longer usable (e.g., perishable food).
In this study, supplies with high urgency were given a higher priority (higher penalty cost
when not delivered) and a shorter transportation time limit.
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Figure 2. Estimated tsunami inundation depth for the Nankai Trough earthquake in Ushioe district
in Kochi City, Kochi Prefecture, Japan. Data from [47].

3.3. Agent

The agent is assumed to be a UAV that transports emergency relief supplies. A UAV loads
the supplies at depot (j = 0) and delivers them to shelters. A set of UAVs U = {1, 2, . . . , NU}
is used to transport them. NU represents the number of UAVs.

We assume that UAVs are subject to the following conditions:

• All UAVs are homogeneous; thus, they have the same maximum payload C and
maximum amount of energy E;

• At the start of the transport, all UAVs are assumed to be at the depot;
• The batteries are fully charged when the UAV takes off from the depot;
• Since there are sufficient batteries for the UAV in the depot, the battery charging time

is not considered;
• Each UAV has its batteries replaced only at the depot.

Each UAV consumes a battery depending on its payload and traveling distance. The
energy consumption function (Equation (1)) describes the amount of energy used by the
UAV to travel from shelter j to k with payload v, referring to the study of Rabta et al. [18].

R(v) = δ0 + δv + hjk(ρ0 + ρv) (1)

v =
Mlm

∑
n

NI

∑
i=1

wijklmn (2)

Here, hjk is the distance between shelters j and k, and δ0 is the energy for take-off
and landing without supplies. δ is the additional energy amount needed for take-off and
landing with an additional item, ρ0 is the energy to fly one distance unit for an empty UAV,
and ρ is the additional energy amount needed to fly one distance unit with one item. In
Equation (2), wijklmn denotes the amount of item i transported from shelter j to k as the nth
location in trip m by UAV l, and v denotes the total amount of items transported after the
nth location in trip m by UAV l.
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From the above assumptions, the UAV’s maximum payload and maximum amount of
energy constraints can be represented as follows:

Mlm

∑
n=1

NI

∑
i=1

wijklmn ≤ C ∀l, ∀m (3)

Mlm

∑
n=1

R(v) ≤ E ∀l, ∀m (4)

The transportation cost f jk, which is equal to the consumption time, from shelter j to k
is defined as Equation (5), referring to the study of Nagasawa et al. [34].

f jk = ttake + tland + tserve + tjk (5)

tjk =


hjk

Vmax
+

Vmax

a

(
hjk >

Vmax
2

a

)

2

√
hjk

a

(
hjk <

Vmax
2

a

) (6)

where ttake is the take-off time, tland is the landing time and tserve is the servicing time (e.g.,
time to change batteries in the depot or unload supplies in the shelter). tjk denotes the flight
time between shelters j and k. Since each UAV is presumed to accelerate to its maximum
speed with uniform acceleration, tjk can be calculated as Equation (6), where Vmax is the
maximum speed of a UAV, and a represents the uniform acceleration of a UAV. In addition,
one trip m is defined as the period from the time the UAV leaves the depot to the time it
transports supplies to one or more shelters and returns to the depot.

3.4. Cost Functions

This study aims to plan optimal transportation by multiple UAVs from three perspec-
tives: rapidity, urgency, and equity. Following those objectives, the proposed UAVRP aims
to minimize the total cost, including the following three costs:

• Flight Time Cost (FC): The cost based on the total flight time of all UAVs. This
corresponds to rapidity;

• Priority Cost (PC): The cost based on quick transportation of high-priority supplies.
This corresponds to urgency;

• Equity Cost (EC): The cost based on equitable transportation to all shelters. This
corresponds to equity.

First, FC is described as follows:

Z1 =
NU

∑
l=1

Nl

∑
m=1

Mlm

∑
n=1

NS

∑
j=0

NS

∑
k=0

f jk · xjklmn (7)

xjklmn =

 1 (UAV l transport from j to k as nth location in the trip m)

0 (otherwise)
(8)

The cost function Z1 in Equation (7) is the total flight time for all UAVs and all trips. f jk
is the time taken for transportation from shelter j to k, which is represented in Equation (5),
and xjklmn is a decision variable, which is represented in Equation (8).

Second, PC is described as follows:
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Z2 =
NU

∑
l=1

Nl

∑
m=1

Mlm

∑
n=1

NS

∑
j=0

NS

∑
k=0

NI

∑
i=1

Pijt(wijklmn) · xjklmn (9)

Pijt(wijklmn) = pij · wijklmn ·max{(uijlm − bij), 0} (10)

uijlm =
m

∑
m=1

Mlm

∑
n=1

NS

∑
j=0

NS

∑
k=0

f jk · xjklmn (11)

The cost function Z2 in Equation (9) is equal to the total penalty cost of items, which
depends on the transportation time and urgency of items. wijklmn represents the amount of
item i transported to shelter j (j 6= 0) as the nth location in trip m, pij represents the penalty
cost of item i, and ujlm represents the time when UAV l transports items for shelter j in trip
m, which is described in Equation (11). Equation (10) represents the penalty cost when the
UAV transports item i for shelter j later than the time limit bij. On the other hand, there is
no penalty cost when the UAV transports item i for shelter j within the time limit bij.

Finally, we define the (EC). In previous studies, various cost functions have been
defined to describe equity [44,49]. In this study, we use the EC of Huang et al. [29], which
is described as follows:

Z3 =
T

∑
t=1

NS

∑
j=1

g(rjt) (12)

rjt =
∑NI

i=1 dijt

∑NI
i=1 dijt(t=0)

(13)

The cost function Z3 in Equation (12) indicates the “disutility-weighted arrival time”.
The disutility function (12) encourages UAVs to not necessarily satisfy a shelter’s entire
demand but rather to save supplies to serve another shelter. Equation (13) represents the
rate of remaining demand of shelter j at instant t. The following piecewise linear disutility
function is used in our calculations:

g(r) =



4r
13 (r < 0.25)
8r−1

13 (0.25 ≤ r < 0.5)
16r−5

13 (0.5 ≤ r < 0.75)
24r−11

13 (0.75 ≤ r)

(14)

where r is the rate of remaining demand. The above function can be represented as in
Figure 3.

Figure 3. The disutility function for unsatisfied demand.
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These three cost functions are converted to a single objective function using the
weighted sum method. The objective function of this problem is described as follows:

Minimize λ1Z1 + λ2Z2 + λ3Z3 (15)

where λ1, λ2 and λ3 are the weights of the three costs.

4. Proposed Method
4.1. Q-Learning

RL is a framework for an agent to learn appropriate strategies by trial and error in
an environment by obtaining rewards from that environment. RL is a machine learning
method in which an agent learns by itself to determine which action to choose to maximize
the total reward. Figure 4 shows the interaction between the agent and environment in RL.
When the agent observes the state St of the environment at a certain instant t, the agent
chooses an action At among all possible actions. The chosen action will have repercussions
in the environment, and, consequently, it will influence the state at the instant t + 1, St+1.
Whether the new state St+1 is positive or negative to the agent’s main objective, it is
quantified with a reward rt+1. The RL approach searches for the policy that gives the
highest long-term reward Rt. In this study, we use QL [30], which is a typical RL method.

Figure 4. The agent from a reinforcement learning point of view. Image from [50].

In QL, the agent has an action-value matrix, Q matrix, which represents the value
of being in a specific state St while choosing an action At at instant t. By trying different
actions in different states (exploration) but also by choosing the best possible action that
gives the highest reward value based on its past experience (exploitation), QL is shown to
converge for any type of policy being followed [50]. The agent updates a value of the Q
matrix, which is represented as Q(state, action), for each action. It is defined as follows:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(16)

where Q(st, at) is the current Q matrix, α is the learning rate (0 ≤ α ≤ 1) and γ is the
discount factor (0 ≤ γ ≤ 1). rt+1 is the expected reward at instant t, and max

a
Q(st+1, a) is

the maximum action value among all possible actions in state st+1. In this study, the initial
value of the Q matrix was set to 0 for all actions in all states of the environment.

4.2. State and Action

In this study, the agents share a single Q matrix, which is updated sequentially by
each agent after each transportation. The state of the environment in the Q matrix and the
action of the agent corresponding to a UAV were defined as follows:

• States: A state at instant t, St, represents the set of the remaining shelter demand
at instant t. St is denoted by St = Yt = {D1t, D2t, . . . , Dst}, where Djt is the set of
demands of shelter j at instant t.
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• Actions: Selection of the following two elements among all possible actions: (i) the
shelter/depot to transport/return and (ii) the amount of items that the UAV trans-
ports. Note that the types of supplies are selected in order of urgency among the
supplies demanded by the destination shelter. An action at instant t, At, is denoted by
At = {Lm, wijklmn}.

Now consider the following example, where NU = 1. The initial state St=0 is denoted
as St=0 = {{2, 2}, {1, 1}}, which means that there are 2 shelters for transportation and
the initial demand for Shelter 1 and Shelter 2 are D1t(t=0) = {2, 2} and D2t(t=0) = {1, 1},
respectively. We assume that the initial location of UAV 1 is depot (j = 0). In the case of the
action of the UAV, 1 is At=0 = {1, 3}, which means that UAV 1 transports 3 units of supplies
to Shelter 1, the new state at instant t = 1, St=1, represented as St=1 = {{0, 1}, {1, 1}}.
Subsequently, in the case of the action of the UAV 1 is At=1 = {2, 1}, which means that UAV
1 transports 1 unit of supplies to Shelter 2, the new state at instant t = 2, St=2, represented
as St=2 = {{0, 1}, {0, 1}}. By repeating this process, the action of the agent continues until
the current episode is completed.

In each state St, the UAV (agent) determines action At according to the flow, as shown
in Figure 5. Here, we assume that there are six shelters, as shown in Figure 1, and that the
maximum payload of the UAV is 5 (C = 5). First, the agent generates “All_action_list” for
each state. This is the set of combinations of destinations and amounts of transport: When
the agent is at the depot, there are 30 combinations (6 destinations × 5 amounts), and when
the agent is at a certain shelter, there are 26 combinations (5 destinations except the current
location × 5 amounts + return to the depot). Second, the agent determines an action At
based on the ε-greedy policy (for the policy, see the next section). Finally, if the constraints
of the maximum payload (Equation (3)) and maximum amount of energy (Equation (4)) are
satisfied, action At is chosen; otherwise, the current action is deleted from “All_action_list”,
and the action is chosen again.

Figure 5. The flow of UAV action determination at each action instance of each episode.

The termination criteria are the conditions when the demands for all shelters are zero.
It is described as follows:

dijt = 0 ∀i, ∀j (17)

The termination time (t = T) was defined as the time when the above conditions were
met and the UAV returned to the depot.
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4.3. Policy

In QL, since the ratio of exploitation to exploration has a significant impact on the
learning results, it is necessary to adjust it well. We adopted the ε-greedy policy [50] as
a decision strategy for actions. In the ε-greedy policy, parameter ε(0 ≤ ε ≤ 1) is set to
control the degree of exploration: the agent explores an action selected at random with
probability ε and exploits the action that is the highest value with probability (1− ε). We
use Equation (18) in such a way that the parameter ε decays according to the episodes,
referring to the study of Yu et al. [46].

ε =
0.5

1 + e

(
10× (episode− 0.4× NE)

NE

) (18)

where NE is the total number of episodes and episode denotes the number of the current
episode. Equation (18) guarantees a high probability of exploration in the early training
episodes and a low probability of exploitation in the late training episodes. Figure 6 shows
the value of parameter ε at each episode.

Figure 6. The ε-greedy exploration function when NE = 4000.

4.4. Reward

The proposed UAV routing problem aims to minimize the total costs, including the
flight time cost (FC), the priority cost (PC), and the equity cost (EC). Based on the previous
section, FC, PC, and EC are represented in Equations (7), (9), and (12). Notably, the objective
of this study is to minimize the total costs, whereas the objective of QL is to maximize the
total rewards. Therefore, the objective function is adjusted to be negative, such that the
objective of this study translates into maximizing the negative value of the total costs. The
reward function is represented as follows:

Rt =

 −(λ1Z1 + λ2Z2 + λ3Z3) (t = T)

0 (otherwise)
(19)

where T is the time when the episode terminates.
Finally, Figure 7 shows the flowchart of the QL process so far.
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Figure 7. QL algorithm procedure at each episode.

5. Numerical Experiments
5.1. Simulation Settings

To examine the effectiveness of QL, a simulation environment was created and per-
formed in Python. All of the experiments were implemented on a laptop PC with quad Intel
Core 2.4 GHz CPU, 8GB of RAM. In this study, simulations were performed in three sce-
narios in which the demand for shelter supplies was changed to small, medium, and large
amounts. The simulation parameters for each scenario are shown in Table 2. It is noted that
in all scenarios there are three types of supplies (Items A, B, and C), with A being the most
urgent and C being the least urgent. UAV parameters are shown in Table 3.

Table 2. The set parameters of each scenario.

Parameter Scenario 1 Scenario 2 Scenario 3

Number of UAVs NU 3 3 3
Number of item types NI 3 3 3

Initial demand of each shelter {d1jt, d2jtd3jt}, ∀j, t = 0 {2, 2, 2} {4, 4, 4} {8, 8, 8}
Priority rate of each item {p1j, p2j, p3j}, ∀j {2, 1, 0.5} {2, 1, 0.5} {2, 1, 0.5}

Time limit of each item {b1j, b2j, b3j}, ∀j {400, 800, 1200} {800, 1600, 2400} {1800, 3600, 5400}
Number of episodes NE 8000 24,000 24,000
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Table 3. UAV parameters.

Parameter Value

Vmax 10 m/s
a 1 m/s2

C 5 kg
E 275 kJ
δ0 900 J
δ 300 J/kg
ρ0 3 J/m
ρ 1 J/m · kg

ttake 30 s
tland 30 s
tserve 60 s

5.2. Parameter Settings

The rate of exploration (ε) has a significant impact on the speed of convergence in
QL. To compare the exploration rate and convergence speed, the following three cases of
exploration rates are used to compare the objective values for each episode: ε = 0.1, ε = 0.5,
and ε = Equation (18). Here, the weights of the three costs are defined as λ1 = λ2 = λ3 = 1,
the initial demands of each shelter are defined as {d1j, d2j, d3j}(t = 0) = {1, 1, 1}, and the
other parameters are defined as in Scenario 1 in Table 2. In that scenario, the following
learning rate α and discount factor γ are used, based on the study by Sutton et al. [50]:
α = 0.9, γ = 0.1. The convergence results are shown in Figure 8. In Figure 8, the average
value of the 10 training trials is plotted for each exploration rate.

Figure 8. The learning curve obtained with QL considering different exploration rates in the test
scenario.

As shown in Figure 8, when ε = 0.1, it converged faster during fewer episodes than at
other instances. However, as the number of episodes approaches the set maximum number,
it can be seen that the values converge to the optimum objective value more certainly
at ε = Equation (18) than at ε = 0.1 and that the objective value also is more stable at
ε = Equation (18). Therefore, in later experiments in our study, we use ε = Equation (18)
as the exploration rate.



Appl. Sci. 2022, 12, 10427 16 of 23

5.3. Comparison of Methods

To evaluate the performance of QL in this particular problem, we compared the
performance of the QL and heuristic algorithms, the genetic algorithm (GA) and particle
swarm optimization (PSO), in the model studied by Jiang et al. [21]. The reason for selecting
the model of Jiang et al. [21] is based on the similarity in the parameterization used in
our study. Other candidates for comparison could have been the models proposed by
Shi et al. [19] and Ghelichi et al. [20], however, these lack some features considered in our
study (i.e., the role of delivery and pickup, selection of charging stations).

In their model, 3 UAVs transport items from 1 depot to 10 demand points, as shown
in Figure 9, and the following two constraints are considered:

• Maximum payload of UAV;
• Time window for transportation at each point.

The objective is to minimize the total transportation distance, taking into account the
above two constraints. We performed QL on the same problem setting. The set parameters
are shown in Table 4. It should be noted that the number of iterations is different between
QL and GA and PSO since QL generates one transportation plan in each iteration, while
the GA and PSO generate 40 delivery plans in each iteration.

Table 4. The set parameters of the GA, PSO, and QL.

Parameter
Value

GA PSO QL

Population number 40 40 -
Iteration 100 100 4000

Calculation times 50 50 50

The minimum transport distances obtained by each method are shown in Table 5,
which is the minimum value of all trials. It is noted that this study does not compare
computation times due to differences in computer performance. Figure 9 shows the
shortest route obtained by PSO and QL. From these results, it can be observed that the QL
method is useful for the UAV transportation planning problem since it can find a shorter
route than the other methods. The reason why QL obtained a better solution than other
methods is considered to be the large number of evaluations in QL. In QL, the state of each
environment is evaluated at the end of each action, which may have resulted in earlier
convergence than methods that evaluate plans after all actions have been completed, such
as PSO and GA. For this reason, it can be said that the QL method designed in this study is
useful to improve the efficiency of the item transportation route.

Table 5. Comparison of minimum transportation costs of each method.

Algorithm Minimum Distance [km]

Jiang et al. [21] PSO 350.30
Jiang et al. [21] GA 379.04

our study QL 322.44
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Figure 9. The model of Jiang et al. [21]. (left) Location coordinates of 1 depot (red) and 10 demand
points (blue). (center) The optimal route obtained by PSO of Jiang et al. [21]. (right) The optimal
route obtained by QL of our study.

5.4. Performance Comparison

In this study, we evaluated the transport of items for each case against our model by
conducting a comparative examination of the transport of five cases with different rates
of three objective assignments in QL. The cases are listed in Table 6. In Table 6, Case 1
minimizes the total flight cost based on the study of Dorling et al. [17]. Case 2 minimizes the
sum of the total flight cost and the penalty cost of items based on the study of Jiang et al. [21].
Case 3 minimizes the equity cost based on the study of Huang et al. [29]. Case 4 and Case 5
minimize the sum of three costs and two costs other than the total flight cost, as introduced
in our study. QL was performed 10 times for each case in each scenario and analyzed from
three perspectives (rapidity, urgency, and equity). For each trial, the best performance
(lowest objective value) transportation plan is selected for comparison.

Table 6. Rate of reward for each case.

Case
Rate

Rapidity (λ1) Urgency (λ2) Equity (λ3)

Dorling et al. [17] Case 1 1 0 0
Jiang et al. [21] Case 2 0.5 0.5 0

Huang et al. [29] Case 3 0 0 1
Our study Case 4 0.33 0.33 0.33
Our study Case 5 0 0.5 0.5

Figure 10 shows the total flight time of all UAVs in each case of each scenario. Numer-
ical values denote the average of 10 trials, and error bars denote 95% confidence intervals.
As shown in Figure 10, for all scenarios, Case 1 is seen to have the shortest flight time, while
for the other cases, the length of flight time is shown to vary from scenario to scenario.

Figure 10. Total flight time of the UAV in each scenario. The values are averages of 10 training trials,
and the error bars represent 95% confidence intervals.
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Figure 11 shows the penalty cost for each item in each scenario. The penalty cost
depends on the ends of the transport time and the urgency of the item. In all scenarios,
Case 1 has by far the highest penalty cost for urgent items (especially Item A). Therefore,
the transportation strategy of Case 1 is not suitable for the transportation of emergency
relief supplies in the event of a disaster that requires rapid transportation of supplies and
has a wide range of supply urgency. Case 2, Case 3, Case 4, and Case 5 have similar values
for all items in Scenario 1 and Scenario 2. On the other hand, as the size of the instance
increases, the penalty cost of Case 3 increases relative to the other cases. Figure 12 shows
the total service level of each shelter in each scenario. Case 3 has the lowest cost, and Case 1
has the highest cost in all scenarios. Figure 12, Figure 10, Figure 11, Case 2, Case 4, and
Case 5 have similar trends. This could be because the initial demand for all shelters is
the same. To minimize the objective function of urgency Z2, a transportation strategy
that delivers items with high urgency to all shelters quickly and then delivers items with
low urgency to all shelters is effective. Similarly, the objective function equity Z3 can be
decreased by transporting a small number of items to each shelter quickly.

Figure 11. Penalty cost for each item in each scenario. The values are averages of 10 training trials,
and the error bars represent 95% confidence intervals.

Figure 12. Total service level of each shelter in each scenario. The values are averages of 10 training
trials, and the error bars represent 95% confidence intervals.

Figures 13 and 14 show the route and resource allocation to minimize the objective
value of 10 trials in Scenario 1 of Case 1 and Case 4, respectively. Figure 13 shows that
in each trip, each UAV transports a large number of items to a single shelter. On the
other hand, Figure 14 shows that each UAV is transporting supplies to multiple shelters
on a single trip. In Figure 14, in terms of the amount of supply for each shelter, it can
be confirmed that the supply is widely distributed to many shelters and that QL enables
learning in accordance with the objectives of the study.

Figure 15 shows the minimum objective values for each number of UAVs in Scenario
1. In Figure 15, the average value of the 10 trials is plotted for each cost. In this case,
the weights of the cost functions were set to λ1 = λ2 = λ3 = 1, and numerical values
denote the average of 10 times. When the number of UAVs is changed from 1 to 2, a 65%
decrease in total cost is observed, and when the number of UAVs is changed from 2 to
3, a 55% decrease in total cost is observed. Thereafter, total costs continue to decrease,
although the rate of decrease in total cost per unit decreases. In the case of UAVs larger
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than 4, little change is observed in the rapidity cost and the urgency cost, and only the
equity cost continuously decreases. In addition, when the number of UAVs is larger than 4,
the urgency cost converges to almost zero. It can be concluded that the transportation of all
items has been completed within the time limit for each item type. The result suggests how
many UAVs are required to meet the time limit for the shelters. In the case that the time
limit cannot be met, we suggest that fair transportation during a disaster could be achieved
by considering the equity cost, a metric to maximize satisfaction bias by reducing unfair
supply allocation.

Figure 13. Route and resource allocation to minimize the objective value of Case 1 in Scenario 1.
The lines represent the route of each UAV, and the color and size of the dots represent the amount of
supplies supplied to each shelter.

Figure 14. Route and resource allocation to minimize the objective value of Case 4 in Scenario 1.
The lines represent the route of each UAV, and the color and size of the dots represent the amount of
supplies supplied to each shelter.
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Figure 15. Minimum objective values for each number of UAVs in Scenario 1. (left) NU is from 1 to
10. (right) NU is from 3 to 10.

6. Conclusions and Future Work

Supplying isolated shelters with sufficient supplies quickly and adequately during
a disaster saves many lives and provides victims with a sense of security. Soon after a
disaster occurs, land transportation may be difficult due to damaged roads and traffic
congestion, and UAVs offer a promising potential solution to this problem. However,
the limited payload of a UAV is insufficient for a single transport to meet the various
material demands of shelters, so considering the sequence of multi-UAV destinations and
the types of materials to be transported is an important issue in a crisis situation.

In this study, we developed a model for transporting emergency relief supplies by
multiple UAVs using QL. To evaluate the performance of QL in the UAVRPs, we compared
the transportation routes of the previous model. As a result, we were able to develop route
planning with a shorter transportation route than the conventional method, which confirms
the performance of our method in improving the efficiency of transportation distance. In
addition, we confirmed that it is possible to transport high-priority items quickly and to
eliminate the disparity in supply among shelters. We were able to quantitatively evaluate
the transportation time and the percentage of high-priority items that could be transported
within a time limit for each of the disaster response measures. This result may be used
to reduce the deviation of the supply to each shelter when the demand for supplies is so
large that the transportation of supplies cannot be completed within a certain time limit.
In particular, in a disaster such as a tsunami-related disaster, where damage occurs over a
wide area, a large number of people may be displaced and the demand for shelters may
increase massively at the same time. Since the equity-oriented transportation in this study
can prevent disparities in supplies at each shelter, it can be applied as a transportation
strategy for supplies, such as medicines and blood, that require small quantities but need
to be supplied quickly.

For the practical application of this study, it is necessary to grasp the needs of each
evacuation center for supplies in advance. This could be solved by utilizing UAVs equipped
with communication capabilities as emergency communication networks [36] and by
forecasting the demand for supplies [51]. With this information, effective last-mile delivery
may be achieved by utilizing this study’s method, taking into account the number of UAVs
available, payload limitations, and battery limitations.

There is room for improvement in the model. In HL such as disaster response, trans-
portation must be planned in as little time as possible due to the uncertainty of demand for
supplies. However, QL, like other heuristic methods, requires time for calculation because
it must determine various parameters and then perform optimization. It is necessary to
extend the UAV transportation planning problem to consider highly uncertain situations,
such as the urgency of demand and supplies and the number of UAVs available.
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Planning the transportation of items by multiple UAVs using the model of this study
will enable the stable and rapid transportation of items to isolated disaster areas such as
tsunami-flooded areas in the event of an actual disaster. The ultimate goal of this research
is to develop a multiple UAV planning tool to optimize the allocation of UAVs and support
decision making for disaster relief and supply transportation.
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