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Abstract: Computer Aided Design (CAD) is a family of techniques that support the automation of
designing and drafting 2D and 3D models with computer programs. CAD software is a software
platform that provides the process from designing to modeling, such as AutoCAD or FreeCAD. Due
to complex functions, the quality of CAD software plays an important role in designing reliable 2D
and 3D models. There are many dependencies between defects in CAD software. Software testing is a
practical way to detect defects in CAD software development. However, it is expensive to frequently
run all the test cases for all functions. In this paper, we design an approach to learning to prioritize
test cases for the CAD software, called PriorCadTest. The key idea of this approach is to quantify
functional units and to train a learnable model to prioritize test cases. The output of the approach is
a sequence of existing test cases. We evaluate PriorCadTest on seven modules of an open-source
real-world CAD project, ArtOfIllusion. The Average Percentage of Fault Detect (APFD) is used to
measure the effectiveness. Experimental results show that the proposed approach outperforms the
current industrial practice without test case prioritization.

Keywords: CAD software; computer aided design; test case prioritization; software testing; feature
engineering; manufacturing software

1. Introduction

Computer Aided Design (CAD) is a family of techniques that replaces manual de-
signing and drafting models with an automated process [1]. CAD software is a software
platform that provides the process from designing to modeling, such as AutoCAD [2]
or FreeCAD [3]. CAD software, an indispensable tool for CAD technology applications,
provides the capability and adaptability of graphic designing and drafting. Due to complex
functions, many defects may be hidden in the CAD software. This badly hurts the output
of CAD software, i.e., the generation of 2D and 3D models. Two major reasons result in the
defects in CAD software. One is the complexity of functionality in CAD software; the other
is the dependencies among the defects. It is important to find a way to trigger defects at an
early stage. Thus, software testing is an indispensable step in the development process of
CAD software [4].

The basic idea of testing CAD software is to run test cases to detect potential defects [5].
The updating of functionality of CAD software requires frequently running test cases. A
direct way is to apply regression testing to run test cases to ensure a new code update does
not violate existing functional behaviors [6]. However, due to the scale of functions in CAD
software, it is expensive to frequently run all the test cases for all functions [7].

A solution to reduce the cost of running test cases is to prioritize test cases to find
defects early. In this paper, we design an approach (called PriorCadTest) to learning to
prioritize test cases for CAD software. The output of PriorCadTest is a sequence of existing
test cases. The key idea of PriorCadTest is to quantify functional units (A functional unit
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can be a component, a package, or a function in different programming languages. In
this evaluation of this paper, we evaluate the results on program functions). Then, each
functional unit being tested is converted into a vector. PriorCadTest trains a learnable
model from known test results and ranks tests for new functional units. To the best of our
knowledge, this paper is the first work that prioritizes test cases for CAD software.

We evaluate the proposed approach on seven modules of an open-source CAD project,
ArtOfIllusion (Project ArtOfIllusion, http://www.artofillusion.org/, accessed on 16
May 2022). In the evaluation, the Average Percentage of Fault Detect (APFD) that
counts covered statements is used to measure the effectiveness of test case prioritization.
We selected the model with the best ranking result from the models in comparison and used
this model to validate against the test set. Experimental results show that the proposed
approach outperforms the current industrial practice without test case prioritization.

Application scenario and motivation. The source code of the CAD software can be
frequently updated due to the code updates. A common way to ensure that a new code
update does not violate existing program behaviors is regression testing [8]. In general, the
process of regression testing is to run all the test cases if the source code is updated. The
proposed approach in this paper is to re-rank test cases to trigger potential defects as the
early stage. Applying this approach can reduce the time cost of running test cases and save
the time of developing CAD software.

Contributions. This paper makes the following main contributions.

• A new approach for ranking test cases for CAD software. We proposed an automatic
approach for converting each functional unit or each test case into a 103-dimensional
numeric vector. Then, each functional unit and each test case is combined into a pair,
which is converted into a 206-dimensional vector based on the coverage relationship
between CAD software functions and test cases. A learnable ranking model of test
cases is trained using the data of 206-dimension vectors (Section 3).

• An experimental setup on six ranking models of learning and ranking test cases for
CAD software (Section 4).

• Evaluation results of the proposed approach PriorCadTest with six ranking models
on a real open-source CAD software, ArtOfIllusion. We find that the random forest
classifier is effective in ranking the test case for CAD software (Section 5).

The rest of this paper is organized as follows. Section 2 shows the basic background
of testing CAD software. Section 3 presents the design of our approach, PriorCadTest.
Experimental setup and results are presented in Sections 4 and 5. Section 6 discusses threats
to validity. Finally, Section 7 concludes the paper and lists the future work.

2. Background

In this section, we discuss the background of CAD software, the background of
software testing, and the related work.

2.1. CAD Software

CAD software is widely used in many fields, such as civil construction, machinery
manufacturing, aerospace, landscape design, and urban planning. CAD software is a
powerful tool for product innovation, with powerful graphic editing functions that enable
accurate design of various 2D and 3D graphic models. The user interface of CAD software,
which allows various operations to be performed through interactive menus or command
lines. Meanwhile, CAD software supports secondary development. This highly increases
the fields of applications. Figure 1 shows an example of using CAD software to draft a 3D
model with three objects. Defects may be hidden in CAD software. This highly hurts the
generation of CAD models.

In terms of model types, models in the CAD software can be generally divided into
2D CAD models and 3D CAD models. A 2D CAD model consists of several components
in plane geometry. A 3D CAD model is a computer representation of the actual shape of
the product into a three-dimensional model, which includes various information about the

http://www.artofillusion.org/
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points, lines, surfaces, and shape bodies of the solid geometry. Depending on the require-
ments, CAD software can also be divided into architectural CAD software, mechanical
CAD software, circuit CAD software, etc. [9].

Figure 1. Sketch of a 3D model drafted by the CAD software.

2.2. Software Testing

With the development of software and IT industry, the number of software prod-
ucts grows rapidly. Software quality has attracted much attention from developers. In
the 1980s, the basic theory and practical techniques of software testing were gradually
formed [10]. The purpose of software testing is to check whether the software system meets
the requirements. Software testing has been integrated into the entire development process.

Automation testing is a technique of software testing that uses an automated tool
to validate various software testing requirements, including the management and imple-
mentation of testing activities and the development and execution of test scripts [11,12].
Software automation testing techniques are also classified into various types for different
applications. Software functional testing aims to test the functionality of the software by
giving appropriate input values, determining the output and verifying the actual output
using the expected values. Functional testing techniques is widely applied. For example,
Abbot Java GUI Test Framework [13] is mainly used for automated testing of Java GUI
tests. Soapui [14] is mainly applied to web service testing. This tool is used to test web
service through HTTP protocol.

The existence of software defects greatly harms the quality of software and increases
the cost of software maintenance. To detect software defects early, software testing becomes
an essential stage in software development [15]. In software testing, developers design test
cases in anticipation of early detection of potential software defects. Test cases are critical
to reducing software defects in rapid code integration. A typical development process is
test-driven development, designed to drive iterative code development with test cases
generated ahead of code details [16]. To improve software quality, developers do everything
they can to find, locate, analyze, and fix code defects. Typically, before a software is released,
developers often write a set of supporting test cases to test the correctness and stability of
the software based on the functions that need to be implemented and the possible execution
paths of the software. However, due to the complexity of the software functions and
structure, the set of supporting test cases written by the developers often cannot cover
all the situations of the software operation, and all software defects still occur from time
to time.

2.3. Related Work

We summarize the work related to CAD software testing and test case prioritization
as follows.
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Existing researchers have studied several research topics of testing CAD software.
Frome [17] studied the perceptions of users or developers of a CAD system; results show
that the users’ perceptions of a CAD system are quite different from the developers’.

Grinthal [18] introduced an overview of software quality assurance and its relation to
user interfaces for CAD systems. Hallenbeck et al. [19] discussed a CAD supporting tool
for designing a digital system that meets predefined testability requirements. Gelsinger
et al. [20] proposed CAD tools, which are created to accelerate the design of the i486 CPU.

Sprumont and Xirouchakis [21] proposed a model of the CAD process that allows an
adaptive man-machine task sharing by allocating the user interaction to the knowledge
model. The CAD processes can be used to recursively define the CAD activities of high
levels of abstraction. Wang and Nnaji [22] addressed a soft constraint representation
scheme based on nominal intervals. Su and Zeng [23] introduced a test methodology that
detects both catastrophic and parametric faults. Issanchou and Gauchi [24] proposed a
novel feed-forward neural network model that considers the framework of the nonlinear
regression models to construct designs. Veisz et al. [25] presented a comparison between
the role of CAD and sketching in engineering. Their results suggest that it is necessary to
emphasize the importance of sketching and the deep understanding to the utility of CAD
tools at each stage of the design process.

Banerjee et al. [26] introduced a computer-aided-test (CAT) tool for mixed signal de-
signs. The CAT tool provides a hardware efficient integrated solution. Bahar [27] presented
the leading-edge research and development solutions, and identified future road-maps for
design automation research areas. Ramanathan et al. [28] presented a novel approach to
the test case prioritization problem that addresses this limitation. Chi et al. [29] proposed a
new approach AGC (Additional Greedy method Call) sequence, the approach leverages
dynamic relation-based coverage as measurement to extend the original additional greedy
coverage algorithm in test case prioritization techniques. An empirical study [30] was con-
ducted to examine the relative importance of the size and coverage attributes in affecting
the fault detection effectiveness of a randomly selected test suite.

Gupta [31] proposed a novel prioritization algorithm that can be applied over both
original and reduced test suites depending upon the size of test suites. Gupta [31] intro-
duced search-based regression testing that is applied to improve the quality of the test suite
in order to select a minimum set of test cases. The performance of different meta-heuristics
for the test suite minimization problem is compared with a hybrid approach of the ant
colony optimization and the genetic algorithm. Chen et al. [32] presented an adaptive
random sequence approach based on clustering techniques using black-box optimization.
Liu [33] studied the topic of ranking great amounts of documents based on their relation to
a given query, i.e., the examination of the inner mechanics of the search engines. Mirarab
and Tahvildari [34] proposed an approach based on the probability theory to incorporate
source code changes, software fault-proneness, and test coverage into a unified model. Lin
et al. [35] used a pairwise learning-to-rank strategy XGBoost to combine several existing
metrics to improve the effectiveness of test case prioritization.

To the best of our knowledge, our work is the first technique that prioritizes test cases
for CAD software via qualifying functional units. The idea of our work is to propose a
practical way to reduce the time cost of frequent test execution.

3. Learning to Prioritize Test Cases for CAD Software, PriorCadTestPriorCadTestPriorCadTest

Our proposed approach, called PriorCadTest, learns to prioritize test cases for CAD
software. This approach consists of two major phases, the learning phase and the ranking
phase. The learning phase trains the ranking model based on known testing results, while
the ranking phase uses the learned model to rank test cases for new functional unit. The
ranking model in the approach is based on feature extraction. In this section, we show the
overview, the feature extraction, the learning phase, and the ranking phase as follows.
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3.1. Overview

Our proposed approach, PriorCadTest, aims to generate a sequence of test cases that
are prioritized. The goal of this approach can prioritize test cases for a new functional unit
(e.g., a new component of source code). Then, the prioritization can reduce the time of
running test cases via triggering potential defects at the early stage.

Figure 2 shows the overview of the proposed approach to learning to prioritize test
cases for CAD software. This approach consists of two major phases, the learning phase
and the ranking phase. First, in the learning phase, a functional unit under test and a test
case are converted into a function vector and a test vector, respectively. Each function
vector and each test vector are connected into a vector. A learning model is then built
based on the above extracted vectors. In our work, four machine learning models are used
and the random forest model performs the best. Second, in the ranking phase, for any
new functional unit, such as a new component under test, the ranking model combines
the functional unit with each test. Such combination is also converted into a vector. Then,
the ranking model ranks these vectors based on the ranking scores. The test case with the
highest ranking score is ranked as the first in the sequence of running test cases.

Test cases in 

training set

Vector Score

T1M1 0.862

T1M2 0.814

T1M3 0.795

T1M4 0.601

… …Test case Score

T3 0.4605

T1 0.4538

T4 0.4533

T2 0.4521

… …

Model

building

Project

Learning Phase

Functions in 

training set

Feature 

vectorization

Test cases in 

test set

Functions in

test set

Ranking 

model

Labels

Ranking Phase

Feature 

vectorization

Figure 2. Overview of the approach to learning to prioritize test cases for CAD software.

3.2. Feature Extraction

To train a ranking model for test case prioritization, we convert each functional unit
and each test case into a numeric vector. In many programming languages, a test case is a
specific function that can be directly run in the testing framework, such as Java test cases
in Java testing framework, JUnit [36]. This facilitates the conversion from source code to
numeric vectors. In our work, both functional units and test cases are converted into a
vector with the same dimensions.

Vector conversion. In our approach PriorCadTest, an off-the-shelf tool, CodeZhi, is
used to conduct the conversion. CodeZhi is a tool of qualifying Java source code (Project
CodeZhi, http://cstar.whu.edu.cn/pr/codezhi/, accessed on 20 May 2022).This tool can
extract features at the method level for Java programs. CodeZhi tries to find representative
features, which can distinguish methods well. It picked up 103 features as the metrics to
profile Java methods. For example, the CodeZhi tool profiles the function outset(double dist)
to get a feature vector with 103 dimensions as shown in Figure 3. A piece of compilable
source code is converted into a vector with 103 dimensions. Each dimension indicates a
manual-defined feature. The categories of features consist of features about statements,
variables, objects, methods, operators and operands, complexity, code blocks, nested
blocks, jumping statement, finals and statics, assignments, and distance. For example, the
number of if-conditions and the cyclomatic complexity of the source code can be viewed

http://cstar.whu.edu.cn/pr/codezhi/
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as two features in feature extraction [37]. We denote a vector of the functional unit as Mi
(1 ≤ i ≤ m), and m is the number of functional units. We denote a vector of the test case
as Tj (1 ≤ j ≤ n), and n is the number of test cases. Then, each of M1, M2, ..., Mm and
T1, T2, ..., Tn is a feature vector with 103 dimensions.

Vector of the function outset(double dist)

o u t s e t ( double d i s t ) , 0 , 0 , 6 , 6 , 1 , 1 2 , 0 , 0 , 6 , 6 , 6 , 1 2 , 6 , 6 , 0 , 1 , 6 , 0 ,
0 , 0 , 0 , 0 , 1 , 0 , 1 , 6 , 6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 . 0 0 0 0 0 , 0 . 0 0 0 0 0 , 1 . 0 0 0 0 0 , 0 . 0 0 0 0 0 , 0 . 0 0 0 0 0 , 0 . 0 0 0 0 0 , 0 . 0 0 0 0 0 , 1 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 6 , 0 , 0 , 0 , 2 , 2 , 2 . 0 0 0 0 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0

Figure 3. Example of the feature vector of a function outset(double dist).

Test coverage matrix. In the CAD software, a functional unit may be covered by
multiple test cases; and one test case may cover multiple functional units. We construct a
test coverage matrix to show the coverage relationship between test cases and functional
units. We run each test case and analyze test results to obtain a matrix C and Ci,j ∈ C in the
train set, where Ci,j indicates that the ith test case covers the jth functional unit. The value
of Ci,j is 1 if a test case Ti has covered a functional unit Mj, and 0 otherwise. Table 1 is an
example of a test coverage matrix.

Table 1. Example of a test coverage matrix. Ti indicate the i-th test case and Mj indicates the j-th
functional unit.

M1 M2 . . . Mm

T1 1 0 . . . 1

T2 1 1 . . . 0

. . . . . . . . . . . . . . .

Tn 0 1 . . . 1

Vectors with labels. In our work, each vector of a functional unit and each vector of a
test case are connected into a vector. This vector is a pair of the functional unit and the test
case, called a test pair in this paper. The vector contains 206 dimensions and indicates the
qualification of the coverage Ci,j ∈ C, where Ci,j indicates that the ith test case covers the
jth functional unit. To train a model that ranks test cases, we use a classifier to assign scores
to the test cases. In our work, we label a vector with 206 dimension as 1 if Ci,j = 1 and
the functional unit Mj contains a defect; otherwise, we label the vector as 0. Such labeling
shows that the value of the label indicates the test coverage of a functional unit with a
defect. Base on the labeling, each vector of the test coverage (indicating the coverage of
a functional unit by a test case) and its label are conducted. In the learning phase of our
approach, the labels are known as 1 or 0; in the ranking phase, the label is unknown, and
the ranking model will assign a score to each 206-dimension vector. Then test cases can be
ranked according to the assigned scores of test cases.

3.3. Learning Phase

Based on the test pairs (i.e., combined vectors) and their labels, we employ a machine
learning model to assign a score to each new test pair. In general, any classifier in machine
learning can be workable. In our experiment, we use six classifiers to conduct the evaluation.
We briefly describe the classifiers in our work.

The Classification and Regression Trees (CART) [38] represents a data-driven, model-
based, nonparametric estimation method that implements the define-your-own-model
approach. In other words, CART is a method that provides mechanisms for building a
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custom-specific, nonparametric estimation model based solely on the analysis of measure-
ment project data, called training data. The random forest [39] is a combination of tree
predictors such that each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest. The Support Vector Machine
(SVM) [40] is a binary classification model whose basic model is a linear classifier defined
by maximizing the interval on the feature space, which distinguishes it from a perceptron.
SVM also includes kernel tricks, which make them essentially nonlinear classifiers. The
learning strategy of SVM is interval maximization and can be formalized as a problem of
solving convex quadratic programming. The Bayesian network is ideal for taking an event
that occurred and for predicting the likelihood of a possible cause being the contributing
factor. For example, a Bayesian network could represent the probabilistic relationships
between diseases and symptoms. Convolutional neural network (CNN) [41] is a type of
feed-forward neural network that includes convolutional computation. CNN is one of the
representative algorithms of deep learning. Recurrent Neural Network (RNN) [42] is a type
of recursive neural network that takes sequential data as input. The evolutionary direction
of the sequence determines the next node of the recursion, and all nodes are connected in a
chain-like manner. Given a classifier model, the test pairs and their labels can be used to
build a concrete model that can be used in the follow-up ranking phase.

3.4. Ranking Phase

In the learning model, a classifier is built to show the coverage of functional units that
contain defects. In the ranking phase, a new functional unit is connected with each test case
to conduct a vector of 206 dimensions. This new vector (i.e., a test pair of the functional
unit Mj and the test case Ti) has no label, and the ranking model can assign a score to the
vector. This score indicates the probability that the test case can cover potential defects.
Then all the test cases can be ranked as a sequence based on the assigned scores.

In the ranking phase, the score of one test case Ti is defined as the average learned
probability of finding defects in all functional units by the test case. The definition is shown
as follows:

score(Ti) =
∑m

j=1Pr(Mj, Ti)

m
(1)

where Mj is the j-th functional unit, m is the number of all functional units under test, and
Pr(Mj, Ti) is the learned probability for a test pair of the functional unit Mj and the test
case Ti by the ranking model. A high value of score(Ti) means the i-th test case is likely to
find defects.

4. Experimental Setup

In this section, we describe the research questions, the data preparation, and the
evaluation metrics.

4.1. Research Questions

To evaluate the proposed approach, we design two research questions (RQs) to conduct
the evaluation. In RQ1, we compare the effectiveness of machine learning models (including
deep learning models) that could be embedded in our approach; In RQ2, we evaluate the
ability of test case prioritization.

• RQ1. Can we find a better ranking model to prioritize test cases for CAD software?
To save the time cost of defect detection, developers want to find out defects within
a limited time. That is, developers need to automatically prioritize test cases before
executing them. In this paper, we design RQ1 to explore the effectiveness of machine
learning models in the model of test case prioritization.
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• RQ2. How effective is the proposed approach in test case prioritization in testing
CAD software? In CAD software, a single test case may cover multiple functions, and
a single function may be covered by multiple test cases. Therefore, it is difficult for
developers to determine which test case should be executed first. We design RQ2 to
evaluate the ability of test case prioritization in testing CAD software.

4.2. Data Preparation and Implementation

Project under evaluation. To investigate the ranking of test cases in CAD software,
we select the most widely-used open-source CAD software, Project ArtOfIllusion, as
an experimental dataset. We select Project ArtOfIllusion based on the following rea-
sons. First, to conduct the experiment, we need an open-source project; second, our
approach relies on the conversion from source code to vector and the tool for such conver-
sion, i.e., CodeZhi, is designed for Java programs; third, we tend to select a well-known
CAD software in the evaluation. Based on the above three reasons, we check the CAD
software written in Java in GitHub (Github, http://github.com/, accessed on 16 May
2022) and then select the one candidate, Project ArtOfIllusion. (Source code of Project
ArtOfIllusion, http://github.com/ArtOfIllusion/ArtOfIllusion/, accessed on 16 May
2022). Project ArtOfIllusion is a free, multi-platform modeling, animation, and ren-
dering suite written in Java programming language. ArtOfIllusion features a simple
and streamlined interface to a broad array of powerful features, including key-frame-
based and pose-based animations as well as a built-in raytracer. There are 15 modules
in ArtOfIllusion, including animation, icons, image, keystroke, material, math, object,
procedural, script, texture, titleImages, ui, unwrap, util, and view. There are seven modules
with pre-defined test cases, i.e., module animation, math, object, procedural, raytracer,
texture, and util. We use the source code and test cases in these seven modules. To increase
the diversity of the datasets, we created a new dataset based on 5-fold cross validation [43].
We randomly divided all the files in the seven modules into five folds. Table 2 shows
the summary of two datasets in Project ArtOfIllusion, including Dataset 1 with seven
modules and Dataset 2 with five folds. Due to the limited development budget allocated
for open-source projects, some of functions are not directly covered by manually-written
test cases.

Table 2. Dataset information with functions and test cases in Project ArtOfIllusion. # Functions
indicates the number of functional units in the module. # Test Cases indicates the number of test cases
that are manually-written for testing the module.

Module #Functions #Test Cases

math 192 11
object 897 43

procedural 577 12
animation 994 19
raytracer 0 † 2
texture 459 2

util 65 2

Sum 3184 91
† Module raytracer only provides test cases that examine the functional behaviors of multiple modules. Thus,
there are no functions in the module.

Defect seeding. We employ Project ArtOfIllusion in the evaluation. To conduct the
scenario of triggering defects, we follow the existing work [44] and use program mutation to
automatically seed defects in the source code of Project ArtOfIllusion. Program mutation
is a technique of modifying the source code in a target program to create a defective
program. The purpose of program mutation is to obtain a program with seeded defects [45].
To seed defects in the source code, we use a simple way to mutate the original source
code. We select all functions without return values as the mutation candidates and apply

http://github.com/
http://github.com/ArtOfIllusion/ArtOfIllusion/
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mutation rules that remove 30% of the statements in functions. Such kinds of functions
are considered as defective, and the other functions are considered as non-defective. Such
mutation is easy to be implemented and can keep the programs compilable without any
manual effort. The program mutation is implemented based on the Spoon tool (Spoon,
http://spoon.gforge.inria.fr/, accessed on 17 May 2022). to remove the source code from
the original code base. Figure 4 shows an example of seeding a defect via program mutation.
The two code snippets are a function outset() before and after program mutation. The
Mutation Code removes maxy += dist (line 7) and maxz += dist (line 8) from the Original
Code.

Original Code

1 public f i n a l void o u t s e t ( double d i s t )
2 {
3 minx −= d i s t ;
4 miny −= d i s t ;
5 minz −= d i s t ;
6 maxx += d i s t ;
7 maxy += d i s t ;
8 maxz += d i s t ;
9 }

Mutation Code

1 public f i n a l void o u t s e t ( double d i s t )
2 {
3 minx −= d i s t ;
4 miny −= d i s t ;
5 minz −= d i s t ;
6 maxx += d i s t ;
7 }

Figure 4. Example of seeding a defect in a function outset().

Dataset. We conducted cross-validation experiments to evaluate the proposed ap-
proach. In the seven modules of Project ArtOfIllusion, we selected four modules with
over 10 test cases as the test set of each round of evaluation. Then, module animation, math,
object, and procedural are, respectively, selected as the test set; the remaining six modules
are formed the train set. However, in module animation, no defective functions are covered
by manually written test cases. Then, in the follow-up evaluation, we do not consider
module animation as a test set. Finally, three rounds of cross-validation experiments are
conducted. In the five folds of Project ArtOfIllusion, we used each fold in turn as the test
set and the remaining four folds as the train set, and conducted five rounds of experiments.
So we conducted eight rounds of experiments from different datasets in the whole Project
ArtOfIllusion. Table 3 shows the data description of the train sets and the test sets of
eight rounds of evaluation.

Implementation. We implemented our approach in Spoon, Codezhi, and JaCoCo.
Spoon is used in program mutation; CodeZhi is used in feature extraction; JaCoCo is
used to collect test coverage and to filter out invalid mutants (JaCoCo, http://github.com/
jacoco/jacoco/, accessed on 20 May 2022).

http://spoon.gforge.inria.fr/
http://github.com/jacoco/jacoco/
http://github.com/jacoco/jacoco/
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Table 3. Data information of training sets and test sets. We show the division of training sets and
test sets of eight rounds of evaluation. # Defective functions covered by tests is the number of defective
functions that are covered by test cases.

Dataset Module or Fold as Test Set Functions and Test Cases Training Set Test Set

math

# Functions 2992 192

# Defective functions 1488 66

# Test Cases 80 11

# Defective functions covered by tests 69 8

object

# Functions 2287 897

# Functions with seeding defects 1160 394

# Test Cases 48 43

# Defective functions covered by tests 36 33

Dataset 1

procedural

#Functions 2607 577

based on # Functions with seeding defects 1217 337

modules # Test Cases 79 12

# Defective functions covered by tests 45 24

# Functions 2190 994

animation # Functions with seeding defects 1051 503

(not used # Test Cases 72 19

in evaluation) # Defective functions covered by tests 69 0

Fold 1

#Functions 2548 636

# Functions with seeding defects 1431 123

# Test Cases 91 91

# Defective functions covered by tests 64 5

Fold 2

#Functions 2548 636

# Functions with seeding defects 11329 1431

# Test Cases 91 91

# Defective functions covered by tests 59 10

Fold 3

#Functions 2548 636

Dataset 2 # Functions with seeding defects 1267 287

based on # Test Cases 91 91

folds # Defective functions covered by tests 56 13

Fold 4

#Functions 2548 636

# Functions with seeding defects 1151 403

# Test Cases 91 91

# Defective functions covered by tests 50 19

Fold 5

#Functions 2544 660

# Functions with seeding defects 1038 516

# Test Cases 91 91

# Defective functions covered by tests 47 22

4.3. Evaluation Metrics

We evaluate the effectiveness of our approach with two sets of metrics, including
F-score as well as Accuracy to show the performance of classifiers and APFD to show the
performance of ranking test cases.

Evaluating the classifiers in test case prioritization. We measured the evaluation
of classifiers in the ranking models in test case prioritization with typical measurements:
Precision, Recall, F-score, and Accuracy. Those measurements are defined based on True
Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) for test
pairs, i.e., a vector that combines a functional unit and a test case.
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• TP: # of defective test pairs that are predicted as defective.
• FP: # of undefective test pairs that are predicted as defective.
• FN: # of defective test pairs that are predicted as undefective.
• TN: # of undefective test pairs that are predicted as undefective.

Then, we defined the metrics in the evaluation of prediction as follows,

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F-score =
2× Precision× Recall

Precision + Recall
(4)

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

where Precision is the proportion of returned results that are truly correct; Recall is the
proportion of the truly correct number in all retrieved results in the test set; F-score is
the trade-off between Precision and Recall; and Accuracy is the proportion of the correct
number in all results in the whole dataset.

Evaluating the ranking of test cases in test case prioritization. Suppose the program
under test contains k defects and the set of test cases contains n test cases. We use the
Average Percentage of Fault Detect (APFD) [46] to evaluate the effectiveness of the
ranking of test cases generated by each of the ranking models.

APFD = 1− TF1 + TF2 + TF3 · · ·+ TFs

sn
+

1
2n

(6)

where TFk denotes the test case in the ranking of test cases that first covers the kth defect in
the program. That is, a high value of the APFD metric indicates the defects are defective in
the early stage.

5. Experimental Results

In this section, we present the evaluation results and empirically answer the two RQs
about the effectiveness.

5.1. RQ1. Can We Find a Better Ranking Model to Prioritize Test Cases for CAD Software?

The goal of our work PriorCadTest is to re-rank test cases to trigger defects early. This
can reduce the time cost of frequently running test cases. PriorCadTest relies on a ranking
model, which is a binary classifier in machine learning. In RQ1, we check the effectiveness
of six different classifiers based on the dataset of Project ArtOfIllusion.

Method. The evaluation method in the section is to compare the results of the pro-
posed approach, PriorCadTest, when we change the machine learning algorithms (in-
cluding deep learning algorithms). First, we extracted functions and their corresponding
test cases from Project ArtOfIllusion and constructed a test coverage matrix between
functions and test cases; second, we vectorized functions and test cases using the CodeZhi
tool and merged the functions and test cases according to the test coverage matrix; finally,
we trained six learning-based ranking models, respectively. The six ranking models are the
decision trees (CART), the random forest (RF), the SVM, the Bayesian networks (BN), the
convolutional neural networks (CNN), and the recurrent neural network (RNN).

Result and analysis. We trained six ranking models and evaluated the effectiveness
using Precision, Recall, F-score, Accuracy, Time, and Memory. Table 4 shows the evaluation
results on the six ranking models for eight rounds of evaluation. As shown in Table 4, the
CART and the random forest outperform the SVM, the Bayesian networks according to the
values of four evaluation metrics in all the test sets. As shown in Table 4, the CART and
the random forest outperform the SVM, the Bayesian networks, the CNN, and the RNN
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according to the values of four evaluation metrics (Precision, Recall, F-score, and Accuracy)
in all the test sets. When the SVM model ranks the test cases, it predicts all functions as
non-defective functions. Thus, the values of Precision and F-score are not available (N/A)
for the SVM model when we use Module object as the test set. The values of Precision and
F-score are N/A for the SVM model, the CNN model, and the RNN model when we use
Module object and Fold 4 as the test set. In terms of Precision, the CART model is lower
than the random forest model in all test sets. This shows that the random forest model is
better at truly predicting defects for three different test sets. The random forest model does
not perform well in terms of memory consumption and time consumption based on two
different datasets. In terms of Recall, the CART model is higher than the random forest
model. The CART model is also slightly higher than the random forest model when we
compare the values of F-score and Accuracy. The evaluation metrics of the random forest
model also performs well in the evaluation.

Conclusion. The main purpose of this paper is to trigger defects in CAD software
by test cases in the early stage. The results in Table 4 show that the CART model and the
random forest model are better than the other ranking models.

5.2. RQ2. How Effective Is the Proposed Approach in Test Case Prioritization in Testing
CAD Software?

We evaluate whether the ranking of test cases can trigger the defects early. During
testing the CAD software, given the same set of test cases, if a sequence of test cases (i.e., a
ranked list of test cases) can trigger defects earlier than another sequence of test cases, we
consider the earlier sequence is better. The effectiveness of such sequences of test cases can
be evaluated with the pre-defined APFD metric [46]. A high value of APFD indicates an
effective sequence of test case ranked. We designed RQ2 to evaluate the test case sequences.

Method. In the comparison, we employed the random ranking of test cases as a
baseline. We validated the test cases, respectively, for the CART, the random forest, the
SVM, the Bayesian networks, the CNN, and the RNN. In our study, the number of triggered
defects in top-10, top-20, and top-30 test cases of each test case sequence is reported as
a metric to evaluate the capability of the ranking model. A high value of the number of
defects detected in top-k indicates that the test case ranking performs well.

Result and analysis. Table 5 shows the evaluation results of ranking test cases for
the CAD software. Table 5 demonstrates that among the top-10 test cases. The Bayesian
networks can find the least number of defects and the random forest detects the most
defects from dataset one. In the top-20 test cases, the random ranking finds the least
number of defects and the random forest model detects the most defects for most modules,
but the values are the same in module procedura, module math, and part 2. The reason is
that the number of defective functions is less than 20. In the top-30 test cases, the random
ranking model detects the least number of defects and the random forest model detected
the most defects for most modules, but the values are equal in module procedura, module
math, and Fold 2. The number of defective functions is less than 30. Among the five models
in comparison, the random forest model shows the largest APFD value and the random
ranking model shows the smallest value.

To show details, we use Table 6 to directly present one example of the top-10 results of rank-
ing test cases by the random forest model. As shown in Table 6, point_outside_influence_
radius_is_0 and point_inside_radius_is_greater_than_1 have the highest value (0.4605)
among the top-10 test cases. This means that these two test cases are more likely to find defects
than the other test cases.
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Table 4. Results of six ranking models under six evaluation metrics. Precision is the proportion
of returned results that are truly correct; Recall is the proportion of the truly correct results in all
retrieved results from the test set; F-score is the trade-off between Precision and Recall; Accuracy is
the proportion of correct results in all results from the whole data set; Time is the time consumption on
the test set; and Memory is the memory consumption on the test set. N/A indicates the denominator
is zero.

Test Set Ranking Model Precision Recall F-Score Accuracy Time (ms) Memory (MB)

math

CART 87.31% 88.54% 87.93% 87.03% 37.49 200.99
RF 91.14% 81.62% 86.12% 85.97% 30.23 246.34
SVM 53.33% 100% 69.56% 53.33% 29.17 294.53
BN 22.86% 0.51% 0.99% 46.03% 27.96 251.96
CNN 53.33% 100% 69.56% 53.33% 41.85 353.83
RNN 53.33% 100% 69.59% 53.33% 20.01 275.79

object

CART 88.12% 84.50% 86.28% 85.66% 126.66 710.58
RF 89.45% 79.09% 83.96% 83.88% 202.42 826.45
SVM N/A 0% N/A 46.67% 117.87 558.3
BN 64.01% 21.82% 32.55% 51.76% 151.64 696.19
CNN N/A 0% N/A 46.67% 206.12 897.85
RNN N/A 0% N/A 46.67% 285.83 768.95

procedural

CART 92.89% 83.25% 87.80% 87.67% 40.91 218.17
RF 92.43% 80.22% 85.89% 85.95% 35.94 280.97
SVM 53.33% 100% 69.56% 53.33% 60.62 219.94
BN 22.58% 0.5% 0.97% 46.03% 63.37 288.06
CNN 53.33% 100% 69.56% 53.33% 46.21 338.44
RNN 53.33% 100% 69.59% 53.33% 74.97 193.84

Fold 1

CART 29.78% 43.56% 35.38% 43.71% 65.31 273.88
RF 50.99% 92% 65.61% 65.88% 75.31 335.16
SVM 35.38% 100% 52.26% 35.38% 72.88 301.46
BN 65.04% 71.11% 67.94% 76.26% 30.17 189.84
CNN 35.38% 100% 52.26% 35.38% 41.64 257.77
RNN 35.38% 100% 52.26% 35.38% 36.03 331.65

Fold 2

CART 42.06% 79.67% 55.06% 74.84% 78.34 320.61
RF 47.27% 63.41% 54.17% 79.25% 62.81 169.62
SVM 19.34% 100% 32.41% 19.34% 69.69 284.75
BN 16.92% 17.89% 17.39% 67.19% 35.03 178.8
CNN 19.34% 100% 32.41% 19.34% 75.26 249.2
RNN 19.34% 100% 32.41% 19.34% 41.59 226.92

Fold 3

CART 55.56% 60.98% 58.14% 60.38% 77.24 275.33
RF 59.75% 84.32% 69.94% 67.3% 38.26 338.93
SVM 45.13% 100% 62.19% 45.13% 35.02 175.69
BN 20.97% 18.19% 19.44% 32.23% 72.33 389.09
CNN 45.13% 100% 62.19% 45.13% 72.9 336.95
RNN 45.13% 100% 62.19% 45.13% 59.32 189.21

Fold 4

CART 41.04% 21.59% 28.29% 30.66% 48.16 278.7
RF 58.96% 44.91% 50.99% 45.28% 51.04 282.38
SVM N/A 0 N/A 36.64% 32.36 380.15
BN 7.27% 2.98% 4.23% 14.47% 60.11 226.24
CNN N/A 0 N/A 36.64% 35.28 185.58
RNN N/A 0 N/A 36.64% 63.32 217.7

Fold 5

CART 73.53% 38.99% 50.96% 39.84% 42.56 221.22
RF 87% 80.9% 83.84% 75% 32.09 248.61
SVM 80.63% 100% 89.27% 80.63% 70.12 249.8
BN 53.06% 15.2% 23.64% 21.25% 44.91 353.38
CNN 80.63% 100% 89.27% 80.63% 33.8 294.55
RNN 80.63% 100% 89.27% 80.63% 65.31 253.19
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Table 5. Evaluation results of the six models and the baseline of random rankings. We show the
result in top-10, top-20, top-30, and the APFD. The top-k metric indicates the number of defects that
are found by the top k test cases in an ordered sequence of test cases. The zero value in the evaluation
metrics means that no defective method is detected by the test cases.

Data Set Test Set Ranking Model Top-10 Top-20 Top-30 APFD

Dataset 1

math

CART 8 8 8 59.09%
RF 8 8 8 85.23%
SVM 8 8 8 61.36%
BN 5 8 8 71.59%
CNN 8 8 8 61.36%
RNN 8 8 8 61.36%
RR 7 8 8 48.86%

object

CART 14 19 27 65.29%
RF 17 29 33 72.83%
SVM 16 23 27 69.10%
BN 13 21 30 65.57%
CNN 16 23 27 69.10%
RNN 16 23 27 69.10%
RR 15 16 16 53.66%

procedural

CART 24 24 24 70.49%
RF 24 24 24 80.21%
SVM 24 24 24 84.38%
BN 7 24 24 90.63%
CNN 24 24 24 84.38%
RNN 24 24 24 84.38%
RR 23 24 24 48.96%

Dataset 2

Fold 1

CART 8 8 10 66.5%
RF 9 10 10 73.03%
SVM 8 9 10 63.66%
BN 8 8 9 67.54%
CNN 8 9 10 63.66%
RNN 8 9 10 63.66%
RR 7 8 8 58.11%

Fold 2

CART 5 5 5 72.9%
RF 5 5 5 73.38%
SVM 5 5 5 73.5%
BN 3 5 5 62.07%
CNN 5 5 5 73.5%
RNN 5 5 5 73.5%
RR 4 5 5 69.72%

Fold 3

CART 6 9 12 66.14%
RF 8 12 13 73.51%
SVM 6 10 13 67.12%
BN 7 11 13 68.94%
CNN 6 10 13 67.12%
RNN 6 10 13 67.12%
RR 5 8 11 58.39%
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Table 5. Cont.

Data Set Test Set Ranking Model Top-10 Top-20 Top-30 APFD

Fold 4

CART 9 15 18 69.23%
RF 11 17 19 71.37%
SVM 8 14 17 63.25%
BN 8 13 16 61.51%
CNN 8 14 17 63.25%
RNN 8 14 17 63.25%
RR 9 13 16 65.78%

Fold 5

CART 11 15 19 67.83%
RF 13 18 22 80.21%
SVM 11 16 20 73.22%
BN 9 12 16 64.44%
CNN 11 16 20 73.22%
RNN 11 16 20 73.22%
RR 7 11 13 57.64%

Table 6. Top-10 of results of ranking test cases based on the random forest model. Function is the
name of a test case. Score is the average probability that a test case is identified in the model. A higher
value indicates that the test case is more likely to trigger a defect.

Rank Function Score

1 point_outside_influence_radius_is_0 0.4605
2 point_inside_radius_is_greater_than_1 0.4605
3 gradient_estimate_within_delta 0.4538
4 point_between_radius_and_influence_is_between_0_and_1 0.4533
5 gradient_estimate_at_influence_edge 0.4521
6 testDuplicateAll 0.4476
7 testDuplicateWithTracks 0.4467
8 testCopyInfo 0.4434
9 setObjectInfoMaterial 0.4432
10 testDuplicateWithNewGeometryAndTracks 0.4426

Conclusion. Experimental results show that the random forest model is able to find
the highest number of defects in the top-k metric compared with the other six models. This
means that the random forest model is more capable of ranking test cases. Therefore, we
consider that the random forest should be an effective choice for finding defects.

6. Discussion

In the paper, we propose an approach to learning to prioritize test cases for CAD
software. We present the discussions as follows. We present the threats as follows.

Generality. We evaluated the effectiveness of our approach PriorCadTest with an open-
source CAD software, Project ArtOfIllusion. Experimental results show that the proposed
approach to test case prioritization is better than the current practice. In the evaluation, Project
ArtOfIllusion is implemented in the Java programming language. However, our proposed
approach can be applied to test case prioritization in CAD projects that are written in other
programming languages, like C or C#. The proposed approach can be generalized via the
implementation on qualifying functions in other programming languages.

Industrial practice. In current industrial practice, the test case prioritization in de-
velopment of CAD software is immature. Most of the CAD projects directly apply the
whole test suite to conduct the testing process. This is expensive since the version update is
common in the development of CAD software. The basic goal of test case prioritization in
this paper can be viewed as a trial on reducing the time cost of testing in CAD software.
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7. Conclusions and Future Work

In this paper, we propose an approach to learning to prioritize test cases for CAD
software, called PriorCadTest. Our proposed approach combines vectors of test cases
and vectors of functional units according to the coverage matrix. The combined vectors
are employed as the input to train a random forest classifier to category test cases. For a
new module or component under test, the trained model is used to assign a score to each
candidate test case. In the evaluation, we employ an open-source real-world CAD software,
Project ArtOfIllusion as the dataset.

In future work, we plan to apply our approach to CAD software in other programming
languages. We want to collect defect data from other CAD software to show the results in
the evaluation. The approach in this paper aims to test functional units in the source code.
In CAD software, a single function may be combined into a mixture of several application
scenarios. For example, a function could be a cylindrical model, a conical model, a ball
model, or their combinations. In future work, we plan to explore the construction of test
coverage matrix across functional units. Improving the effectiveness of our approach is
also a direction for future work. Our proposed approach combines the test cases with
function features based on the test coverage matrix. The test coverage matrix may be a
sparse matrix, which may take a long running time in the model training. Thus, we plan
to explore other data structures to replace the test coverage matrix to reduce the space
complexity. Meanwhile, to save the execution time of PriorCadTest, we will parallel the
implementation of our approach in future work. We plan to explore to combine the random
forest model with new strategies to save on the time and memory cost.
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