
Citation: Colmenero, F.; Timón, V.

ZIF-75 under Pressure: Negative

Linear Compressibility and

Pressure-Induced Instability. Appl.

Sci. 2022, 12, 10413. https://doi.org/

10.3390/app122010413

Academic Editors: Stephen

David Worrall and Julia Linnemann

Received: 2 October 2022

Accepted: 13 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Communication

ZIF-75 under Pressure: Negative Linear Compressibility and
Pressure-Induced Instability
Francisco Colmenero 1,2,* and Vicente Timón 2

1 Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid,
28040 Madrid, Spain

2 Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas,
28006 Madrid, Spain

* Correspondence: francolm@ucm.es

Featured Application: The zeolitic imidazolate framework ZIF-75 exhibits the negative linear
compressibility effect under small applied pressures with multiple potential applications.

Abstract: The behavior of the crystal structure of the zeolitic imidazolate framework ZIF-75 under
pressure was studied by means of periodic density functional theory methods. Experimentally, it was
shown that this material is tetragonal, space group I41/a at room temperature. However, according
to the calculations, at zero temperature this material is monoclinic, space group C2/c. Irrespective of
the symmetry of the material, the results show that ZIF-75 exhibits a negative linear compressibility
effect and is unstable under relatively small applied pressures of the order of 0.1 GPa.

Keywords: zeolitic imidazolate frameworks; ZIF-75; pressure-induced instability; negative linear
compressibility; periodic density functional theory

1. Introduction

Zeolitic imidazolate frameworks (ZIF) [1–4] are a unique class of metal–organic frame-
works (MOFs) [5]. MOF materials are important porous coordination polymers synthesized
from metal building units bridged by organic ligands. ZIFs are constructed from tetra-
hedrally coordinated cations, typically zinc or cobalt, linked by imidazolate derivatives.
These compounds have exceptional properties, such as their large chemical and thermal
stability [1], and unusual structural properties, such as their large pore size and accessible
surface. These characteristics mean that these materials are appropriate for a large series
of technological and industrial applications, such as gas and compound adsorption [6–11],
separation [4,7,12–15], and storage [10,16,17]; catalysis [4,7,18–22]; drug delivery [23];
and sensor and device development [24–28]. Furthermore, these compounds are highly
flexible and sensitive to the action of pressure [29–45]. These properties make them ap-
propriate for a large spectrum of additional applications [23,46–49], such as in mechanical
damping and mechanical energy storage [50–57], and may enhance their applicability
for other applications, such as compound adsorption and separation and catalysis. This
is because the deformation or their pore structure brought by the action of the pressure
may increase their sorption capacity and selectivity and facilitate access to the binding
sites [9–11,29–32,45,58,59].

The crystal structures resulting from the linkage of the metal cations and imidazolate
ligands in ZIFs [1–4] result in porous structures with topologies analogous to those of MOFs,
aluminosilicates, and zeolites [5]. The application of high pressures on highly porous ma-
terials also has importance in synthetic chemistry since it has allowed the design of new
advanced functional materials such as amorphous materials, glasses, and crystalline com-
pounds from structural rearrangements and phase transitions induced by pressure [60–66].
Therefore, the detection of pressure-induced instabilities in porous materials is also of
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practical importance. The pressure-induced amorphization in ZIF-8 has long been inves-
tigated [11,29,30,32,38,44], and the detection of pressure-induced phase transitions and
amorphizations in other ZIF materials could be extremely interesting. Additional potential
applications for microporous materials are possible because these materials frequently
appear to exhibit the negative linear compressibility [45,67–83] and negative Poisson’s
ratio [81,84–87] phenomena. These phenomena [88–91] have multiple potential applica-
tions in the development of ultrasensitive pressure-sensing devices [88,92], pressure-driven
actuators [92,93], optical telecommunication cables [88], artificial muscles [94], and body
armor [92,95], as well as sound attenuation [96], superconductivity modulation [97], ferro-
electric enhancement [88], and transmission stabilization [98]. However, for the evaluation
of the suitability of these compounds for practical, specific applications, the behavior of
their structures under the effect of pressure must be investigated. The study of the mechani-
cal properties of microporous compounds has been the subject of a large amount of research
in recent decades [29–45,67–87]. The first principles solid-state methodology have been
satisfactorily applied for this purpose and have enhanced our knowledge of the mechanical
properties of these materials since they give access to the full tensorial elasticity of these
materials [34–37,67–70,81–83,86,87,99–108]. The results obtained using the state-of-the-art
theoretical methodology are consistently in agreement with the experiment, even for the
theoretical study of complex anomalous negative mechanical phenomena [81–83,102–108]
and for crystal structure determination [109–113]. For example, the negative area com-
pressibility of silver oxalate, predicted using first-principles methods [107], was recently
experimentally verified [108]. The ZIF material, ZIF-75, was synthetized for the first time
by Tian et al. [2]. Its structure shows the presence of large structural channels; therefore, it
should be extremely useful in various applications due to the large pore space and accessi-
ble surface. However, as far as we know, it has not been used in practical applications and
its behavior under pressure has not been investigated.

2. First-Principles Methods

The crystal structure and the behavior of the zeolitic imidazolate framework ZIF-
75 [2,3] (CCDC code HIFVUO and deposition number 254162) under pressure were mod-
eled by employing periodic density functional theory methods using plane-wave-basis sets
and pseudopotentials [114]. The CASTEP (Cambridge Serial Total Energy Program) com-
puter program [115], belonging to the Materials Studio program suite [116], was utilized
in all the calculations. The specific energy density functional employed in the computa-
tions is the Perdew–Burke–Ernzerhof (PBE) functional [117] supplemented with Grimme
dispersion corrections [118], as implemented in the CASTEP code. The pseudopotentials
utilized for all the atoms in the unit cell of ZIF-75 were standard norm-conserving pseu-
dopotentials [119] provided in the CASTEP code (00PBE-OP type). The calculations were
performed using demanding calculation parameters: a cut-off for the kinetic energy of
the plane waves of 1000 eV and a Monkhorst–Pack k-mesh [120] with a grid density of

0.4 Å
−1

. The full-geometry optimization, including the atomic positions and unit cell
lattice parameters, was performed using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [121]. All the optimizations, including those of ZIF-75 under pressure, were per-
formed with stringent convergence thresholds in the variation of the total energy, maximum
atomic displacement, maximum atomic force, and maximum stress: 2.5× 10−6 eV/atom,
2.5 × 10−4 Å, 0.005 eV/Å, and 0.0025 GPa, respectively. The geometry optimizations
were performed using the crystal structure reported by Tian et al. [2] as a starting point,
and, as customary, they were performed by relaxing all symmetry constraints for the
verification of the adopted crystallographic space symmetry group. Since the unit cell
of ZIF-75 is very large, containing 272 atoms, the symmetry-unrestricted full-geometry
optimizations are computationally expensive. The X-ray powder-diffraction patterns [122]
of ZIF-75 were derived from the computed and experimental crystal structures using soft-
ware REFLEX included in the Materials Studio program suite [116] using CuKα radiation
(λ = 1.540598 Å). The elasticity constants, that is, the elements of the elastic tensor of



Appl. Sci. 2022, 12, 10413 3 of 14

ZIF-75, were determined in the optimized crystal structure using the finite deformation
method (FDM) [123]. This technique is highly efficient and reliable for describing the
elastic response of materials and has been employed successfully in many previous works
concerning uranium-containing materials [109–113] as well as organic crystals [102–104]
and metal–organic compounds [81–83,105–107,124]. In particular, the elasticity of a wide
variety of MOFs and microporous materials has been studied [81–83].

3. Results
3.1. Crystal Structure

The computed crystal structure of ZIF-75 is shown in Figure 1. According to Tian
et al. [2], ZIF-75 is tetragonal, space group I41/a. The composition of the unit cell of the
framework is Zn(Im2), where the imidazolate ligand has molecular formula Im ≡ C3H2N2.
The structure of the imidazolate ligand is shown in Figure 2. According to Phan et al. [3]
and the Reticular Chemistry Structure Resource (RSCR) [125], ZIF-75 belongs to GIS topology
and has the zeolite code GIS. The size of the diameter of the largest sphere that will fit
into the channels without contacting the framework atoms is 8.6 Å. As can be observed,
the crystal structure of ZIF-75 contains large empty channels expanding along the [1 0 0]
direction of two types. The main channels are shown at the center of Figure 1, and the
secondary ones are shown on the left- and right-hand sides of the main channels. The
main channels are very large, having horizontal and vertical dimensions of ω = 10.6 and
h = 7.0 Å, respectively, as measured by the distance between opposite hydrogen atoms (see
Figure 1).
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Figure 1. View of crystal structure of ZIF-75 from [1 0 0] crystallographic direction. The meaning of
the horizontal and vertical dimensions of the main channels in ZIF-75, ω and h, is also explained in
the figure. Color code: Zn—green; N—blue; C—gray; H—white.
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Figure 2. The structure of the imidazolate ligand. The ligand is shown within an orange box. As
observed in the figure, the ligand may link with other carbon atoms through the N atoms. Color code:
N—blue; C—gray; H—white.

The computed lattice parameters of ZIF-75 are shown in Table 1. As can be seen in
the second row of Table 1, the unit cell parameters of ZIF-75 are well-reproduced despite
the complexity and large size of the unit cell of this framework material. The computed



Appl. Sci. 2022, 12, 10413 4 of 14

unit cell volume overestimates the experimental one by 11.4%. The inclusion of dispersion
corrections is fundamental for ZIF-75 as the uncorrected PBE functional (first row of
Table 1) leads to an extremely large overestimation of the lattice parameters. The PBE
unit cell volume overestimation is huge, at 32.4%. As mentioned in the Section 2, the
geometry optimizations were in fact performed first, relaxing all symmetry constraints.
The tetragonal symmetry was broken and, by finding the space symmetry of the resulting
optimized structure, a monoclinic symmetry, space group (C2/c), was found. The unit
cell parameters of the fully optimized monoclinic structure are given in the third row of
Table 1. This structure is reported in the Supplementary Material of this paper as a file in
the CIF (crystallographic information file) file format. While the bonding structure in the
monoclinic structure is analogous to that of the tetragonal one, the difference in the unit cell
volumes is about 8 Å

3
and the monoclinic structure is more stable than the tetragonal one

with a difference of enthalpy of about 3.9 Kcal·mol−1. We cannot claim that the tetragonal
space symmetry of ZIF-75 is not correct since the structure was determined by Rietveld
refinement from powder X-ray diffraction data at room temperature (293 K), and the results
of the present calculations refer to zero temperature. The Rietveld refinement of X-ray
diffraction data at low temperatures could be used to verify the theoretical result.

Table 1. Computed unit cell parameters of ZIF-75.

Parameter a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) Vol. (Å
3
) ρ (g/cm3)

PBE (I41/a) 19.7016 19.7016 19.3796 90.0 90.0 90.0 7522.2774 0.7047
PBE + Disp

(I41/a) 19.1356 19.1356 19.6719 90.0 90.0 90.0 7203.3094 0.7359

PBE + Disp
(C2/C) 26.6209 19.7885 19.1182 90.0 134.32 90.0 7212.9116 0.7350

Exp. [2]
(I41/a) 18.389 (4) 18.389 (4) 19.129 (5) 90.0 90.0 90.0 6469 (2) 0.819

The volume and enthalpy differences for the structures having tetragonal (I41/a) and
monoclinic (C2/c) structures of ZIF-75 are rather small. The description of the behavior
under pressure of ZIF-75 in the full range of pressure studied (from P = −1.0 to 1.0 GPa)
is analogous. Therefore, the results provided in the next sections were obtained using the
tetragonal structure, but it must be emphasized that essentially the same conclusions were
obtained independently of the space symmetry employed.

The X-ray diffraction patterns of ZIF-75 were obtained using tetragonal experimen-
tal [2] and theoretical structures, employing CuKα radiation (λ = 1.540598 Å). The resulting
patterns are compared in Figure 3. As observed, both patterns are in excellent agreement. A
more detailed comparison of the positions of the most important reflections in both patterns
is given in Table S1 of the Supplementary Materials. As can be seen, the differences in these
positions are small, with the largest difference being found for reflection [1 5 4], ∆ = 1.11◦.
The X-ray diffraction pattern of the computed monoclinic structure was also determined.
A comparison of the patterns associated with the computed monoclinic and tetragonal
crystal structures is given in Figure S1 of the Supplementary Materials. Both patterns are
also in good agreement and are consistent with the pattern derived from the experimental
tetragonal structure.
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Figure 3. Comparison of the X-ray diffraction patterns of ZIF-75 derived from the experimental [2]
and theoretical tetragonal crystal structures.

3.2. Elasticity Tensor and Mechanical Stability

The computed elasticity tensor for ZIF-75 is given in Equation (1). Crystals of the
tetragonal space group I41/a belong to the tetragonal (II) class (4/m). In this case, the elastic
tensor has only 11 nonvanishing elastic constants, of which only six are independent [126]
(C11 = C22; C44 = C55; C13 = C23; C16 = −C26).

C =



5.22 3.45 10.17 0.00 0.00 0.04
3.45 5.22 10.17 0.00 0.00 −0.04

10.17 10.17 13.35 0.00 0.00 0.00
0.00 0.00 0.00 0.36 0.00 0.00
0.00 0.00 0.00 0.00 0.36 0.00
0.00 0.00 0.00 0.00 0.00 −0.29

 (1)

For a given material, the general Born condition for mechanical stability is that the
corresponding elastic matrix should be positive definite [126], i.e., all the eigenvalues of the
elastic matrix should be positive. For crystals belonging to the tetragonal (II) class (4/m),
there is a simple set of equivalent conditions for mechanical stability [126]:

C11 > |C12| (2)

2·C2
13 > (C11 + C12) (3)

C44 > 0 (4)

2·C16 > C66(C11 − C12) (5)

The last condition is not satisfied; therefore, the crystal structure of ZIF-75 is not me-
chanically stable. The reason for the mechanical instability of ZIF-75 will be unveiled in the
next section, where the deformation of its crystal structure under pressure is investigated.

3.3. Behavior of ZIF-75 under the Effect of Pressure. Pressure-Induced Phase Transition and
Negative Linear Compressibility

The crystal structure of ZIF-75 was fully optimized under the effect of 14 different
isotropic pressures within the range going from P = −1.0 to 1.0 GPa. The computed
lattice parameters and unit cell volumes at these pressures are tabulated in Table S2 of
the Supplementary Materials and plotted in Figure 4. As can be clearly seen, the effect of
pressure induces a phase transition at a pressure near P = 0.1 GPa. The presence of this
pressure-induced phase transition at a small pressure close to zero GPa is the main reason
for the mechanical instability in ZIF-75, as found in Section 3.2.
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From the computed elasticity matrix, the dependence of the compressibility of ZIF-75
as a function of the orientation of the external pressure was obtained and plotted on the
ElAM computer program [127]. As can be seen in Figure 5, the compressibility is negative
for uniaxial pressures applied in any direction contained in the (1 1 0) plane. As it will
be shown, indeed, the compressibility along c direction is also negative when ZIF-75 is
submitted to isotropic pressures.
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values are displayed in red and green, respectively.

As can be observed in Figure 4, the behavior of the a and b lattice parameters, while
presenting a rapidly decreasing behavior near the phase transition, is normal in the sense
that they decrease invariably along the full pressure range. However, the c lattice parameter
presents an anomalous behavior and sharply increases before the phase transition in the
pressure range going from P = −0.06 to 0.1 GPa. Therefore, ZIF-75 presents a remarkable
negative linear compressibility effect in this pressure range since the linear compressibility
along the c direction, kc = −1/c·(∂c/∂P)P, is strongly negative.
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4. Discussion

The elasticity matrix of ZIF-75 was determined at the equilibrium crystal structure
employing the FDM technique. The study of the mechanical stability of ZIF-75 showed
that it is unstable. The reason for the mechanical instability of ZIF-75 was unveiled by the
examination of the variation of the computed crystal structures under the effect of pressure,
showing that ZIF-75 undergoes a pressure-induced phase transition at very small applied
pressures of P ≈ 0.1 GPa.

Furthermore, the study of the variation of the unit cell parameters under pressure
showed that the behavior of the c lattice parameter is anomalous. It strongly increases
in the pressure range from P = −0.06 to 0.1 GPa; therefore, ZIF-75 presents the negative
linear compressibility phenomenon in this range of pressure. The modifications of the
crystal structures were analyzed in order to study the structural mechanism leading to
the presence of the phenomenon of negative linear compressibility. The inspection of
the deformation of these structures as the pressure increases led to the conclusion that
the NLC phenomenon in ZIF-75 can be understood by employing the empty channel
structural mechanism [81–83,128]. The modifications of the structure of ZIF-75 at four
different pressures, P = −0.0625, 0.0, 0.0625, and 0.125 GPa, are shown in Figure 6.
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In microporous materials exhibiting empty structural channels, the application of
isotropic pressure may lead to a flattening of the channels which become wider along the
direction of the largest semiaxis in a section perpendicular to the channels and shorter in
the perpendicular direction. The widening of the channels in turn leads to the increase in
the corresponding lattice parameter, which in the present case is the c lattice parameter.
This mechanism, described for the first time in 2020, has been found to be responsible
for the NLC phenomenon in several different microporous materials [81–83,128]. The
last crystal structure of ZIF-75 shown in Figure 6, corresponding to an applied pressure
of P = 0.125 GPa, is, as expected, completely different from the other ones because this
pressure is well beyond the phase transition pressure. In this structure, the presence of
smaller structural empty channels expanding along the [0 0 1] direction is still observed.
The new material generated through the pressure-induced transition must have completely
different properties to those of ZIF-75 and may be functional for other applications. The
reversibility of the phase transition upon the removal of the effect of pressure and properties
of the new material should be experimentally investigated in detail.

A large set of ZIF materials were selected for this study, such as those synthetized by
Park et al. [1] and Tian et al. [2]. We were looking for microporous materials exhibiting
large empty structural channels, which, according to previous studies [81–83,128], are
likely to exhibit the negative linear compressibility phenomenon. Due to the large size of
its structural channels, ZIF-75 was selected among the studied ZIF materials. Therefore,
it was a good candidate for the study of its behavior under pressure. Furthermore, the
initial exploratory test calculations of this material showed that, indeed, its behavior under
pressure was very interesting. For comparison, as far as we know, a pressure-induced
instability was only found for the ZIF-8 material [11,29,30,32,38,44] at about 0.34 GPa [29],
which has long been investigated.

The behavior of ZIF-75 material under pressure has never been investigated experi-
mentally. The presence of the pressure-induced phase transition in ZIF-75 was detected
using the first-principles solid-state methods; therefore, it should be experimentally verified.
Furthermore, the results obtained in this work concern the behavior under pressure of a
single ZIF-75 crystal, whereas the experimental measurements generally correspond to a
polycrystalline aggregate of many crystals. However, the results obtained with high-quality
calculations using the state-of-the-art theoretical methods are consistently in good agreement
with the experimental results in the cases in which the theoretical methods have been
compared against available experimental data (for example, for silver oxalate [107,108],
oxalic acid and succinic acid [103,104,129], MIL-53 [69,70,73], and MIL-47 [130]). Following
previous studies [107,108], powder samples of ZIF-75 could be synthetized according to,
for example, the synthetic methods used by Tian et al. [2]. Then, these samples could
be used to obtain the corresponding powder X-ray diffraction patterns under different
pressures. From them, the lattice parameters or even the full crystal structures could be de-
termined by refinement from the X-ray diffraction data. Then, the analysis of the variation
of the parameters should reveal the presence of the NLC effect as well as the onset of the
pressure-induced phase transition.

Finally, it must be noted that the ZIF material studied in this work is ZIF-75 [2,3]
(CCDC code HIFVUO and deposition number 254162). However, in some works (see for
example [131]), the ZIF material with CCDC code HIFVUO is denoted as ZIF-6. This is
a nomenclature error, as the ZIF-6 material has CCDC code EQOCOC01 and deposition
number 602540 [1,3].

5. Conclusions

In this study, the behavior of the zeolitic imidazolate framework ZIF-75 under the
effect of pressure was studied by means of periodic density functional methods using
basis sets composed of plane waves and norm-conserving pseudopotentials. Initially, the
structural results showed that, while at room temperature, ZIF-75 is tetragonal, space
group I41/a; at zero temperature, ZIF-75 is monoclinic, space group C2/c. This result
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should be verified experimentally by the refinement of X-ray diffraction data at a low
temperature. The study of the computed crystal structures under increasing pressures
demonstrates that ZIF-75 undergoes a pressure-induced phase transition at relatively low
pressures of P ≈ 0.1 GPa. Furthermore, in the range of pressure going from P = −0.06 to
0.1 GPa, ZIF-75 exhibits the negative linear compressibility effect since the dimension of
the crystal along the [0 1 0] crystallographic direction increases very rapidly as the pressure
increases. This material may therefore be appropriate for many of the potential applications
associated with the NLC effect. In this sense, one advantage of this material over other NLC
materials [89] is its composition, since it does not contain metallic elements and its synthesis
is relatively simple [2]. However, the presence of the pressure-induced phase transition
limits the range of applicability of this material, not only in the applications where pressure
plays a significant role but also in the most common applications in which the material
operates under stressed conditions. One example is gas adsorption and storage, since the
gas molecules’ collisions with the walls of the channels may exert significant pressure on
them [9,30,32,45,83].

The behavior of MOF materials under pressure is an extremely important topic from
the point of view of their various applications. In summary, the results found in the
present work are significant because they have shown, in the first place, that ZIF-75
undergoes a pressure-induced phase transition at small applied pressures near 1.0 GPa. The
implications of this finding are twofold: (a) the new material obtained after the application
of pressure, also microporous, may be a functional material, and the possible applications
of this material should be experimentally investigated; (b) the presence of a pressure-
induced phase transition limits the applicability of ZIF-75 in the common applications
of this material, such as gas and compound absorption, separation, and storage, and
catalysis, to pressures smaller than 1 GPa. Secondly, ZIF-75 exhibits a strong negative linear
compressibility effect under applied pressures from P =−0.06 to 0.1 GPa, with a large series
of potential applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app122010413/s1, Figure S1: X-ray diffraction patterns of ZIF-75
derived from the tetragonal and monoclinic structures; Table S1: Most intense reflections in the X-ray
diffraction pattern of tetragonal ZIF-75; Table S2: Unit cell volume and lattice parameters of ZIF-75
under the effect of different external pressures.
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