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Abstract: Anomaly detection is critical to ensure cloud infrastructures’ quality of service. However,
due to the complexity of inconspicuous (indistinct) anomalies, high dynamicity, and the lack of
anomaly labels in the cloud environment, multivariate time series anomaly detection becomes
more difficult. The existing approaches are rarely effective in meeting these challenges. In this
paper, we propose a novel convolutional adversarial model, convolutional-adversarial-training-based
integrated anomaly detection with explanation framework (CAT-IADEF), for multivariate time series
anomaly detection in the cloud. We adopt three convolutional neural networks to learn sequence
features and adversarial training to amplify “slight” anomalies while enhancing the robustness of the
model. The dynamic threshold is determined in real time by the peaks over threshold (POT) method
to improve detection accuracy. In addition, anomaly explanation is also conducted efficiently by
analyzing anomaly score vectors. Experiments with seven data subsets from various public datasets
show that CAT-IADEF outperforms state-of-the-art methods. The average F1 score on the seven
datasets is 0.907, which is 6.5% higher than the state-of-the-art model and up to 22.1% higher than
the baseline method. Furthermore, the proposed anomaly explanation framework is also integrated
into various models to verify its effectiveness on the experimental datasets.

Keywords: cloud platform; multivariate time series; anomaly detection and explanation; adversarial
training

1. Introduction

Cloud computing has evolved from a set of promising virtualization and data center
technologies to a consolidated paradigm for delivering computing as a service to end
customers. Moreover, it has mighty computing power, allowing users to access and execute
cloud computing in various ways and quickly provide resources based on their needs [1].

However, with the drastic increase in data volume and network application scope,
the deployment of the cloud platform is increasing, and vast amounts of data need to
be processed, all of which require the reliability of cloud computing systems [2]. This
means that the cloud computing system needs to perform anomaly detection of time series
data, detect anomalies, and give possible reasons or circumstances for the occurrence of
anomalies. In the initial stages, researchers proposed a univariate time series anomaly
detection method that analyzed system metrics, such as the number of I/O requests,
memory usage, throughput, etc. However, with the increasing complexity of cloud systems,
there are now multiple time series for cloud performance monitoring data. For example,
when monitoring the abnormal state of the CPU, it is necessary to collect the percentage of
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user space occupied by the CPU, the CPU idle rate, and the percentage of CPU time waiting
for input and output as well as different aspects of data, such as the total percentage used
by the CPU. In addition, the traditional methods significantly impact performance due to
the increase in sizes, so anomaly detection of multivariate time series has become a research
hotspot [3].

Traditional anomaly detection methods, such as setting a static threshold, determined
that a certain observed data point exceeded the set threshold to be an outlier point. Collect-
ing data with many labels is complicated by the increase in data scale, which results in a
lack of time series data, lack of branding, and other problems. In addition, the detection
of the “slight” anomalies proposed in unsupervised anomaly detection (USAD) [4] and
the stability of training are also current priorities to consider. To facilitate further research,
anomaly explanation is defined in this paper as the dimensions of the most likely occurrence
of anomalies. We propose an adversarial training method for anomaly explanation. Firstly,
we use convolutional neural networks (CNN) to extract the sequence’s main features. Next,
we build an adversarial training architecture consisting of three CNNs combined with the
POT dynamic threshold selection. Then, we also add the anomaly explanation module
based on the anomaly attribution matrix calculation for each point.

The contributions of this paper include the following:

1. To solve the problem that “slight” anomalies are not easy to identify as well as the de-
tection model’s robustness, we adopt adversarial training to amplify the reconstruction
errors for anomaly identification while improving the model’s accuracy.

2. To improve the computational efficiency of static threshold exploration, we combine
the POT dynamic threshold selection technology effectively to improve the detection
performance.

3. To effectively support anomaly handling afterward, we propose an anomaly explana-
tion framework. First, based on each point’s anomaly score and threshold matrix, we
calculate the number of anomalies to perform anomaly dimension attribution, which
explains the anomalies to a certain extent.

The organization of this paper is as follows: The Section 1 mainly introduces the
research background, purpose, and significance and briefly analyzes the anomaly detection
problems. The Section 2 briefly reviews the classical anomaly detection methods, deep
learning-based anomaly detection methods, and anomaly explanation methods. The
Section 3 details the adversarial convolutional neural network model proposed in this
paper. The Section 4 validates the model’s overall performance and analyzes the results
accordingly. At the same time, ablation experiments are carried out to investigate the
influence of each component of the model on its overall performance. Finally, the Section 5
summarizes the presented models and provides potential future work.

2. Related Work

We briefly review the existing anomaly detection work, especially recent progress
in multivariate time series anomaly detection and anomaly explanation. First, we start
with the classical anomaly detection methods; then, we move on to the deep learning-
based anomaly detection method and anomaly explanation method. More comprehensive
literature reviews can be found in recent surveys [5].

2.1. Classical Anomaly Detection Methods

In the field of anomaly detection, there are some classic methods. For example, 3sigma
identifies anomalies by measuring whether current values deviate from historical averages
and whether deviations meet three standard deviations. The principal component analysis
(PCA) [6] method uses the weight of the eigenvalue to calculate the eigenvector distance
difference corresponding to the sample point’s eigenvalue so as to calculate the deviation
degree of the data value from this direction. It identifies abnormalities based on the accu-
mulation of the deviation degree for each order. The distance-based method of K-nearest
neighbors (KNN) [7] determines an anomaly when the average distance of the K-nearest
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neighbors is more significant than the threshold. Copula-based outlier detection (CO-
POD) [8] uses statistical probability functions to calculate the left and right tail probabilities.
It outputs the most suitable tail probabilities according to the specific situation to perform
anomaly detection. Its advantages are that it does not need to calculate the distance of the
sample parts, the overhead is small, and no parameter adjustment is required. The local
outlier factor (LOF) [9] method is a density-based unsupervised anomaly detection method
that assigns each data point an LOF dependent on the density of the neighborhood and then
compares each point to the corresponding field density to determine whether the data
point is an outlier, similar to the density-based connectivity-based outlier factor (COF) [10].
One-class support vector machines (OCSVM) aim to learn decision boundaries [11,12] for
normal observations while taking some outliers into account. If the data is two-dimensional,
it is to find a hyperplane to divide the normal data and some outliers, and if it is multi-
dimensional data, it is to find a surface to divide. The anomalies are identified by observing
whether a data point falls within the decision boundary. Ref. [13] studies various machine
learning approaches for informational/noninformational classifications. A robust random
cut forest (RRCF) improves the isolation forest algorithm (IF) by integrating ideas to process
streaming data [14–16].

The simplicity of the classical method has always been its advantage, but it has
limitations when dealing with nonlinear, high-dimensional, and noisy data.

2.2. Methods Based on Deep Learning

The methods based on deep learning usually build some complex deep neural network
frameworks. The most common auto-encoder (AE) is to compress and reconstruct data
to obtain reconstruction losses and to judge anomalies by reconstruction loss. The varia-
tion auto-encoder (VAE) [17,18] is a stochastic generative model that provides calibrated
probabilities computed by reconstructing the probability density. The long short-term
memory-based variational auto-encoder (LSTM-VAE) [19] aims to replace the feedforward
network in VAE with LSTM [20,21].

Some newer methods, such as the multivariate anomaly detection with GAN (MAD_
GAN) framework [22,23], have a basic architecture similar to the previous generative ad-
versarial network (GAN) [24]. MAD_GAN adopts a long- and short-term recurrent neural
network as the basic model of GAN learning to analyze time-dependent multivariate time
series data. Its advantage is that it does not need to introduce a lower bound for likelihood
estimation and only performs anomaly detection by modeling the nonlinear associations
between multiple time series. OmniAnomaly [25] proposes a stochastic recurrent neural
network that establishes an explicit time dependency between random variables and uses
a stochastic recurrent neural network and a planar normalized flow to generate recon-
struction probabilities. It also proposes a method for dynamically selecting the threshold
(POT). Ref. [26] leverages a novel threshold to detect cyber attacks. USAD [4] improves the
basic AE, adds a decoder, processes the sequence data through three simple auto-encoders,
and judges the abnormality based on the reconstruction error; however, the most basic
linear changes sometimes cannot effectively extract sequence features. The multivariate
time series anomaly detection via graph attention network framework (MTAD-GAT) builds
the model jointly by combining the prediction and reconstruction methods using a graph
attention network to model the feature and temporal correlation [27]. The deep transformer
network for anomaly detection (TranAD) model [28] is a typical representative of anomaly
detection combined with a transformer. It uses an attention mechanism to learn temporal
trends and model-agnostic meta-learning to guarantee its performance even with limited
datasets. It still judges anomalies by the reconstruction error.

2.3. Anomaly Explanation Method

After anomaly detection, the focus of researchers’ concern has been how to interpret
the detected anomaly. The multi-scale convolutional recurrent encoder–decoder (MS-
CRED) [29] uses different channel widths to capture short-, medium-, and long-term
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anomalies. HitRate@P% is used in OmniAnomaly [25] to measure the diagnostic perfor-
mance of the model. TranAD [28] adds the normalized discount cumulative NDCG@P%
on this basis. Bayesian networks are proposed in [30] to perform causal relationship detec-
tion for multiple networks and the physical features of a system. Finally, an unsupervised
approach is used in [31] to reduce the anomaly feature space to isolate anomalies continuously.

The anomaly detection methods, as mentioned earlier, have good detection perfor-
mances. However, their performances across different time series datasets are inconsistent
(limited ability to set or identify “slight” anomalies using only static thresholds), and their
performances in anomaly explanation are inadequate. In addition, anomalies are explained
in methods that do not intuitively give the most likely dimensions of an anomaly for re-
searchers to use. To address these issues, the CAT-IADEF model combines CNN adversarial
training and the POT dynamic threshold selection, enabling the model to identify “slight”
anomalies while improving its stability and detection performance. Further anomalies are
also carried out in the Anomaly Explanation section.

3. Method

We formalize the research issues in Section 3.1 and detail our research methods in
Sections 3.2–3.5.

3.1. Problem Statement

A time series refers to a sequence formed by arranging the values of a particular
statistical indicator of a specific phenomenon at different times in chronological order. In a
single-variable time series, such as T = {x1, x2, . . . xt}, a series of data is collected over
time, and the entire series contains only one variable. For a multivariate time series, such
as T = {x1, x2, . . . xt}, there is xt = [h1t, h2t . . . hkt]. The significance of anomaly detection
and anomaly explanation in this study is as follows: Regarding anomaly detection, we first
normalize the maximum and minimum values for any time series T. Then, we define a
time window Wt= {xt−k+1, . . . xt−1, xt} of the length k at time t and convert the time series
T into a window series W = {W1, W2 . . . WT}.

We use the window series W as the training input to construct the Y; first, we calculate
the reconstruction loss Lt. Next, we calculate the abnormal score St and then calculate a
threshold threshold based on the quirky score of the previous window. For regular data
points, we assume that they can be well reconstructed. For anomalies, the reconstruction
error is calculated to compare with the threshold, so a label y ∈ (0, 1) can be obtained.
Regarding anomaly explanation, for any time series T, we calculate the reconstruction loss
of all data points and, based on this, predict a label sequence data, Y = {y1, y2 . . . yt}, com-
posed of yt ∈ (0, 1) so that the sequence dimension with the most ones can be calculated.

3.2. Overall Architecture of CAT-IADEF

As shown in Figure 1, three CNN models make up the overall CAT-IADEF framework.
First, on the left side of the figure is the window sequence W obtained by processing

the time series data T, which is input into the convolutional auto-encoder to obtain a set of
latent variables Z. Afterward, in the middle of the figure, two sets of auto-encoders ED1 and
ED2 (the two decoders are composed of encoders, respectively) are trained adversarially to
enhance the ED2 model’s ability to identify “slight” anomalies and output the reconstructed
data of the two auto-encoders during the adversarial training phase. By calculating the
reconstruction loss L of the two sets of auto-encoders and performing a weighted average
to obtain the anomaly score Si, it is possible to then perform anomaly detection on a
multivariate time series. Finally, on the right side of the figure is the anomaly interpretation
module, which inputs the anomaly score for each data point and stores it in the label matrix
R by comparing it with a threshold and assigning it a value of 0 or 1. The matrix R sums
each column, and the column with the largest value represents the dimension with the
most ones, which is the dimension where the anomaly is most likely to exist.
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Figure 1. The overall architecture of CAT-IADEF.

3.3. CNN-Based Adversarial Training

GAN-style adversarial training methods have been shown to perform well in anomaly
detection on time series data [24]. To this end, we also constructed two CNN decoders in
the CAT-IADEF model, as shown in Figure 1, and we treat the training of the entire model
as a two-stage training (the actual two-stage training happens at the same time).

As shown in Figure 1, ED1 consists of Encoder and Decoder1, and ED2 consists of
Encoder and Decoder2. First, the two EDs reconstruct the normal input window sequence
W, and second, the two EDs are trained adversarially. ED1 tries to fool ED2, and ED2 aims
to know the truth of the data. Below are the details of the two-stage training.

Phase 1: Minimize rebuild. Figure 1 also directly presents the first stage outputs of
ED1 and ED2, and, to minimize the reconstruction loss of the input data [19], we utilize the
L2 norm to define the reconstruction losses of ED1 and ED2 during Phase 1:

L1= ||W − ED1(W)||2 (1)

L2= ||W − ED2(W)||2 (2)

Their goal is to minimize these losses, that is:

min||W − ED1(W)||2 (3)

min||W − ED2(W)||2 (4)

Phase 2: Adversarial training amplifies errors. The ED2 training goal is to distinguish
actual data. ED1 is trained to fool ED2, while ED2 reconstructs the data output by ED1 and
outputs the reconstruction error with the actual data W. So, the reconstruction loss here is:

L3= ||W − ED2(ED1(W))||2 (5)

At this point, the goal of ED1 is to minimize the difference between the outputs
of W and ED2. In contrast, ED2 in the second stage aims to maximize the difference
||W − ED2(ED1(W))||2 to distinguish the data ED1(W) generated by ED1 from the real
data W, that is, the reconstruction loss needs to be amplified. This means that the training
target at this time is:

min
ED1

max
ED2
||W − ED2(ED1(W))||2 (6)

ED1 needs to minimize this error, and ED2 needs to maximize this error (amplify it).
Therefore, we adjust by adding a sign to the reconstruction loss.

L∗1= +||W − ED2(ED1(W))||2 (7)
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L∗2= −||W − ED2(ED1(W))||2 (8)

Two-stage training. We find the corresponding reconstruction loss functions of ED1
and ED2 at different stages and now combine them to obtain the training targets of ED1
and ED2 for the entire training stage:

LED1=
1
n
||W − ED1(W)||2+(1− 1

n
)||W − ED2(ED1(W))||2 (9)

LED2=
1
n
||W − ED2(W)||2−(1−

1
n
)||W − ED2(ED1(W))||2 (10)

Here n is the training period, and phase 1 and adversarial training are generally
reflected in Algorithm 1.

Algorithm 1 CAT-IADEF training algorithm.

Initialization:
T used for W
Encoder, Decoder1, and Decoder2
Iteration limit N

1. Initialize weights
2. n← 0
3. do
4. for t = 1 to T
5. R1 ← ED1(Wt), R2 ← ED2(Wt)
6. R′2 ← ED2(R1)

7. LED1=
1
n ||Wt − R1||2+(1− 1

n )||Wt − R′2||2
8. LED2=

1
n ||Wt − R2||2−(1− 1

n )||Wt − R′2||2
9. Encoder, Decoder1, and Decoder2← update weights using LED1 , LED2

10. n← n + 1
11. while n < N

The first line in Algorithm 1 is to initialize the weights of Encoder, Decoder1, Decoder2,
and lines 2 to 4 iterate according to the given N. Lines 4 to 11 use LED1 , LED2 to update the
weights of Encoder, Decoder1, and Decoder2 in each iteration.

3.4. Dynamic Threshold Selection Based on POT

The model has been trained by Algorithm 1. When testing the test data, we define the
anomaly score as:

S = α||W − ED1(W)||2 + β||W − ED2(ED1(W))||2, α+β = 1 (11)

During testing, we rerun the two-stage training phase; we only consider the data
before the current timestamp and immediately compare this outlier to the threshold by
calculating the timestamp outlier si. Once it exceeds the threshold, we mark its timestamp
as abnormal [32]. We then dynamically select the entry using the POT method. Its essence
is to give n observations Xn and an abnormal occurrence probability q. To calculate a point
to make P(X > zq) < q, the initialization is mainly to find the peak with a higher threshold
t, fit a Pareto distribution, and then use this distribution to infer the possible distributions
of extreme values (anomalies) and compute thresholds [33].

3.5. Anomaly Explanation

For the explanation of anomalies, this paper compares the number of anomalies that
may occur on each dimension of the time series data T by calculating the anomaly scores’
matrix and threshold threshold (if an anomaly score is greater than the threshold, it indicates
an anomaly and is assigned a corresponding position in Y with a value of 1; otherwise, it is
assigned a value of 0) and locates the measurement from the largest possible anomaly to
determine whether the number of anomalies is the most significant.
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b(S(i,j) − threshold)/thresholdc+ 1 = R(i,j) (12)

b c means floor. Count the number of ones in each dimension in R and obtain the
number of the first two dimensions with the most significant number.

It is summarized in Algorithm 2 as the testing phase and anomaly explanation.

Algorithm 2 CAT-IADEF testing algorithm.

Initialization:
T̃ used for W̃
Trained Encoder, Decoder1, and Decoder2

1. for t = 1 to T′

2. R̃1 ← ED1(W̃t), R̃′2 ← ED2(R̃′1)
3. s = α||W̃ − R̃1||2 + β||W̃ − R̃′2||2
4. yi = 1 (si ≥ POT(si))
5. y = ∨

i
yi

6. b(S(i,j) − threshold)/thresholdc+ 1 = R(i,j)

In Algorithm 2, line 1 takes the data for testing T, and lines 2 and 3 calculate the
anomaly score s. Lines 4 to 5 judge whether there is an anomaly based on the anomaly
score. As long as there is an anomaly in any dimension, we will treat the timestamp as an
anomaly. Finally, line 6 compares the anomaly score of each data point with the threshold,
stores the generated label sequence Y in the matrix R, and then judges the two dimensions
with the most anomalies.

4. Experiment

This section will describe the experimental environment, the datasets used, and the
evaluation metrics used to evaluate the models we present.

4.1. Experimental Setup

To validate the effectiveness of the proposed CAT-IADEF, we have set up 5 experiments
as follows:

(1) Model Performance Comparison. Observe the performance of our method compared
to the baseline method. The experimental results can be found in the “Anomaly
detection” part in Section 4.4.

(2) Anomaly Explanation Results. Anomaly Explanation Results of CAT-IADEF. The ex-
perimental results can be found in the “Anomaly explanation” part in Section 4.4.

(3) Validation of Anomaly Explanation Framework. Validate the framework on differ-
ent models. The experimental results can be found in the “Anomaly explanation” part
in Section 4.4.

(4) Ablation Analysis. Observe the effect of model components on model performance.
The experimental results are shown in Section 4.5.

(5) Sensitivity Analysis of Parameters. Observe the effect of different parameters on
model performance. The experimental results are shown in Section 4.6.

Experimental Environments: (1) CPU: Intel (R) Core (TM) i7-7500U CPU@2.70 GHz;
(2) RAM: 8 GB; (3) Python version: 3.7.11; and (4) Pytorch version: 1.6.0.

We selected the following methods for performance comparison experiments: PCA [6]
based on dimensionality reduction, LOF [9] based on density, COPOD [8] based on statistics
and machine learning, and OCSVM [11] based on classification; these four are relatively
classic methods. MAD_GAN [22], OmniAnomaly [25], USAD [4], and TranAD [28] are the
latest deep learning methods with excellent performances.
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4.2. Public Datasets

We chose to use four datasets, including the Singapore Safe Water Treatment dataset;
all selected datasets are detailed below and in Table 1. For each dataset used, we selected
multiple data subsets on which we trained and evaluated the models in our experiments.

SMAP. Soil collected by satellite comprises remote sensing information data [34].
Satellite-derived active and passive level 3 soil moisture observations were integrated into
a modified two-layer Palmer model.

MSL. Similar to SMAP datasets. It consists of data collected by the Mars Science
Laboratory [34] rover.

SwaT. Safe Water Treatment Dataset. Real-world industrial water treatment plants
collect during the production of filtered water. It contains data from 7 days of regular
operation and 4 days of abnormal function [35].

SKAB. A dataset is involved in evaluating anomaly detection algorithms [36]. The
benchmark currently includes over 30 datasets and Python modules for evaluating algo-
rithms. Each dataset represents a multivariate time series collected from sensors installed
on the testbed.

Table 1. Dataset data characteristics.

Name Number of
Instances

Train Ratio
(%)

Test Ratio
(%)

Number of
Features

Anomaly
Proportion (%)

SMAP 562,800 24.0 76.0 25 13.13
MSL 132,046 44.2 55.8 55 10.72
SWaT 946,719 52.5 47.5 51 11.98
SKAB 46,806 20.1 79.9 8 35.40

Table 1 shows how many instances are included in each dataset, the ratio of training to
testing, the number of features in each dataset, and the proportion of anomalies. The four
open datasets are commonly used in anomaly detection, whose training/testing partition
varies from dataset to dataset, and the number of features and anomaly ratios also vary
among different datasets. We validate the effectiveness and robustness of our approach
using various datasets with different proportions of anomalies, different partitions of
training/test divisions, and different feature numbers.

4.3. Evaluation Measurements
4.3.1. Anomaly Detection Evaluation Metrics

We use a common accuracy, precision, recall, and F1 scores to evaluate the model
performance [37].

4.3.2. Anomaly Explanation Settings

Through an independent matrix calculation framework, we directly give the serial
numbers of the two dimensions with the most anomalies so that the relevant personnel can
focus on observing the given dimensions when collecting this type of multivariate time
series. This also, to a certain extent, makes it easier for researchers to review the data.

4.4. Experimental Results

Anomaly detection. Deep learning methods are known to be generally superior
to machine learning methods. Still, machine learning methods may be better on some
specific datasets, so, to show the overall performance of CAT-IADEF, we compare it with
four classical methods and four deep learning methods. In the comparison experiments,
to ensure the fairness of the comparison, we add dynamic threshold adjustment to all
methods, and each group of experiments is carried out 5 times to obtain the average value.
Table 2 shows the accuracy, precision, recall, and F1 scores of CAT-IADEF and the other
compared models on seven datasets.
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Table 2. Performance comparison of CAT-IADEF and other methods on the subsets of data used.

Methods
P1 (SMAP) T4 (MSL) SWaT

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

PCA 0.890 0.110 0.999 0.198 0.934 0.031 0.999 0.060 0.858 0.394 0.696 0.503
LOF 0.794 0.691 0.999 0.817 0.931 0.410 0.999 0.581 0.813 0.978 0.696 0.813
COPOD 0.794 0.319 0.999 0.484 0.936 0.108 0.999 0.195 0.894 0.503 0.731 0.596
OCSVM 0.791 0.366 0.999 0.536 0.934 0.108 0.999 0.195 0.844 0.214 0.862 0.343
MAD_GAN 0.980 0.870 0.999 0.919 0.954 0.401 0.999 0.571 0.956 0.952 0.696 0.803
OmniAnomaly 0.982 0.859 0.999 0.924 0.965 0.441 0.999 0.612 0.959 0.976 0.969 0.812
USAD 0.980 0.849 0.999 0.918 0.969 0.488 0.999 0.648 0.959 0.989 0.688 0.811
TranAD 0.980 0.857 0.999 0.918 0.906 0.246 0.999 0.395 0.960 0.997 0.688 0.814
CAT-IADEF 0.981 0.857 0.999 0.923 0.979 0.596 0.999 0.747 0.958 0.971 0.696 0.811

Methods
Valve1-4 (SKAB) Valve1-14 (SKAB) T1 (SMAP)

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

PCA 0.376 0.319 0.999 0.483 0.367 0.350 0.999 0.519 0.700 0.300 0.999 0.461
LOF 0.323 0.384 0.999 0.555 0.350 0.401 0.999 0.572 0.472 0.944 0.999 0.971
COPOD 0.401 0.319 0.999 0.483 0.432 0.350 0.999 0.519 0.603 0.730 0.999 0.844
OCSVM 0.385 0.341 0.999 0.509 0.388 0.357 0.999 0.526 0.639 0.702 0.999 0.825
MAD_GAN 0.725 0.544 0.999 0.702 0.823 0.679 0.999 0.804 0.970 0.909 0.999 0.953
OmniAnomaly 0.760 0.770 0.940 0.840 0.770 0.740 0.980 0.850 0.975 0.923 0.999 0.960
USAD 0.912 0.801 0.999 0.885 0.929 0.860 0.999 0.914 0.971 0.912 0.999 0.954
TranAD 0.898 0.766 0.999 0.865 0.955 0.893 0.999 0.942 0.963 0.891 0.999 0.942
CAT-IADEF 0.951 0.868 0.999 0.929 0.991 0.974 0.999 0.987 0.975 0.923 0.999 0.960

Methods
D15 (MSL)

Acc Pre Rec F1

PCA 0.754 0.297 0.999 0.457
LOF 0.594 0.686 0.999 0.814
COPOD 0.625 0.542 0.999 0.703
OCSVM 0.754 0.610 0.999 0.758
MAD_GAN 0.974 0.919 0.999 0.957
OmniAnomaly 0.979 0.933 0.999 0.965
USAD 0.979 0.933 0.999 0.966
TranAD 0.917 0.781 0.999 0.877
CAT-IADEF 0.996 0.987 0.999 0.993

It can be seen from Table 2 that CAT-IADEF achieved the best F1 values on the data
subsets T4 of MSL, Valve1-4 and Valve1-14 of SKAB, and D15 of MSL; these values were,
respectively, 0.747, 0.929, 0.987, and 0.993. On the P1 subset of SMAP, OmniAnomaly’s
method achieved the best F1 value of 0.924, and CAT-IADEF’s F1 value of 0.923 ranked
second. On the data subset of SWaT, the TranAD method achieved the best F1 value of 0.814,
and CAT-IADEF’s F1 value of 0.811 ranked fourth. On the data subset T1 of SMAP, the LOF
method performed the best, with an F1 value of 0.971, and the F1 value of CAT-IADEF
was 0.960, ranking second. We rank the F1 of the models comprehensively on all datasets,
as shown in Figure 2. CAT-IADEF has a combined ranking of about 1.7, ranking first among
all the compared models.

To analyze the different models, we first analyze four machine learning methods.
The number of dimensionality reductions finally obtained by the PCA, that is, the number
of latent variables, cannot be well estimated; therefore, its performance is not outstanding
on the seven datasets. COPOD does not need to adjust parameters nor calculate the distance
between samples, and the overhead is negligible. COPOD and OCSVM perform well on
the T1 dataset and poorly on the rest of the datasets. This is due to the following problem:
the scene changes in the face of non-stationary, unbalanced time series. The performance
of LOF on other datasets is not outstanding. Still, the optimal F1 value is obtained on the
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T1 dataset, which is considered because this subset’s local distribution of the time series is
suitable for calculating k-fields in LOF.

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

10

Figure 2. A comprehensive ranking of algorithm models.

For the deep learning method, USAD only uses the simplest AE model and only
considers the linear transformation, resulting in its insignificant effect, while CAT-IADEF
adopts the CNN network and considers the relationship between different features. TranAD
and MAN_GAN use an attention mechanism when detecting anomalies. TranAD uses
positional encoding in the transformer structure to help capture the temporal order, which
performs optimally on the SWaT dataset. OmniAnomaly is not the most prominent for
all datasets except P1 because it is input sequentially, preserves essential information,
and reconstructs all inputs regardless of input data, which prevents them from detecting
anomalies that are close to normal trends. CAT-IADEF’s confrontational training allows it
to magnify “slight” anomalies and help it see them, even though other models will detect
“slight” anomalies as routine data.

Anomaly explanation. The results of the anomaly explanation are shown in Table 3,
which we tested on the P1 dataset.

Table 3. Anomaly attribution of CAT-IADEF on different datasets.

P1 (SMAP) T4 (MSL) Valve1-4 (SKAB)

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

5 6 0 5 7 1

Valve1-14 (SKAB) T1 (SMAP) D15 (MSL)

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

7 1 0 5 0 5

In Table 3, Dimension 1 is the dimension with the highest number of anomalies,
and Dimension 2 is the dimension with the second highest number of anomalies. The num-
ber corresponding to the dimension is the serial number of the dimension. On the P1
dataset, for example, the dimension containing the most anomalies is Dimension 5, and the
dimension with the second-most anomalies is Dimension 6.

To test the validity of the anomaly explanation, we tested five deep learning models,
including CAT-IADEF, on experimental datasets.

Table 4 shows that only TranAD attributes anomalies to Dimensions 0 and 3 on the
dataset P1, and the remaining methods attribute anomalies to Dimensions 5 and 6. In the
SKAB dataset, the percentage of anomalies is up to 35.4%. However, we can still see that the
anomalies in the Valve1-4 dataset are mainly concentrated in Dimensions 7 and 1, and the
Valve1-14 datasets are concentrated in Dimensions 7, 4, and 2. The results of the remaining
datasets are similar and validate the validity of the anomaly explanation module.
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Table 4. Validation of anomaly explanation.

Methods
P1 (SMAP) T4 (MSL) Valve1-4 (SKAB)

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

MAD_GAN-EF 5 6 0 5 7 1
OmniAnomaly-EF 5 6 0 5 4 7

USAD-EF 5 6 0 5 1 7
TranAD-EF 0 3 0 5 1 7
CAT-IADEF 5 6 0 5 7 1

Methods
Valve1-14 (SKAB) T1 (SMAP) D15 (MSL)

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

MAD_GAN-EF 7 4 0 5 0 5
OmniAnomaly-EF 4 7 0 5 0 5

USAD-EF 2 7 0 5 0 5
TranAD-EF 7 2 0 5 0 5
CAT-IADEF 7 1 0 5 0 5

4.5. Ablation Analysis

To investigate the importance of each model component to the overall model per-
formance, we exclude each significant element in turn and observe how it affects model
performance on the experimental dataset.

Adversarial training. In the experimental dataset, we compared the entire model
to a model with no adversarial training, i.e., no Decoder2. Figure 3 shows the F1 scores
of the CAT-IADEF and CAT-IADEF (no adversarial training) models on four experimen-
tal datasets.

P1(SMAP) Valve1-4(SKAB) T1(SMAP) D15(MSL)
0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

0.922 0.924
0.954 0.966

0.923 0.929
0.96

0.993CAT-IADEF (no Adversarial Training)
CAT-IADEF

Figure 3. CAT-IADEF and CAT-IADEF (no adversarial training) performance comparison.

As shown in Figure 3 the performance of CAT-IADEF (no adversarial) has declined
on the four datasets, with a minimum drop of 0.11% and a maximum drop of 2.72%;
this means that adversarial training enables the model to identify “slight” anomalies by
magnifying errors.

Dynamic threshold. We remove the dynamic threshold plate on CAT-IADEF and
train it on the experimental dataset. Figure 4 shows the F1 scores of CAT-IADEF and
CAT-IADEF (no dynamic threshold) on our four experimental datasets.
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co
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Figure 4. Performance comparison between dynamic threshold and dynamic threshold (no dynamic
threshold) datasets.

As shown in Figure 4, the POT dynamic selection threshold positively impacts the
model. The most significant improvement is in the D15 dataset, from 0.73 to 0.993, repre-
senting 36.0% progress. The tiniest improvement is in the P1 dataset, from 0.85 to 0.923,
representing an increase of 8.6%.

4.6. Sensitivity Analysis of Parameters

In the loss function, we have an α and β to perform a weighted average of Decoder1
and Decoder2, α + β = 1. When β is 0 and α is 1, the loss function only considers the
reconstruction loss from decoder1; when β is 1 and α is 0, the model only considers the
reconstruction loss of Decoder2 on the generated data. As shown in Table 5, we conducted
experiments on the P1 dataset and considered 7 cases to illustrate the parameter pair impact
on model performance.

Table 5. Performance comparison of different α and β on P1 dataset.

α β P R F1

0 1 0.8713 0.9999 0.9312
0.1 0.9 0.8730 0.9999 0.9322
0.3 0.7 0.8696 0.9999 0.9302
0.5 0.5 0.8478 0.9999 0.9176
0.7 0.3 0.8494 0.9999 0.9186
0.9 0.1 0.8494 0.9999 0.9186
1 0 0.8462 0.9999 0.9167

It can be seen from Table 5 that when α + β is changed from 0 to 1, the closer α is
to 1 and the closer β is to 0 (i.e., more consideration of the accurate data), the value of
F1 tends to decrease, and F1 takes the maximum value. When α is closer to 0, β is closer
to 1 (i.e., more concerned with the reconstruction loss of the generated data, that is, the
anomalies tend to the standard data in the simulated data). In reality, the training data
is not necessarily normal, and the sensitivity study of α and β can make the model more
adaptable to different experimental environments.

5. Conclusions

We propose an anomaly explanation model based on adversarial convolution, which
can perform anomaly detection and anomaly explanation on time series data of the cloud
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platform. Compared with the traditional linear change, its convolutional structure can
share parameters, thereby significantly reducing the number of network parameters, which
can effectively avoid overfitting. The adversarial-based training process enables the model
to amplify “slight” anomalies, enhancing the model’s ability to identify anomalies that
tend to be normal data. At the same time, the sensitivity setting of the adversarial training
also makes the model applicable to a broader range of environments. Furthermore, POT
optimizes detection intensively by modeling the tail of all values above a threshold. We
also use loss function calculation for a simple attribution in the anomaly explanation part.
We use seven data subsets of four public datasets to evaluate the model. The effect of
the model also proves the effectiveness of the model type. Specifically, CAT-IADEF ranks
first among all compared models, making CAT-IADEF a good choice for cloud platform
anomaly detection.

In the future, we will consider adding an attention mechanism, such as a multi-
head attention mechanism, to the overall model to allow the model to focus on some
additional weird sequence points. We also want to be able to add residual connections to
the convolutional network to speed up the model. Finally, we consider studying the cost
and environmental analysis in the actual deployment process of the model and try to make
it achieve low energy consumption and pollution.
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