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Abstract: Exercises refer to the evaluation metric of whether students have mastered specific knowl-
edge concepts. Linking exercises to knowledge concepts is an important foundation in multiple
disciplines such as intelligent education, which represents the multi-label text classification problem
in essence. However, most existing methods do not take the automatic linking of exercises to knowl-
edge concepts into consideration. In addition, most of the widely used approaches in multi-label
text classification require large amounts of training data for model optimization, which is usually
time-consuming and labour-intensive in real-world scenarios. To address these problems, we propose
a prompt tuning method for multi-label text classification, which can address the problem of the
number of labelled exercises being small due to the lack of specialized expertise. Specifically, the
relevance scores of exercise content and knowledge concepts are learned by a prompt tuning model
with a unified template, and then the multiple associated knowledge concepts are selected with
a threshold. An Exercises–Concepts dataset of the Data Structure course is constructed to verify
the effectiveness of our proposed method. Extensive experimental results confirm our proposed
method outperforms other state-of-the-art baselines by up to 35.53% and 41.78% in Micro and Macro
F1, respectively.

Keywords: linking exercises to concepts; multi-label text classification; prompt tuning; few-shot

1. Introduction

In recent decades, personalized learning has become a mainstream solution to enhance
students’ learning interest, and experience in intelligent education systems [1–3]. One of
the fundamental and key tasks in personalized learning is knowledge tracing [4,5], which
aims to evaluate the students’ learning state of knowledge concepts.

Exercises have played an important role in the knowledge tracing tasks, which is
one of the evaluation metrics of whether students have mastered specific knowledge
concepts [6,7]. Students in intelligent education systems choose the right exercises according
to their own needs and acquire specific knowledge concepts during exercise. In turn, we
can track changes in students’ acquisition of knowledge concepts during their exercising
process. From this perspective, knowledge tracing should consist of a students–exercises–
knowledge concepts hierarchy [8]. However, most existing methods of knowledge tracing
approaches [9–11] are partially modeled among the hierarchy (i.e., students–exercises or
students–concepts). This is because, in some intelligent systems, there is a lack of connection
between exercises and knowledge concepts. To this end, we take the automatic linking of
exercises to knowledge concepts into consideration for knowledge tracing tasks.

In essence, linking exercises to knowledge concepts is a multi-label text classification
(MLTC) problem. As shown in Figure 1, the relationship between exercises and knowledge
concepts is one-to-one or one-to-many, which aims to assign one or more concepts to each
input exercise in the dataset. Moreover, Figure 1 shows that the semantics between exercises
and knowledge concepts are highly correlated.
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Figure 1. Examples of exercises linking to knowledge concepts from dataset.

Recently, deep-learning-based methods have achieved fairly good performance in
MLTC for the superiority of feature representation learning. For example, Liu et al. [12]
utilized the strengths of the existing convolutional neural network and took multi-label
co-occurrence patterns into account in the optimization objective to produce good results
in MLTC. Pal et al. [13] proposed a graph attention network-based model to capture the
attentive dependency structure among the labels. Chang et al. [14] fine-tuned the BERT
language model [15] to capture the contextual relations between input text and the induced
label clusters. However, these deep-learning-based methods in MLTC tasks require large
amounts of training data for model optimization, which is usually time-consuming and
labour-intensive in real-world scenarios. Unfortunately, linking exercises to knowledge
concepts usually lacks training data because some knowledge concepts corresponding to a
few exercises or new courses may contain a paucity of labelled data.

To address these problems, we propose a Prompt Tuning method for Multi-Label Text
classification (PTMLTC for short). First, the prompt tuning model with a unified template
predicts the relevance scores of exercises and knowledge concepts. Then, the multiple
associated knowledge concepts are picked with a threshold. In order to verify the effective-
ness of our proposed method, an Exercises–Concepts dataset of the Data Structure course
is constructed. Extensive experimental results confirm our method outperforms other
state-of-the-art methods by up to 32.53% and 41.78% in Micro and Macro F1, respectively.

The contribution of our paper can be summarized as follows:
(1) To the best of our knowledge, this is the first attempt to automatically link exercises

to knowledge concepts. We built an Exercises–Concepts dataset of the Data Structure
course and reconstructed the few-shot dataset.

(2) We propose a prompt tuning method for multi-label text classification to link
exercises to knowledge concepts. Large amounts of labelled or unlabeled training data are
not required.

(3) Extensive experimental results confirm that our proposed method outperforms
other state-of-the-art deep-learning-based methods.
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2. Related Work

In this section, firstly, we introduce the deep-learning-based multi-label text classi-
fication methods. Then, the prompt tuning learning methods used in our models will
be presented.

2.1. Multi-Label Text Classification

The goal of MLTC is to associate one or more relevant labels for each input text
instance. The traditional MLTC methods include one-vs-all methods [16,17], tree-based
methods [18,19] and embedding-based methods [20,21]. For example, Babbar et al. [16]
proposed a distributed learning mechanism for MLTC, which can use doubly parallel
training to reduce the expensive computational cost of one-vs-all methods. Prabhu et al. [22]
presented a method called FastXML by optimizing an nDCG-based ranking loss function
to further reduce expensive computational costs. Tagami [21] proposed a graph embedding
method, which learns partition data points by the k-nearest neighbour graph (KNNG) and
uses an approximate k-nearest neighbour to predict results by exploring KNNG in the
embedding space.

In recent years, due to the powerful ability of feature representations learning [23,24],
deep models have gained much attention and achieved superior performances over tradi-
tional methods. The focus of existing deep-learning-based methods on MLTC is learning-
enhanced text representation for improving performance. For example, Liu et al. [12]
utilized the strengths of the existing convolutional neural network (CNN) and dynamic
pooling to model the text representation for MLTC. Xiao et al. [25] employed an atten-
tion mechanism to explore highlight important context representation in MLTC tasks.
Ma et al. [26] utilized the bidirectional Gated Recurrent Unit network and hybrid embed-
ding for learning the representation of the text level-by-level. Chang et al. [14] proposed
to fine-tune the BERT language model [15] in order to capture the contextual relations
between input text for MLTC.

In addition, recently, the dependencies or correlations among labels have demonstrated
the ability to improve performance in most MLTC tasks. Along this line, many deep-
learning-based methods have been proposed to model label dependencies. For example,
Chen et al. [27] explored labels’ correlations through Recurrent Neural Networks, which
were used to predict labels one-by-one sequentially. Pal et al. [13] proposed a graph-
attention network-based model to capture the attentive dependency structure among the
labels. Yang et al. [28] treated MLTC tasks as a sequence generation problem and proposed
a decoder structure to capture the dependencies between labels that selected the most
informative words automatically while predicting different labels. Xun et al. [29] learned
label correlation by introducing an extra CorNet module that is applied to a deep model at
the prediction layer to enhance raw label predictions with correlation knowledge.

However, most existing deep-based MLTC methods require a large amount of labelled
or unlabeled training data for model optimization, which is often time-consuming and
labour-intensive. Therefore, designing methods that can achieve promising results in the
few-shot scenario remain a huge challenge in real-world MLTC tasks.

2.2. Prompt Tuning

Prompt-based learning [30–32] is regarded as a new paradigm in natural language
processing and has drawn great attention from multiple disciplines, which promotes the
downstream tasks by using the pre-training knowledge as much as possible. Starting from
the GPT-3 [33], Prompt tuning has demonstrated unique strengths in a variety of tasks,
which contain text classification [32,34], relation extraction [35], event extraction [36] and
so on. Prompt-based learning directly models the probability of text on top of language
models. It is different from traditional supervised learning, which trains a model to predict
the output y as P(x | y) with the input x. Specifically, in the prediction task, firstly, a
template is added to the original input x to form a new textual string prompt x′ with
[MASK]. Then, the reconstructed x̂ is learned with the language model to probabilistically
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fill the unfilled information. For example, Cui et al. [37] employed closed prompts filled
by a candidate named entity span as the target sequence in named entity recognition
tasks. Li et al. [38] proposed Prefix-tuning that uses continuous templates to improve
performance than discrete prompts. There has already been some recent effort in devoting
external knowledge to prompt design. For example, Hu et al. [34] proposed a knowledge-
able prompt-tuning by expanding the label word space of the verbalizer with external
knowledge bases. Chen et al. [35] proposed a knowledge-aware prompt-tuning approach,
which introduced relation labels knowledge into prompt construction. In addition, many
works [34,39] have demonstrated that prompt-based learning greatly improves model per-
formance in few-shot scenarios. Hambardzumyan et al. [40] proposed an automatic prompt
generation method to transfer knowledge from large Pre-trained Language Models, which
achieved excellent performance in a few-shot setting. Gu et al. [41] proposed to add soft
prompts into the pre-training stage and pre-train soft prompts in the form of unified classi-
fication tasks, which can reach or even outperform in few-shot settings. However, in the
knowledge tracing tasks, we are not aware of existing prompt-learning-based approaches
that automatically link exercises to knowledge concepts. To this end, we propose a prompt
tuning method for multi-label text classification to link exercises to knowledge concepts.

3. Prompt Tuning Method for Multi-Label Text Classification

In this section, the details of our proposed PTMLTC are given, and the general frame-
work is shown in Figure 2.

Figure 2. The general framework of our PTMLTC. Exercise Text sequence is connected with united
template as the input of prefix Language Model. It will then predict the probability of filling the token
[MASK] with each word of knowledge concepts. Sigmoid() function is used to obtain the probability
of exercise texts linking to knowledge concept labels. Finally, a threshold mechanism is adopted to
predict all the possible knowledge concept labels.

3.1. Problem Formalization

In this paper, we aim to use few exercises with labeled concepts to predict one or
more related concepts for each input exercise text. Given C = {c1, c2, · · · cN} is the label
space with N concepts, the goal is to learn a function h(·) : E → 2C from the support
set S = {(Ei, Ci)}

NS
i , where E denotes the exercise-instance space, S usually contains K

exercise-instances (K-shot) of N concept-labels (N-way), NS is the size of the support set.
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For each learning instance (Ei, Ci), Ei ⊆ E is l-dimensional input and Ci ⊆ C is the related
concepts set. For an unseen instance e in the query set, the classifier predicts a set of
concepts P = h(e) ⊆ C.

3.2. Prompt Tuning Method for Multi-Label Text Classification

As is shown in Figure 2, our methods adopt a threshold-based strategy [42,43] to
achieve multi-label text classification. Firstly, the relevance scores of exercise content and
knowledge concepts are transformed into a masked language model by prompt tuning
methods. Specifically, a prompt template is defined as Vprompt = ”It belongs to [MASK]”.
and combine the exercise text x = {x0, x1, x2, · · · , xn} to form the final input for prompt
tuning input eprompt, which can be shown as Equation (1):

eprompt = [CLS]x, It belongs to [MASK]. (1)

Suppose that M is a large corpus of Pre-trained Language Models (PLMs in short),
the probability of filling the token [MASK] for each word of concept c in the knowledge
concepts set C can be denoted as PM([MASK] = c | eprompt). Here, we need a map function
Sigmoid() to predict the probability of each concept independently. The relevance scores
can be represented as (2):

P(c | ePrompt) = Sigmoid(PM([MASK] = c | eprompt)) (2)

Finally, we add an additional threshold mechanism to determine knowledge concepts
corresponding to exercises, which can be formulated as (3):

P(e) = {c | P(c | ePrompt) > t, c ∈ C} (3)

where t is the threshold.
To better introduce our method, we take an example shown in Figure 3. The exercise

text “The stack is characterized by first in, last out, and the queue is characterized by first
in, first out. (right)” is wrapped with template as the input. PLM is adopted to predict
the predict the probability of filling the token [MASK] with knowledge concepts word set
array, stack, queue, linked list. Then, Sigmoid() function is used to obtain the probability
of exercise text linking to labels {array, stack, queue, linkedlist}. Due to the probability of
exercise text linking to stack, queue greater than threshold, exercise text is regarded as
linking to {stack, queue}.

Figure 3. An example of our proposed method.
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It has been proven that binary cross-entropy loss (BCE) over sigmoid activation is
more suited for multi-label problems and outperforms cross-entropy loss [12]. Therefore,
in our paper, the BCE loss function is chosen to learn parameters in the tasks, which can be
formulated as (4):

min
Θ
− 1

K

K

∑
i=1

N

∑
j=1

[yij log(σ( p̂ij)) + (1− yij) log(1− σ( p̂ij)) (4)

where p̂ij represents the predicted value of exercise i belongs to concept j. yij represents the
value of exercise i belongs to concept j, and σ is the sigmoid function σ(x) = 1

1+e−x .

4. Experiment

In this section, we conduct extensive experiments on the constructed Exercises–
Concepts dataset of the Data Structure course to verify the effectiveness of our proposed
method for linking exercises to knowledge concepts. In the following, firstly, the Exercises–
Concepts dataset of the Data Structure course and the few-shot dataset construction are
introduced in detail. Then the compared methods and evaluation metrics of our exper-
iments are shown. Finally, we analyze the experimental results and the influence of the
main parameters.

4.1. Datasets

Exercises–Concepts dataset of Data Structure course: To study the problem of linking
exercises to knowledge concepts, we construct the Exercises–Concepts dataset of the Data
Structure course. Refer to MOOCCube_DS [44] data repository and Several national
planning textbooks, we extract 65 classic knowledge concepts. Subsequently, 2027 exercises
used in these textbooks are marked with the corresponding knowledge concepts. Details
are shown in Table 1.

Few-shot dataset construction: To simulate the few-shot situation, we reconstruct the
dataset in to the form of few-shot learning, where each example is the combination of a
query instance (eq, cq) and the corresponding K − shot support set S. Unlike the single-
label classification problem, instances of multi-label classification may be associated with
multiple labels. Therefore, there is no guarantee that each label appears exactly K times
during sampling. To address the problem, we approximately construct K− shot support
set S with the Minimum-including Algorithm [43]. It constructs a support set generally
complying with the following two conditions: (1) All labels in the original dataset appear
at least K times in support set S. (2) At least one label will appear less than K times in S
if any (eq, cq)pair is removed from it. For the original dataset, we sampled NS different
support sets. For each support set, we take the remaining data as the query set. Each
support-query-set pair constitutes one few-shot episode.

On the test stage, we constructed 10 different few-shot episodes for each selected
K-shot. Among them, support set is used to fine tuning model, and query set is used to test
the effectiveness of methods.
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Table 1. The number of each exercise linking to knowledge concepts. C represents the label of the knowledge concept, N denotes the number of exercise.

C N C N C N C N

Array 36 Sequential List 46 Bubble Sort 41 Binary Search 48

Logical Structure 48 Linked Storage Structure 48 Time Complexity 91 Generalized table 35

Heapsort 46 Physical Structure 35 Linked List 10 Matrix 35

Adjacency Matrix 35 Linear List 48 BT-Preorder Traversal 37 Tree-Degree 40

Algorithm 56 String 35 BT-Postorder Traversal 35 Tree-Depth 45

Queue 35 Tree 24 Minimum Spanning Tree 53 Graph 18

Recursion 39 Binary Tree (BT) 23 Topological Sort 45 Circular Queue 35

Complete Binary Tree 42 Binary Sort Tree 35 Depth First Search 5 Binary Tree-Threaded BinaryTree 35

Balanced BinaryTree 50 Huffman Tree 35 Breadth First Search 48 Shell’s Sort 60

Search 136 Data Structure 35 Connected Graph 47 Binary Tree-Inorder Traversal 13

Sequential Search 53 Sequential Storage Structure 35 Quick Sort 68 Merge Sort 35

Critical Path 60 Stack 35 Full Binary Tree 48 Space Complexity 35

Selection Sort 35 Strongly Connected Graph 57 Graph-Degree 35 Selection Sort 35

HashSearch 35 Muitl-way Search Tree 35 Adjacency List 37 Sort 28

Shortest Path 35 Binary Tree-Order Traversal 56 Doubly Linked List 35 Straight Insertion Sort 44

Cycle Chain 14 Undirected Graph 27 Oriented graph 36 Data 12

Double Circle List 8
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4.2. Baselines and Evaluation
4.2.1. Baselines

Traditional deep-learning-based multi-label text classification methods, such as XML-
CNN [12], MAGNET [13], require massive amounts of training data for model optimization,
which inevitably leads to performance degradation in the few-shot scenario. However, the
PLMs tuning multi-label text classification methods can provide a certain advantage in
the few-shot problem. Therefore, three PLMs tuning methods are conducted as compared
methods, the details are described as follows:

TextCNN [45]: The method uses a simple CNN with one layer of convolution on top
of word vectors for Sentence Classification. In our experiments, PLMs are used to learn the
representation of words, in addition, a multi-label classification layer is added to predict
labels. Notably, the method is fine-tuned on the support set to select the optimal model
and validated on the query set.

TagBert [46]: This is a model based on a large pre-trained model and a multi-label
classification layer. Following the parameter setting of a threshold-based multi-label
method, a fixed threshold tuned on the support set is used in the experiments.

BertFGM (https://github.com/percent4/keras_bert_multi_label_cls (accessed on 2 April
2021)): Based on the TagBert method, adversarial training [47] is introduced to increase the
robustness and generalization of the model.

The experimental setup of all the above methods is the same as that in TextCNN.

4.2.2. Evaluation

In our paper, the MacroF1 and MicroF1 are introduced to evaluate the effectiveness of
our proposed method. MacroF1 calculates the average of the F1 scores obtained for each
category, which can be formulated as (5):

Pt =
TPt

TPt + FPt

Rt =
TPt

TPt + FNt

Macro F1 =
1
| C |∑t∈C

2PtRt

Pt + Rt

(5)

where Pt represents the precision of each category, Rt represents the recall of each category.
TPt, FPt and FNt are the true-positive, false-positive and false-negative example of the t-th
label in the label set C, respectively. MicroF1 calculates the overall of the F1 scores, which
can be formulated as (6):

P= ∑t∈C TPt

∑t∈Y TPt + FPt

R =
∑t∈C TPt

∑t∈C TPt + FNt

Micro F1 =
2PR
P+R

(6)

where P represents the overall precision, R represents the overall recall.

4.3. Experimental Results
4.3.1. Experiment Settings

We evaluate the performance of our proposed method on the few-shot Exercises–
Concepts dataset. Because some concepts in the dataset have only 5 exercises, we select the
value K in K-shot as 1 and 5, respectively. There are some hyper-parameters that need to
be initialized in the above methods. Firstly, we introduce uniform settings in all methods.
The maximum length sequence is set as 512. These models are optimized by Adam with
batch size 4 and learning rate 1× 10−5. Then, the size of thresholds has an impact on final
performance. The thresholds are set as 0.10, 0.65, 0.82, 0.24 on 1-shot setting in TextCNN,

https://github.com/percent4/keras_bert_multi_label_cls
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TagBert, BertFGM and PTMLTC, respectively. On 5-shot setting, the thresholds are 0.08,
0.70, 0.85 and 0.20. The reported results are the mean and variance of the experimental
results on 10 randomly generated few-shot datasets.

4.3.2. Performance Comparison

Results of 1-shot setting:The results of the 1-shot exercise linking to knowledge con-
cepts are shown in Table 2. From the experimental results, we can have the following
observations. Firstly, we can observe that the results of MicroF1 and MacroF1 in the
PTMLTC method are 54.74% and 46.11%, respectively, which are far better than the other
three baselines. In the case of much training data, the performance of BertFGM is better
than the TagBert. However, added adversarial training in the few-shot problem obtains
interference information, which makes the classifier more indistinguishable. BertFGM
achieves worse results than the TagBert. Results of 5-shot setting: The results of the 5-shot
exercise linking to knowledge concepts are shown in Table 3. The results are basically
consistent with the trend of the 1-shot setting. Compared with the 1-shot setting, the results
of all methods have been improved in the 5-shot setting. These results demonstrated that
the increasing of training data improves classification performance. In addition, PTMLTC
has a smaller margin of advantage in 5-shot setting compared with 1-shot setting. It is
proved that the fewer the data, the more obvious the advantages of PTMLTC.

Table 2. Results of 1-shot on our dataset. Metrics marked in bold contain the highest metrics for
the dataset.

Method
1-Shot

Micro F1 Macro F1

TextCNN 6.60 ± 1.23 5.70 ± 0.89

TagBert 9.83 ± 0.77 6.05 ± 2.16

BertFGM 6.65 ± 2.47 2.11 ± 2.13

PTMLTC 53.86 ± 3.16 49.04 ± 3.42

Table 3. Results of 5-shot on our dataset. Metrics marked in bold contain the highest metrics for
the dataset.

Method
5-Shot

Micro_F1 Macro_F1

TextCNN 29.49 ± 0.62 29.84 ± 2.67

TagBert 47.06 ± 0.18 41.50 ± 6.90

BertFGM 34.72 ± 0.99 26.66 ± 3.12

PTMLTC 62.37 ± 0.43 58.84 ± 0.84

4.3.3. Ablation Study

We compare the effects with different PLMs. In our proposed methods, Bert [15]
and Roberta [48] models are adopted with bert-base-chinese (https://huggingface.co/
bert-base-chinese (accessed on 5 February 2022)) and chinese-roberta-wwm-ext (https:
//huggingface.co/hfl/chinese-roberta-wwm-ext (accessed on 6 February 2022)). Table 4
summarizes The results are summarized in Table 4, which shows the Roberta-based pre-
training model achieves better results than Bert.

The success of prompt tuning mainly owes to the template design and label words.
Different templates are designed in our method to discuss their effect. The details are
shown Table 5. The template was selected as “It belongs to [MASK]”, which obtains the
better result.

https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-chinese
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext
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Table 4. Results of different PLMs on our dataset. Metrics marked in bold contain the highest metrics
for the dataset.

Method
Micro F1 Macro F1

1-Shot 5-Shot 1-Shot 5-Shot

PTMLTC_Bert 50.74 ± 1.53 58.56 ± 1.50 46.11 ± 2.68 54.28 ± 1.47

PTMLTC_Roberta 53.86 ± 3.16 62.37 ± 0.43 49.04 ± 3.42 58.84 ± 0.84

Table 5. Results of the different design of the templates. Metrics marked in bold contain the highest
metrics for the dataset.

Templates
1-Shot 5-Shot

Micro F1 Micro F1 Micro F1 Micro F1

It belongs to [MASK]. 53.86 ± 2.74 49.04 ± 3.12 62.37 ± 1.05 58.84 ± 0.89

The concept is [MASK]. 50.98 ± 2.92 51.35 ± 2.15 58.44 ± 0.77 54.28 ± 1.15

The concept belongs to
[MASK]. 52.76 ± 3.13 46.83 ± 2.47 60.99 ± 0.37 53.85 ± 0.62

4.3.4. Parameter Sensitivity

Regarding our proposed method, in this section we have studied the influence of the
parameter, which is the threshold t in Equation (3). The experimental mode of control
variables is adopted, when one variable is changed, the other variables remain unchanged.
We randomly selected a dataset from the 1-shot and 5-shot few-shot datasets for verification.
After some preliminary tests, we found that the value of t will have a relatively large impact
on the effect, it can be ensured that the effect will not excessively fluctuate within a certain
range. The value set of t is [0.14, 0.16, 0.18, 0.22, 0.24, 0.26]. It can be observed from Figure 4
that t = 0.24 on the 1-shot setting and t = 0.2 on the 5-shot setting lead to the best results.

Figure 4. Effects of threshold t on two datasets.

5. Conclusions and Future Work

In this paper, a prompt tuning multi-label text classification method is proposed
to realize the link between exercises and knowledge concepts. The main idea is that the
relevance scores of exercise content and knowledge concepts are learned by a prompt tuning
model with a unified template, and then the multiple associated knowledge concepts are
selected with a threshold. On the constructed dataset, we compare the proposed method
with other baseline methods. The results show that PTMLTC achieves better performance
than other state-of-the-art methods in the evaluation metrics, and with fewer training data,
the advantage is more conspicuous. The knowledge concepts in the course bear a natural
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graph relationship, and our work ignores the relationship between them. Future work will
try to introduce the structural relationship between knowledge concepts into the model for
achieving better results.
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