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Abstract: Cybercrime has become more pervasive and sophisticated over the years. Cyber ranges
have emerged as a solution to keep pace with the rapid evolution of cybersecurity threats and attacks.
Cyber ranges have evolved to virtual environments that allow various IT and network infrastruc-
tures to be simulated to conduct cybersecurity exercises in a secure, flexible, and scalable manner.
With these training environments, organizations or individuals can increase their preparedness
and proficiency in cybersecurity-related tasks while helping to maintain a high level of situational
awareness. SPIDER is an innovative cyber range as a Service (CRaaS) platform for 5G networks that
offer infrastructure emulation, training, and decision support for cybersecurity-related tasks. In this
paper, we present the integration in SPIDER of defensive exercises based on the utilization of machine
learning models as key components of attack detectors. Two recently appeared network attacks,
cryptomining using botnets of compromised devices and vulnerability exploit of the DoH protocol
(DNS over HTTP), are used as the support use cases for the proposed exercises in order to exemplify
the way in which other attacks and the corresponding ML-based detectors can be integrated into
SPIDER defensive exercises. The two attacks were emulated, respectively, to appear in the control
and data planes of a 5G network. The exercises use realistic 5G network traffic generated in a new
environment based on a fully virtualized 5G network. We provide an in-depth explanation of the
integration and deployment of these exercises and a complete walkthrough of them and their results.
The machine learning models that act as attack detectors are deployed using container technology
and standard interfaces in a new component called Smart Traffic Analyzer (STA). We propose a
solution to integrate STAs in a standardized way in SPIDER for the use of trainees in exercises. Finally,
this work proposes the application of Generative Adversarial Networks (GANs) to obtain on-demand
synthetic flow-based network traffic that can be seamlessly integrated into SPIDER exercises to be
used instead of real traffic and attacks.

Keywords: cybersecurity; cyber range; 5G; machine learning; cryptomining; DoH

1. Introduction

The increasing complexity of cybersecurity threats, combined with the rapid develop-
ment of technological advances, such as 5G and the Internet of Things (IoT), has increased
the need for highly skilled cybersecurity professionals in various industries, especially in
fields where data sensitivity and infrastructure security are paramount, such as financial
institutions, transportation systems, energy systems, military, and healthcare systems,
among others. To respond to these challenges, organizations and public administrations
increasingly need their personnel to acquire more advanced cybersecurity skills to cope
with the relentless development of new cybersecurity attack strategies, and to be fully
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prepared to deal with these attack scenarios when they occur. In addition, cybersecurity
training programs must develop new skills and curricula to ensure that personnel are
trained to be able to respond effectively to threats at all levels, with a special emphasis on
the operational and tactical levels. To achieve this goal, it is necessary to educate cybersecu-
rity workers with innovative learning resources that provide them with a comprehensive
understanding of the security issues involved in adopting new technologies, as well as to
give them access to training scenarios that realistically represent the situations that may
occur in their organization, while providing them with the facilities to practice their skills
and develop and test preventive measures and countermeasures for these attacks in an
isolated, dynamic environment that can be easily adapted to meet the stringent demands
of this rapidly evolving landscape.

The use of cybersecurity simulation environments, also known as cyber ranges, is one
of the ways organizations can improve the cybersecurity awareness and capability of their
security personnel while keeping costs low. A cyber range is a controlled environment
in which cybersecurity professionals, students, or other participants learn how to react
to and mitigate cyber-attack simulations in a safe, flexible, and scalable manner. Cyber
ranges are based on realistic scenarios that model real-world cyberattacks based on typical
attack vectors and require cybersecurity professionals to interact with the environment and
use their skills to solve the problems presented. In this way, cybersecurity professionals
can acquire and practice cybersecurity skills in these scenarios while learning to react
to, mitigate, and, most importantly, prevent these cyber attacks in a timely and efficient
manner. The use of cyber ranges is not only highly effective in improving the cybersecurity
capabilities of the different roles and employees that collaborate on security-related tasks
but also helps increase the confidence levels of the personnel and enhance their situational
awareness to face attack situations in a more effective manner.

To acquire the skills needed to successfully overcome cyberattacks, it is not enough
for cybersecurity workers to learn the theoretical and scientific aspects of these attacks.
Instead, cybersecurity professionals must acquire a deep working knowledge of how
to deal with, identify, and mitigate cyberattacks. To achieve this, they need to better
understand how cybercriminals think and plan, as well as create countermeasures to defend
their networks and data. The cybersecurity field in particular, as well as other business
fields, is increasingly relying on Artificial Intelligence (AI), which plays a key role in
helping cybersecurity professionals detect, investigate, mitigate, and prevent cyberattacks.
On the one hand, AI can be used to improve existing cybersecurity processes with passive
detection. For example, AI-based software has been used to help organizations detect
signs of an impending cyberattack, such as detecting suspicious activity and network
intrusions, and develop protective measures to prevent their occurrence or countermeasures
to mitigate their effects [1]. On the other hand hand, AI has proven to be an effective tool in
helping organizations identify vulnerabilities that can be exploited in their cybersecurity
infrastructure to gain a foothold in the network [2]. Hence, AI can also be used to enhance
and support the training of cybersecurity professionals, who will be able to test their
cybersecurity skills in simulations and receive more effective and faster training to react to
and mitigate real-life cyberattack scenarios more effectively. In this way, AI can also support
cybersecurity professionals outside the training environment in their daily activities. In this
context, AI-based tools have a great potential to assist cybersecurity professionals and
organizations in the ongoing development of effective countermeasures to defend their
networks and data against the latest cyberattacks in this never-ending arms race.

In addition to the above benefits, AI also has the potential to greatly accelerate the
process of detecting and mitigating cyberattacks, enabling cybersecurity organizations
to respond to these threats more efficiently and effectively. One of the major hurdles
for cybersecurity is the time lag between the detection of a cybersecurity breach and the
implementation of effective countermeasures. This is due, in part, to the limitations of
human cognition and reasoning. In most cases, the process of finding a solution to a
cybersecurity problem involves tedious research and it also takes considerable time to
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develop and implement the necessary software solutions. AI can greatly assist in these
processes by acting as a “search engine” to speed up the process of finding the best solutions
and shorten the time needed to detect and mitigate cyberattacks. Therefore, AI-based
cybersecurity tools have the potential to significantly boost the cybersecurity performance
of organizations and individuals across industries and business sectors.

Furthermore, the use of AI methods presents great potential for identifying patterns
in encrypted traffic that can be used to detect malicious activity, an application area where
rule-based heuristic methods that power current Network Intrusion Detection Systems,
such as Snort, have proven ineffective. The integration of ML models during cybersecurity
operations has the potential to greatly reduce response times in the event of an attack and
uncover a number of relevant cyberattacks that might otherwise have gone undetected,
thus providing organizations with greater protection against cybersecurity threats than
existing methods. Therefore, it is important to train cybersecurity personnel to be able
to take advantage of these ML-based tools across a wide range of attacks, allowing them
to accurately and quickly discover and identify cyberattack vectors in real-time, enabling
faster development of effective countermeasures to attempt to mitigate the effects of the
attack as quickly as possible.

Moreover, as we noted earlier, an increasing number of cyberattacks are adopting ML-
based methods to penetrate targeted systems with advanced adversarial example-based
attacks that can circumvent the security of current cybersecurity systems [2]. For this reason,
it is crucial to introduce new cybersecurity capabilities in cyber ranges that incorporate ML
and AI into cybersecurity training procedures to ensure that cybersecurity professionals
understand how ML is used in practice and how it can help detect and mitigate these
advanced cyberattacks.

Finally, 5G and beyond 5G widespread adoption and associated telecommunication
technologies, such as NFV and SDN, are expected to pose new cybersecurity and privacy
challenges. As telecom operators deploy 5G networks, cybersecurity professionals must
become familiar with these new technologies and their underlying technical requirements
and challenges to address the potential impacts of future cybersecurity threats that can
target critical 5G infrastructure.

1.1. Contribution

We present, as a novelty, the integration in a cyber range of defensive exercises that
are based on the utilization of machine learning models as key components of the attack
detectors. The purpose of these exercises is to improve the training of security personnel
in different defensive scenarios and to train them on how to analyze the efficiency of ML
models compared to traditional rule-based methods.

Another novelty is that two recently emerged attacks, the cryptomining attack and the
DNS over HTTP (DoH) flooding, were selected as attack detection scenarios of the defensive
exercises we designed and integrated into the cyber range. These two exercises help to
exemplify how defensive exercises can be integrated into SPIDER. The cryptomining attack
was emulated to appear in the control plane of a 5G network, and conversely, the DoH
attack was set up to occur on the data plane of the network.

For didactic purposes, poisoning techniques for ML models were also introduced in
the DoH flooding exercise. Furthermore, and to the best of our knowledge, there is no work
in the literature that addresses the application of ML techniques to the detection of DNS
flooding attacks based on the DoH protocol.

A novel aspect of our solution is that the proposed exercises use realistic 5G network
traffic generated in a new environment based on a fully virtualized 5G network that we
specifically designed for this research work. This environment has been developed to be
fully integrated into the Mouseworld Lab [3], an open lab for 5G experimentation located
on Telefonica premises. In this new environment, we can emulate real 5G traffic in a
controlled way, on demand, and completely avoiding the need to collect data from a real
5G network infrastructure.
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Another interesting novelty of our solution is that once trained, the machine learning
models are deployed using container technology and standard interfaces in a configurable
component we designed and called Smart Traffic Analyzer (STA). Therefore, STAs can be
made available to the cyber range platform in a standardized way for use by the trainee
(e.g., blue team) in defensive exercises.

Finally, in this work, we leverage the application of the recently appeared Generative
Adversarial Networks (GANs) to obtain on-demand synthetic flow-based network traffic
that (a) mimics network attacks and normal traffic and (b) can be seamlessly integrated
into cyber range exercises to be used instead of real traffic. In contrast to other approaches
based on data augmentation solutions, our GAN-based solution generates synthetic data
that can fully replace real data (attacks and normal traffic). Our GAN solution has several
advantages: (i) addressing the existing shortage of publicly available network traffic
datasets containing attacks and normal traffic, (ii) avoiding the privacy violations that
could appear when real data are used in machine learning training and testing processes,
(iii) generating unlimited amounts of synthetic data for a concrete type of exercise, and thus
avoiding trainees always learning an exercise with the same set of real data, and (iv)
importing and exporting network traffic data from third parties (e.g., a set of federated
cyber ranges) without incurring any privacy violation as the shared data are synthetic.

1.2. Paper Structure

The remainder of the manuscript is organized as follows. Section 2 discusses related
work. In Section 3, we present the architecture of the integration of ML-based defensive
exercises in SPIDER and Section 4 details the processing model we adopted for the ML-
based attack detectors. The network traffic environment for the emulation of attacks and the
generation of realistic traffic is presented in Section 5. Furthermore, in Section 6, we explain,
in detail, the new subsystem added to the traffic generation environment that allows the
generation of realistic 5G network traffic. The Smart Traffic Analyzer (STA) is introduced in
Section 7, and the generation of synthetic traffic using Generative Adversarial Networks is
presented in Section 8. Section 9 provides a detailed explanation of two proposed exercises
based on the detection of the cryptomining and DoH flooding attacks and how they were
deployed in SPIDER. Finally, in Section 10, we summarize the main findings of this work,
discuss open challenges and present interesting future work to explore.

2. Related Work

Over the years, research on the design and development of testbeds for cyberattack
simulation has gained traction in the cyberspace community, and a new wave of studies on
the topic has begun to develop. Various cyber range solutions have been proposed, such as
NCR [4], DETERLab [5], SimSpace [6], EDURange [7], CYRA [8], KYPO [9], and CyRIS [10],
to name a few. Some efforts have been made in the development and integration of
models and tools, including virtual machines and sandboxes, for the simulation of cyber
attacks. Other articles address methodologies for defining simulation rules, and others
offer practical guidance on the practical aspects of attack simulation and the application
of this knowledge to the testing phase. Several comprehensive surveys on state-of-the-art
cyber ranges and other cybersecurity testbeds are available in the literature [11–13].

Although early examples of cyber ranges were based on physical infrastructure, more
recent proposals have migrated to virtual environments to simulate real networks to reduce
costs and improve flexibility [14,15]. By automating the cyber range setup procedure,
IT operators are freed from manual procedures that add to the time required to set up
and run complex cyber security scenarios. Reducing the overhead of provisioning the
network infrastructure required to run cyber range simulations can help cybersecurity
professionals increase the number of tests that can be run, which can help better prepare
cybersecurity professionals to improve network resilience. In addition, some studies have
analyzed various approaches to the design and organization of cyber ranges to foster their
adoption by security researchers and improve their overall effectiveness. A framework
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that establishes a robust methodology for properly conducting cybersecurity exercises
and evaluating participants, both cybersecurity professionals and non-technical trainees,
is described in [16]. Furthermore, Ref. [17] describes the experience gained from the
preparation and execution of cyber defense training.

Although we can find multiple examples of successful and well-designed cyber range
systems in the literature, to our knowledge, there are no works on cyber range systems that
are specifically designed to serve as a testbed for 5G cybersecurity testing and training. The
advent of 5G will pose new challenges to network security, as many new vulnerabilities
and weaknesses are likely to emerge. Presumably, attackers will try to exploit these
vulnerabilities and weaknesses to break into 5G network systems. Therefore, there is a
compelling need for reliable automated cyber range systems for 5G networks and beyond.
To address the lack of proposals in this area, the EU-funded SPIDER project [18] proposes an
innovative Cyber Range-as-a-Service (CRaaS) platform that will offer a fully virtualized 5G
network. In this context, and in order to address the 5G limitations existing in current cyber
ranges, our research work proposes a new testbed that can simulate a complete 5G network
in an emulation environment that virtualizes all necessary 5G network components. This
approach has the added benefit of enabling a simpler configuration without requiring
complex hardware components such as 5G-enabled base stations and access points to
emulate 5G networks. SPIDER leverages the testbed proposed in this work to provide
cybersecurity training programs to enable the testing, analysis, and evaluation of network-
integrated cybersecurity mechanisms in realistic 5G environments.

One of the major bottlenecks in cybersecurity research and real-life applications of
cyber range systems is the lack of good, publicly available datasets [19]. Another limitation
of current cyber ranges is the lack of mechanisms to create high-fidelity synthetic data that
can be used in cyber range exercises. Current studies, such as [20,21], operate directly on
traffic collected from existing networks. Thus, cyberattacks must be simulated on real or
virtual infrastructures that must be provisioned before execution, which has the problem of
being dangerous, slow, and inefficient. Other studies use a set of pre-defined scenarios with
network traffic collected beforehand [10]. This approach has the problem of being repetitive
for practitioners, as the attack scenarios offered are limited. In addition, the adaptability of
the trainee to variations in network conditions cannot be evaluated. To cover some of the
existing limitations, our work proposes the utilization of previous research on Generative
Adversarial Networks to produce generative models that can generate synthetic data on
demand that can substitute real data to be used for training exercises in various situations.

An important aspect of 5G technology is the emphasis on a high-capacity and ex-
tremely reliable network that has to handle a large number of potentially malicious and
untrusted applications embedded in the network. An overview of the main security chal-
lenges and threats to which 5G networks are exposed and solutions to address these issues
is presented in [22]. In this regard, several works have proposed the use of ML/DL tech-
niques to build models that can detect malicious network traffic automatically [1]. In fact,
we can find examples of cyber range systems that educate cybersecurity professionals on the
use of ML models for cybersecurity applications with the ultimate goal of improving their
operational performance, such as [23,24]. Although promising results are available, current
proposals require substantial improvements in terms of detection time and analysis of
potential threats in a real-time context and reliability of decisions, with particular emphasis
on the possibility of exploiting vulnerabilities related to the implementation or integration
of ML models. In addition, another aspect that is also overlooked in the current proposals
is the integration of ML models in a real-time environment and in a fully automated way,
where ML algorithms continuously analyze network traffic in parallel to the execution
of cybersecurity protocols, applications, and services. A crucial aspect of ensuring the
reliability and effectiveness of ML models is the validation of the model’s performance in
the operational environment in which it is to be deployed. However, this challenge has been
largely neglected in current proposals. Furthermore, current proposals for cybersecurity
applications lack the ability to detect multiple simultaneous threats from different sources
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in real-time. To address some of these challenges, our work proposes an architecture
that uses standardized components to effectively integrate ML-based attack detectors into
cyber range defensive exercises. Two recently appeared attacks, cryptomining and DNS
over HTTP (DoH) flooding, are used as support scenarios for two defensive exercises that
exemplify how to integrate ML-based attack detectors into SPIDER defensive exercises.

A relevant aspect of ML integration in cybersecurity applications is the possibility
of attacking the ML model to circumvent the defensive mechanism that has been put in
place to protect the system. This can be achieved by different means [25], such as poisoning
the training dataset or by creating adversarial examples that can fool the classification
algorithm and allow the attacker to pass undetected. Therefore, it is essential to consider
the ML model under attack when assessing its effectiveness in a security context. One
of the most common methods, due to it being practical and effective at the same time, is
model poisoning, which is the activity of altering the ML model in some way to induce
it to behave maliciously. These attack vectors that gravely threaten the security of ML-
based applications are a major concern in the applicability of such systems in real-world
environments. Due to the great importance of this issue, they have attracted the attention
not only of the research community and industry [26–29] but also of major standardization
bodies, such as ETSI [30], in recent years. To our knowledge, there is no cyber range
in the literature that includes exercises addressing the occurrence of poisoning attacks
against ML-based detection mechanisms. In contrast, one of the proposed exercises in this
work introduces this concept using a didactical approach to evangelize trainees about the
inclusion of proactive defensive mechanisms to improve the security posture of the system
against this type of attack.

3. Integration of Attack Detection Exercices in the SPIDER Architecture

5G networks rely heavily on virtualization technology, which allows agile service
deployment and the promotion of the “slicing” concept, which is one of the focal concepts
in 5G standardization forums (3GPP, ETSI, NGMN, etc.). However, in terms of security,
the widespread use of virtualization radically increases the attack vectors exposed by 5G
deployments. These attack vectors can be combined by hackers to manipulate part of
the infrastructure. However, the specificities of the 5G environment are such (usage of
NFVOs, SDN switches, and SDRs) that prevent the chance of a holistic training experience
for a trainee.

SPIDER is an innovative 5G cyber range platform that bridges this gap by being
able to address the functional requirements of security experts who want to verticalize in
the specificities of a 5G environment. SPIDER delivers a next-generation and replicable
cyber range platform for the telecommunications domain and its fifth generation (5G),
offering cybersecurity emulation, training, and investment decision support. It features
integrated tools for cyber testing, including advanced emulation tools, novel training
methods based on active learning, as well as econometric models based on real-time
emulation of modern cyber-attacks.

SPIDER’s training activities are supported by four different learning modalities: Theo-
retical Training, Emulation Training, Simulation Training and Security Awareness Training
through Gamification. The solution proposed in this paper was developed in the context
of the Emulation Training modality, in which the trainees are asked to interact physically
with a target deployed by SPIDER in a controlled environment, with the goal of hacking it
(for red teams) or defending it (for blue teams). In the context of this modality, our solution
specifically addresses the design and integration of defensive exercises to train blue teams
on the use of ML-based toolboxes (Figure 1).
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Figure 1. Integration of ML-based attack detectors in SPIDER defensive blue team exercises.

It should be noted that although the SPIDER cyber range has been designed as a
generic platform that can address both offensive and defensive 5G security training and
evaluation, in this work, we only focus on the defensive side of 5G security. Furthermore,
SPIDER also supports penetration testing exercises to train the red team in the use of ML
techniques to evade detection tools and discover new exploits in order to gain a deeper
understanding of the security vulnerabilities that exist in the technologies and procedures
involved in the deployment, testing, and operation of a virtualized 5G network. Because
the focus of this work is on defensive exercises, we will henceforth use the terms “trainee”
and “blue team” interchangeably in the text to refer to one or more individuals who are
actively using the SPIDER platform to train and evaluate their defensive skills in detecting
and mitigating attacks in a 5G network.

In the rest of this section, we detail the integration of SPIDER into defensive exercises
designed to train a blue team on the use of ML toolboxes for the detection of network
attacks. Although we selected two recently appeared attacks (cryptomining and DoH
flooding) to exemplify the processes, it should be noted that other defensive scenarios can
be integrated in a similar way.

Figure 1 details the architecture that we propose to integrate ML-based defensive
exercises in SPIDER. From a general perspective, the proposed integration is based on
the deployment in the SPIDER platform of a Smart Traffic Analyzer (STA), an ML-based
toolbox with standardized interfaces that contains several ML models designed to detect
an attack and a packet aggregator that groups packets into connections. During exercise
execution, the STA helps the trainee discover a specific attack (e.g., a cryptomining or
a DoH attack) more efficiently than traditional methods (e.g., rule-based systems). For
example, if the trainee is trying to detect a cryptomining attack, they select and activate an
ML model from those available in the STA with the aim of detecting the traffic connections
responsible for the cryptomining activity. Similarly, in the case of DoH attacks, the trainee
selects an ML model available in the STA to try to identify the traffic connections that are
responsible for the DoH attack. The STA ML model provides the trainee with the predicted
class for each connection and a score reflecting the model’s confidence in its prediction.
This allows the learner to monitor and identify traffic flows that are part of an attack in
real-time. During the exercise, in the event that a new traffic flow is identified as malicious,
the trainee receives a notification on an operational dashboard and is prompted to inspect
the traffic and propose an action accordingly to effectively mitigate the attack.

The classification between normal and attack connections made by the ML models is
the result of analyzing a set of informative features of each connection at a specific point
in time. These features are generated by the packet aggregator that runs in parallel with
the ML engine in the STA. The packet aggregator receives the packets that were generated
previously during the emulation of the attack in real-time, groups them into connections,
and computes the connection statistics at periodic time intervals. The aggregation of
packets into flows (connections) generates both statistics related to the entire flow (e.g.,
flow duration, bytes exchanged, etc.) and statistics related to the packets exchanged in the
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flow (e.g., inter-packet delay). Different packet aggregators can be used for this task, such
as the Tstat [31] and NetFlow [32] tools. The packets corresponding to an emulated attack
have been previously stored in the Network Traffic Repository in a pcap file. These packets
are sent to the STA component by the Traffic Injector, which reads them from the pcap file
and reinjects them into an isolated part of the SPIDER network where the STA can read
them. Note that the STA will receive the packets in real-time and in the same order as they
were generated during the emulation of the attack. The output of the ML engine is sent
to an operational dashboard (e.g., Kibana) to allow the trainee to observe the results and
the performance of the ML model during the detection of the attack. Section 4 details the
process conducted by the ML engine and the packet aggregator, and Section 7 explains the
STA architecture that contains both components.

During the realization of the exercise, an Evaluation Agent is responsible for monitor-
ing the progress of each trainee in the detection of the attack. At the end of the exercise,
the Evaluation Agent communicates with the Evaluation Engine to assess the trainee’s
performance in the exercise. The final score that reflects the mastery that the blue team
has achieved in the exercise is then made available on the SPIDER security operational
dashboard as learning feedback. The feedback provided allows the blue team to identify
specific areas for improvement and prepare for future exercises.

The attack and normal packets used in an exercise were previously generated by
emulating the attack through the user plane of a virtualized environment of a 5G network
in the Mouseworld Lab. In addition, the ML models running in STAs are also trained in the
Mouseworld Lab. The Mouseworld Lab is an emulation environment of a network digital
twin set up in Telefonica premises that allows the emulation of different attack scenarios
in a controlled way and collects all packets generated during the attack emulation, both
normal traffic and attack packets.

In the context of SPIDER exercises, the collected packets of an attack emulation con-
ducted in the Mouseworld are stored in a pcap file to be used in two different contexts:
(i) train ML models that can act as attack detectors in defensive exercises and (ii) rein-
ject the packets into the SPIDER network during the emulation of an attack as part of a
defensive exercise.

To prepare the Mouseworld Lab, the datasets required for training the ML models,
the packets of an attack, are grouped into flow statistics using the same aggregator and in
the same way as is in the STA during the execution of the exercise. Before flow statistics can
be used in the training of supervised ML models, labels need to be added to each of them
(e.g., a “0” to normal traffic flows and “1” to cryptomining flows). The annotation of flows
is performed by the Tagger component in the Mouseworld Lab. Once annotated, the set of
labeled flows can be used to train supervised learning models or as ground truth in unsu-
pervised methods. Once trained, the ML models are included in the corresponding STA for
the attack and exported to the SPIDER cyber range jointly with the pcap file that contain the
packets of the emulated attack. The packets and the ML models corresponding to an attack
are stored in the Network Traffic Repository and in the ML Models Repository, respectively,
with both repositories acting as links between SPIDER and the Mouseworld Lab.

4. Machine Learning Processing Model in SPIDER Exercises

Figure 2 describes the ML processing model we adopted in the SPIDER cyber range.
Using this processing model, the SPIDER platform can emulate a specific attack in an
isolated part of the network within the SPIDER platform in two different ways:

• Deploying clients and servers that replicate a realistic scenario of the network attack
and the normal traffic flowing through the network. In this scenario, packets are
generated in real-time (A in Figure 2).

• Using network traffic previously captured and stored in pcap files that contains the
attack and normal traffic packets. (B in Figure 2).
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ML
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[Flow id + inferred class + probability]

Dashboard, 
IDS
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(B) Pcap file 
(packets)

(C) ML Virtual Machine / Container
(D) ML Ingestion

Figure 2. ML processing model in SPIDER.

The current version of the SPIDER cyber range only implements the second approach,
and, therefore, the traffic containing the attack and normal traffic packets has to be gener-
ated externally in a separate system called the Mouseworld Lab.

The third component of the processing model is the ML Virtual Machine (C in Figure 2),
which is composed of a packet aggregator that inputs connections statistics to a trained
ML model. The last component of the processing model (D in Figure 2) deals with the
processing of the ML output that can be consumed and processed in different ways, such
as a monitoring dashboard or an Intrusion Detection System (IDS). For example, based
on some preconfigured policies, the detection of a cryptomining connection that is above
a certain confidence level causes an Access Control List (ACL) to be generated in order
to block that connection at the ingress router of that connection. In the SPIDER platform,
the output of the ML model will be sent to a dashboard so that the blue team performing
the exercise can analyze the results in real-time and make a decision, which will be assessed
during the evaluation of the exercise.

The ML models that are normally used in IDS and that we are going to integrate into
the SPIDER platform exercises usually work at the flow level (i.e., TCP or UDP connections).
Therefore, we will need to use a packet aggregator on connections to be able to extract
the statistical features of these connections over time, both for training and validation
of the ML models and to make inferences in real-time in the SPIDER platform exercises.
These will be the statistical features of a connection that will be passed as input to the ML
model so that the model can infer to which class the connection belongs. The output of the
packet aggregator will be sent later as input to the ML model to perform the corresponding
inference (e.g., the connection was detected as cryptomining or normal traffic with some
probability). Assuming a non-excessively large volume of packets transmitted during the
exercise, in SPIDER, we have adopted the open-source Tstat tool [31] to group packets into
connections and extract the statistical features of the connections. Note that commercial
packet aggregators (e.g., Netflow-based tools) can be used if the volume of packets to be
processed is exceedingly large for Tstat.

The processing model described above is how attack detection scenarios are integrated
into blue team exercises, in which different techniques not restricted to ML-based detectors
are tested in response to a specific attack. For example, the exercise may lead the blue team
to initially test traditional techniques (e.g., rule-based tools, such as Snort) and, if unable
to detect the attack accurately, move on to test different ML models with varying degrees
of training and hence accuracy and precision. The use of different ML models (or even
the same model trained with different degrees of intensity) allows the blue team to learn
that using a properly trained ML model is key if we want to detect attacks accurately and
effectively, especially when dealing with encrypted malicious traffic.

The STA component was created to facilitate the integration of this ML-based process-
ing model in the SPIDER cyber range. To that end, STA is based on container technology,
contains a packet aggregator and an ML engine, exposes clearly defined interfaces, and al-
lows the easy reconfiguring and parameterizing of the ML model running inside it. This
component is detailed in Section 7.
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5. Mouseworld Lab

The Mouseworld Lab [3], an emulation environment of a network digital twin set up
in Telefonica premises, is used to set up and emulate attack scenarios in a controlled way
and to generate and collect in a pcap file all packets of the attack and normal traffic to be
used later in cyber range exercises and during the training and testing of ML algorithms.
In SPIDER, when the exercise is started, these packets are reinjected into an isolated part of
the SPIDER network to emulate the occurrence of the attack and normal network traffic
(see Section 4).

The experiments that can be deployed in the Mouseworld Lab allow the capture,
storage, and processing of network traffic representative of the attacks to be reproduced in
the cyber range exercises. The processing that is performed on the network traffic captured
in the Mouseworld Lab was initially oriented toward the training and validation of ML
models for the detection of network attacks. To this end, the Mouseworld Lab provides
a way to launch clients and servers and collect the traffic generated by them, even if they
interact with clients and servers outside Mouseworld on the Internet.

This emulation environment allows configuring and executing specific attacks mixed
with normal traffic instantiating virtual machines that deploy specific attack clients con-
nected to real servers located at different points on the Internet. In addition, the emulation
environment allows configuring other virtual machines on which normal traffic clients and
servers (e.g., web, file hosting, streaming) are deployed. Finally, a commercial tool called
BreakingPoint from Ixia allows a wide variety of realistic traffic types to be configured and
injected into the network.

Once a configuration is deployed, all packets exchanged by the clients and servers
with each other and with other servers on the Internet can be captured. The captures are
stored in pcap format files in order to be used later for training and validation of ML-based
attack detectors. Furthermore, these captures can be used in the SPIDER exercises following
the processing described in Section 4 by reinjecting them into an isolated network segment
that the SPIDER platform has reserved for the exercise. In this way, the blue team can solve
the proposed exercises using (i) realistic network traffic and attacks stored in a pcap file
and (ii) the corresponding ML models that were previously trained in the Mouseworld
Lab with these network traffic data and that are leveraged as toolboxes for the SPIDER
exercises. In this way, the blue team can experiment with different ML models (or the same
model trained with different configurations of hyperparameters) and observe the system
response to the attack in terms of performance and accuracy of the threat detection strategy.
Finally, these captures can also be used to train the GANs component described in Section 8
to produce a synthetic data generator that can be used in cyber range exercises to generate
different data sequences and thus avoid an exercise always running with the same dataset,
as explained in this section.

The Mouseworld Lab has the ability to create or destroy different simultaneous sce-
narios and to launch different tests to generate traffic to be used for experimentation in
a controlled environment. Based on the NFV/SDN architecture, it has the capability to
create virtual scenario instances, isolate the traffic between scenarios in the experiments,
generate network traffic on demand, and capture it (using VNF probes). One key feature
of the Mouseworld Lab is the repeatability capacity, which allows us to evaluate different
mitigation tools or versions in the same conditions and using similar statistical patterns.
In the context of SPIDER, the combination of these characteristics allows the generation
of realistic cybersecurity scenarios that can be used by the blue team to practice and gain
confidence in the configuration and deployment of ML-based attack detectors.

6. 5G Traffic Generation

An essential part of the cyber range infrastructure is related to the possibility of
emulating 5G networks and the correspondent traffic depending on the specific scenario
being run in it. This means that the infrastructure must integrate the 5G network functions
(NFs) that make up the core of this type of mobile network, and some mechanisms must be
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designed and deployed to generate and inject traffic through this network. It is possible to
differentiate at least two types of traffic specific to 5G. On the one hand, the user-application
traffic (i.e., traffic generated by standard applications in User Equipment, such as web
browsers, streaming apps, etc.), and on the other hand, signaling traffic needed by the
core Network Functions for the correct functioning of the network (that is, PDU session
establishment, authentication processes, etc.).

To address the need to execute ML-based exercises in real 5G environments, a complete
5G network stack has been added to the Mouseworld Lab. This stack was designed using
VNFs and, therefore, is compatible with the NFV management framework. Additionally,
we developed custom software that is able to emulate a range of user equipment in terms
of signaling traffic while allowing us to capture and inject any user traffic from generic
sources in the 5G network. The rationale behind this signaling traffic generator/user traffic
injector tool is to be able to generate a wide range of different traffic scenarios without
needing the deployment of full User Equipment emulators or actual User Equipment with
radio access and gNB base stations to receive the traffic.

As there will not be actual radio stations in the infrastructure, the software implements
the protocols and functionalities between the stations and the network core, while the
communications between User Equipment and gNB are not actually being emulated.

We describe in the following subsections the 5G traffic generation tools that we have
designed and implemented in Mouseworld. In addition, we detail the 5G infrastructure de-
ployment.

6.1. 5G Traffic Generation Tool

For the generation of traffic that can be used in scenarios that use the 5G infrastructure,
we have designed and developed a tool that is able to inject signaling and real user traffic
in the deployed 5G core, being able to use services located in the virtualized environment
or in the Internet through the tool. The main goal of this tool is, consequently, to provide a
way of injecting traffic into the 5G core network-virtualized infrastructure without dealing
with actual Radio Access Networks and 5G-ready hardware. This tool acts as a signaling
NAS traffic generator that is able to communicate with the AMF NF in the 5G core by
emulating the operations of User Equipment in a real environment. The tool can perform
session management, UE registering and registering, etc. Additionally, it can maintain
tunnels that use the GPRS Tunneling Protocol (GTP) with a UPF in the core network and
send data through them. The user data to be sent through this tool, which acts as a broker,
is captured in a network interface and can have any virtual appliance or hardware machine
as a source as long as they are connected to the tool interface.

As there are no actual radio stations in the infrastructure, the software implements
the protocols and functionalities between the stations and the network core, while the
communications between User Equipment and gNB are not actually being emulated.

Figure 3 shows a simplified diagram of the traffic generation architecture. It is based on
the deployment of a virtualized 5G core in the cyber range infrastructure, composed of the
main Network Functions. The traffic generation software is then connected using virtual
network interfaces with the Network Functions that are usually connected to the gNB
base stations through the N2 and N3 interfaces (connected to the Access and Management
Mobility Function (AMF) and the User Plane Function (UPF)).

The traffic generation software is deployed in a virtual instance within the virtual
infrastructure of the cyber range, and it is equipped with as many virtual network interfaces
as needed to connect other virtual instances. These virtual instances would be in charge of
running network applications (web browsing, video streaming clients, traffic generation
clients, etc.) and, therefore, would act as the users of the 5G network in the emulated
environment. The traffic generated by these instances is captured and processed to be sent
to the 5G network. This means that, for each emulated User Equipment, a new session
is established, a new tunnel ending point is added, and all traffic is encapsulated using
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a GTP-User Plane (GTP-U) tunnel. The encapsulated traffic is sent to the UPF Network
function from the traffic generation software, and then it is routed to its destination.

Figure 3. 5G traffic generation architecture.

6.2. 5G Infrastructure Deployment

Both the NF implementation and the traffic injection tool have been deployed and
integrated into the Mouseworld environment. The goal of this integration is to provide
the project with the required 5G infrastructure for the execution of dataset generation tests
related to specific ML scenarios. These use cases aim to provide mechanisms in exercises
for the detection of attacks on the 5G infrastructure by hijacking instances in the 5G core or
by injecting malicious traffic through it.

The 5G core network NFs have been deployed using Docker containers inside a single
OpenStack instance using Docker bridge networking for the internal communications
between each module. Then, the Docker interfaces have been mirrored, allowing for the
capture of all the traffic (signaling and user traffic) that is shared outside and inside the
core network.

Figure 4 shows the Mouseworld integration for the 5G infrastructure. Mouseworld is
composed of various virtual appliances that act as clients or servers for different types of
traffic (video streaming, web pages, etc.). It also counts on an orchestrator that communi-
cates with all appliances through a management network and the possibility of monitoring
and capturing traffic for analysis, statistics, and dataset generation. It is also connected to
remote services through the Internet.

Figure 4. 5G core infrastructure and traffic injection tool (broker) integration in the Mouseworld Lab.



Appl. Sci. 2022, 12, 10349 13 of 37

The new appliances added to the existing infrastructure are in red in the figure. The 5G
core infrastructure has been integrated into a single instance, using Docker containers,
as explained before. Virtual links have been added to communicate the required containers
(specifically the AMF and the UPF) with other appliances in the environment. The UPF is
connected to an internal network that allows for the user traffic to reach the local or remote
servers through the Internet.

On the other hand, the traffic injection tool has been deployed in a different appliance
(shown as the broker in Figure 4) that is able to communicate with the AMF using signaling
traffic and is able to receive users’ traffic from the clients in the Mouseworld environment.
The traffic is tunneled and sent through the link connected to the UPF container in the
Dockerized 5G core.

The deployed 5G infrastructure has been adapted to the requirements of the scenarios
that are going to be tested using it, namely the cryptomining detection and DNS over HTTPS
(DoH) infrastructure attacks scenarios. However, the 5G infrastructure and connectivity
service are generic enough to suit different 5G network security exercises.

Additionally, any potential scenario may require the generation of different types
of traffic from the 5G clients, including background traffic, to be captured along the use
case-related traffic. Additional clients, linked with 5G session registering in the 5G core
control plane, are supported, using traffic generation tools for the generation of background
traffic to be injected into the 5G core network.

7. Generation of ML Toolboxes for SPIDER Exercises: Smart Traffic Analyzers

The ML infrastructure described in Figure 2 is deployed in a common framework,
named the Smart Traffic Analyzer (STA) toolbox, to deliver different ML tools into different
scenarios and exercises. This component acts as the link between the Mouseworld Lab and
SPIDER exercise scenarios. Once a new scenario is deployed and trained in the Mouseworld
Lab, then a new STA is produced and transferred to the SPIDER infrastructure to be used
in the corresponding exercises.

The solution depicted in Figure 5 shows how several tools (add-ons) are supported for
network traffic analysis exercises related to ML. The main component is the STA Service,
the internal logic and pipelines were introduced in Section 4, and the goal is to provide a
unique artifact as a CNF (Docker) that allows the use of different Machine Learning models
as well as the modification of the configuration files in order to adjust them to each scenario.
The current version of the STA service is customized by two files containing (i) the list
of features to be input to the ML model and (ii) the list of tags identifying the classes of
the ML output (e.g., crypto or normal traffic). ML model swapping can be performed
when starting or restarting the STA, indicating the location where the new ML model
is. Furthermore, STA integrates the capacity to configure the endpoint in the SPIDER
dashboard to deliver the classification events obtained while performing the exercises.

Figure 5. STA toolbox with two add-ons.
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The STAs are based on machine and deep learning models and can analyze network
flows (classify, predict, detect anomalies, etc.) without accessing the packet payload. STAs
can be applied in real-time scenarios (i.e., processing the packets received from the data
network) or as forensic tools (reading the packets contained in a pcap file).

The generation of an STA consists of four modules interacting in a pipeline in the
Mouseworld Lab:

1. A topology generator built on top of OSM (Open Source MANO) and OpenStack;
2. A Launcher component for deploying and running experiments;
3. A Tagger component that collects the network traffic generated by the Launcher and

labels it in an automated way and without expert intervention;
4. A Machine Learning Model Builder that encompasses the training and validation

processes of machine and deep learning models using the labeled datasets generated
by the Tagger as input.

In addition, a commercial tool from Ixia called BreakingPoint is integrated into the
process to enrich the traffic generated with a diversity of Internet protocols.

Figure 6 describes the traffic generation and the gathering and labeling processes:

1. The Launcher uses a customer network specification as input and runs experiments in
client machines that generate real network traffic that crosses not only the Mouseworld
network but also the Internet. Additionally, and with the aim of mimicking the
statistical distribution of Internet traffic patterns, the Launcher runs synthetic sessions
that generate network traffic from a collection of complementary Internet protocols
using Ixia Breakingpoint, a commercial tool that allows the generation of complex
patterns of synthetic traffic. The injection of these packets into the network is made in
parallel with the network traffic generated by the real clients and servers.

2. The packets transmitted in the network are collected using the tcpdump linux tool
and stored in pcap files. Then, the Tstat tool is used to group packets into flows (based
on the five-tuple of source and destination ip-address/port number and transport
protocol) and extract the corresponding statistics from them (e.g., number of packets
sent from client to server). Next, the Tagger adds, automatically and without human
intervention, labels to each flow using the log information output by the Launcher
during the execution of each experiment (e.g., the destination IP and port of a cryp-
tomining server are used to add a “crypto” label to all connections that match these
two values). In the last step, using as input the labeled datasets output by the Tagger,
the training and testing of supervised machine learning models are conducted.

Figure 6. Traffic generation and labeling.
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To complement this explanation, we detail the realization of a cryptomining attack
scenario on top of the Mouseworld Lab. This scenario, based on the generic setup of
Figure 4, will allow us to generate network traffic corresponding to normal connections
and cryptomining ones. After collecting all packets in a pcap file, the STA module will be
generated following the process described above. Both the pcap file and the STA module
will be stored in the SPIDER cyber range to be used later in the cryptomining exercises.
With the exception of the Machine Learning Model Builder, which is not represented in
the figure and can be run on a separate infrastructure, the rest of the components for the
generation of the cryptomining STA are deployed and run in the Mouseworld Lab. Note
that the training and testing processes of the Machine Learning Model Builder, which tend
to involve the execution of complex deep neural network architectures, are performed more
efficiently in GPU-based infrastructures. Therefore, this last stage of the process can be
executed on a more specialized computation infrastructure. When the training and testing
processes are finalized, the resultant model is exported as a file using a model-specific
format. The file containing the model will be stored later in an STA. Recall that STAs can be
configured with several ML models that can be selected and activated on demand, one at a
time, during the execution of the STA. Although several file formats are currently available
to store ML and DL models (e.g., “.h5” files using the Hierarchical Data Format (HDF), and
“.pkl” files using the Pickle serialization model), we strongly suggest using secure and open
formats, such as ONNX [33].

8. Generation of Synthetic Traffic with Generative Adversarial Networks

In this section, we detail an innovative solution that applies a recently appeared
generative model, named Generative Adversarial Network (GAN), to generate synthetic
on-demand flow-based network traffic that (i) mimics network attacks and normal traffic
and (ii) can be seamlessly integrated and used in SPIDER exercises.

A Generative Adversarial Network (GAN) [34] is a generative model in which two
neural networks, G, called the generator, and D, called the discriminator, compete to
improve their performance (Figure 7). From random noise provided as input, the generator
learns to generate new data that are statically similar to the real data, while the discriminator
learns to separate the generated data from the real data. The competition appears because
networks D and G try to improve non-simultaneously satisfactory objectives. On the one
hand, D tries to improve its performance in the classification problem, but on the other
hand, G tries to generate as best results possible to cheat D. This adversarial relationship is
the fundamental feature that allows the GAN generator to produce realistic synthetic data.

Figure 7. GAN architecture.
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After training a GAN, and due to the dimension of the noise vector, typically 100,
the generator can produce a theoretically infinite number of samples that follow the same
statistical distribution of the real data. Therefore, using a GAN per type of traffic (e.g., one
GAN for normal traffic and another for attack traffic), we can obtain as many samples of
each type of network traffic as needed.

Our GAN solution is based on a state-of-the-art GAN named Wasserstein GAN [35],
in which we substitute the activation functions of the output layer of the generator with
new activation functions based on the Smirnov probabilistic transformation [36]. This
innovative modification of a vanilla WGAN allows us to significantly improve the quality
of the generated data regardless of whether the data distribution is continuous or discrete.
In contrast to other existing approaches in the literature that are based on data augmentation
solutions, our GAN solution generates synthetic data with such high fidelity that synthetic
data can fully replace real data (attacks and normal traffic) in ML training processes,
obtaining equivalent performance when the resultant models are tested with real data.
This solution has two clear advantages: First, we address the existing shortage of publicly
available network traffic datasets containing attacks and normal traffic, and second, we
avoid the privacy violations that could appear when real data are used in ML/DL training
and testing processes. In [36–38], the reader can find all the technical details of the GAN
techniques we applied to our solution.

Besides the use of our GAN solution for training and validation of ML models, syn-
thetic network traffic and attacks generated by our GANs can be used in cyber range
exercises to generate different data for a particular type of exercise and prevent blue teams
from always learning the exercise with the same data. In this way, a learner can repeat
the same exercise using different data instead of always working with the same set of
labeled traffic, which brings no advantage from a learning point of view. For example,
having trained a GAN model to replicate a given type of attack (or normal traffic), we can
generate as many attacks of such type as required. Therefore, even if the blue team repeats
an exercise several times (rounds), the analyzed attacks and normal traffic are not going to
be exactly the same in each run of the exercise.

In addition, red teams can also use our GAN solution in penetration test exercises
to generate realistic attacks that never contain the same attack data, even if the launched
attacks are of the same type. Thus, the robustness of an IDS against a type of attack can be
evaluated by launching many different synthetic samples of the same attack.

Finally, a cyber range can import datasets from third parties containing attacks and
normal traffic that are subject to privacy or anonymity restrictions. As the network data
used in the exercises by the blue and red teams are the synthetic ones generated by our GAN
solution, no breach in privacy appears during the realization of such exercises. Moreover,
exporting attacks and normal data (e.g., to other platforms in a federated cyber range)
can be performed without incurring any privacy violation as the exported data to be
shared with a third entity are exclusively the synthetic network traffic generated by our
GAN solution.

In Figure 8, we detail the way in which the synthetic traffic generated by our GAN
solution can be integrated into SPIDER exercises and, in particular, in the ML processing
model. Currently, we have developed and trained GANs for defensive exercises that can
replicate with high fidelity the flow statistics of network attacks and normal connections.
As can be seen in the figure, the GAN generator directly feeds the ML engine (solid red
line). It is worth noting that from a functional perspective, the trainee (blue team) will
not observe any difference during the exercise between receiving synthetic or real flow
statistics since the ML engine will receive the input data with the same format either way.
Nevertheless, future versions of our GAN solution (dotted red line) will be able to generate
realistic sequences of network packets (attacks or normal traffic) that will be fed to the ML
engine (contained in the STA module) in the same way as we feed the ML engine using a
pcap file.
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Figure 8. Integration of GAN synthetic traffic into ML model.

9. Exercises

SPIDER training exercises consist of instructing the trainee in the use of ML tools to
detect different types of cyber-attacks, with a focus on the correct interpretation of model
results to enable the development of successful strategies to effectively mitigate ongoing
attacks. During the training process, the trainee will be able to evaluate the detection
performance of a variety of ML models and classical rule-based methods and compare
the results between them in the SPIDER dashboard. Specifically, in an attack scenario,
the trainee acts as a member of the blue team and is tasked with obtaining the confidence
values of several ML models in detecting attack traffic in order to choose the most effective
one for the task. In addition, during the process, the learner is asked to answer some
questions to assess the learning outcomes.

In order to teach specific detection methods for two different attacks (cryptomining and
DoH flooding attack detection), two separate exercises have been created. Both exercises
include a guide to follow, which contains instructions, tips to help solve the proposed
assignments, questions to reflect on the topics, and tasks to complete. At the end of each
session, the user will be able to observe the final result along with all the tasks that they
completed correctly.

It is important to note that both scenarios rely on two command line interfaces that
allow remote execution of commands on the designated virtual machines that will serve as
the training environment. One of the terminals will be used to inject traffic into the other,
which will process it in different ways depending on the task at hand. The two exercise
scenarios are described in the following subsections. In addition, in the last subsection, we
explain the details of the performance evaluation of the exercises executed by the blue team.

9.1. 5G Cryptomining Attack Detection Scenario

In this section, we describe the cryptomining attack detection scenario that occurs
in the control plane of a 5G network. First, we introduce the cryptomining attack. Next,
we present details on the integration of the ML/DL models into the training scenario
for this particular attack. Then, we describe the proposed exercise to train cybersecurity
professionals in the use of traditional and more advanced ML/DL-based methods to detect
cryptocurrency attacks on a 5G network in real-time.

9.1.1. Cryptomining Attack Description

One of the most discussed threats to 5G is the possibility of leveraging the computa-
tional resources provided by the network to perform cryptomining attacks. Cryptomining
is a process of validating transactions on a decentralized cryptocurrency blockchain. The at-
tack works by creating a botnet of devices, called miners, which are used to validate
transactions and receive rewards in the form of digital currencies, such as Ethereum (ETH)
and Monero (XMR).
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The attacker can use devices that are already infected with malware or can infect new
devices, hijacking their resources to create the botnet for mining. Attackers can use various
ways to infect devices, such as spreading malicious links on social networks, using phishing
attacks, or spreading malicious applications.

In addition, the attacker has to choose the cryptocurrency to be mined and the mining
pool that they want to join to validate transactions. A mining pool is a service that allows
miners to combine their resources to validate blocks of transactions and receive rewards in
exchange. Once the attacker has collected all the pieces, they can set up the botnet to mine
cryptocurrencies for the criminal’s benefit.

To detect cryptomining traffic in a timely and accurate manner, the network is the best
place to identify these types of attacks [39]. However, detecting cryptocurrency mining
activity on the network can be challenging, as encryption methods have been adopted
in most of today’s network protocols. For example, the attacker can use the SSL/TLS
encryption protocol to hide the cryptomining protocol in the payload of the encrypted
communication. For this reason, classical techniques of Deep Packet Inspection (DPI)
or identification of mining pool domain names (in the case of using encrypted SNI or
web proxies) are ineffective in detecting mining activity in today’s networks and more
sophisticated techniques are needed to prepare today’s cybersecurity professionals to deal
with these problems in real-life situations.

To effectively mitigate these threats, ML/DL techniques can be used to train models
that can accurately identify the presence of cryptomining traffic in real-time, even if it is
encrypted, using a set of salient flow features collected at the network and transport lev-
els [39]. In this exercise, we ask the student to attempt rule-based detection of the presence
of encrypted and non-encrypted cryptomining traffic on the network using traditional
NIDS, such as Snort. Afterward, we ask the student to take advantage of an ML/DL-based
cryptomining detector provided as part of the STA module to more effectively identify the
presence of cryptomining traffic on the network.

9.1.2. Cryptomining Attack Detection Using Machine Learning

Detection of cryptocurrency mining activity has traditionally been performed by
identifying system or network anomalies that are not usually present in a normal situation
and may be indicative of some form of attack or compromise. In the case of system anomaly
detection, it is common to use features such as CPU, GPU, and memory usage and power
consumption metrics to detect unusual activity on systems that may be related to the
specific kind of attack under study [40]. However, this approach is not always effective,
as cryptocurrency mining activity may be conducted in such a way that avoids raising
the alarm to system administrators, and it is also not always applicable, as monitoring
access to internal systems is not possible in many cases due to privacy or security concerns.
In the case of detecting cryptocurrency mining activities at the network level, anomaly
detection focuses on network traffic to identify suspicious activity, the most common
method being DPI (Deep Packet Inspection). DPI is a well-known technique for detecting
network anomalies by intercepting, inspecting, and analyzing network traffic with protocol-
specific detection engines that look for known patterns in the payload, abnormal bandwidth
consumption, network communication anomalies, or the use of unusual ports or types of
traffic. However, DPI is not very effective in detecting cryptomining activity since traffic is
usually encrypted, and even in the case of unencrypted traffic, relevant information such
as traffic type and packet content can be disguised using various cryptographic techniques
implemented at the application layer.

Consequently, recent approaches to detecting cryptocurrency mining activity have
been geared toward using ML/DL algorithms to characterize and detect unusual patterns
in network behavior that may be indicative of cryptocurrency mining. However, to date,
few studies have been conducted to detect cryptocurrency mining activity at the network
level using this approach. Among them, a study conducted by Muñoz et al. [41] evaluated
four different ML techniques: Naive Bayes, Support Vector Machine, CART, and C4.5



Appl. Sci. 2022, 12, 10349 19 of 37

to detect cryptomining activity for five different cryptocurrencies (Bitcoin, Bitcoin-Cash,
DogeCoin, LiteCoin, and Monero) from unencrypted cryptocurrency flows. This work
presents an alternative to the use of DPI that uses eight different features derived from
NetFlow/IPFIX metrics to detect cryptocurrency mining activity from network traffic.
Therefore, the proposed approach does not require payload access, and only network
flow statistics are used to perform the task. In their results, they showed that the CART
model was able to distinguish cryptocurrency flows from normal traffic with high precision
while being able to identify the cryptocurrency being mined. It should be noted that the
identification of the particular cryptocurrency being mined by the attacker would only be
effective in the real environment for the five different cryptocurrencies that were considered
in this study, and the results for other types of cryptocurrency mining activities would not be
correct and cannot be relied upon. Considering the diversity of the cryptocurrency mining
landscape in terms of the number of available cryptocurrencies, this would inevitably
cause uncertainty in the identification of the cryptocurrency being mined and, therefore,
the utility of this method is limited for actual use in the real environment. However, despite
the positive results obtained in this study in terms of prediction accuracy, it is important to
remark that the work presented by Muñoz et al. is limited only to unencrypted Stratum
protocol traffic, which represents only a small fraction of mining activity, and, therefore,
their approach lacks utility for real-life applications.

In contrast to the work presented by Muñoz et al., the approach followed by Pas-
tor et al. [39] uses a much larger feature set, consisting of a total of 51 informative features
that were extracted using the Tstat tool. In addition, more complex models, such as Random
Forest and Deep Neural Networks, were applied to increase the accuracy and improve
the identification of cryptocurrency mining activity. More importantly, encrypted traffic
was also taken into account in this work, providing a more realistic approach to detecting
cryptocurrency mining activity at the network level for real-life scenarios.

Following a more traditional direction, Swedan et al. [42] proposed a method to detect
and block unencrypted cryptocurrency mining connections originating from a web browser
when the user visits web pages that have embedded third-party resources dedicated to
performing cryptocurrency mining as a background activity while the user navigates (e.g.,
CoinHive, Crypto-Loot). Their approach is based on the deployment of a proxy server
within the local network and the use of DPI to analyze real-time traffic and detect and block
web pages calling cryptomining scripts. However, this approach has several disadvantages.
First, it does not cover all types of mining traffic, as it only applies to traffic generated by the
web browser and, therefore, considerable cryptomining activity may go unnoticed. Second,
using DPI to analyze real-time traffic is a very demanding process that requires a large
number of computational resources to be effective and also fast enough to enable the real-
time detection of cryptomining activity. Third, the use of DPI to analyze real-time traffic
can negatively affect the user experience when browsing the web if a high number of false
positives are triggered by the detection mechanism. Finally, this approach is not applicable
to encrypted traffic, which, as mentioned above, represents a considerable percentage of
traffic on today’s Internet.

The method we apply in this exercise follows the same approach proposed by [39].
We train complex ML models using a large set of network features obtained from flow
statistics to perform cryptomining activity detection for both non-encrypted and encrypted
connections with a high level of accuracy.

9.1.3. Application and Integration of Machine Learning for Cryptomining Attack Detection

To train our ML models, we used the tagged datasets that were described in Section 7.
In this case, each row of the dataset was tagged as either 0 (normal traffic) or 1 (cryptomining
attack traffic) using the IPs and ports of the known attack connections. Once we had access
to this dataset, we used Python’s sklearn library [43] to train a Random Forest Classifier to
predict whether a connection corresponds to cryptomining activity or not according to all
the features derived from the Tstat statistics, except IPs and ports, as they are used to label
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the dataset (class labels) and, therefore, cannot be used to train the model. Although the
accuracy of the model using all these features is already high, many of these features do
not contribute significantly to the prediction and can be ignored to improve the training
and inference efficiency of the model. Therefore, we decided to make a random selection of
commonly used features and managed to reduce the input needed to ten features while
only reducing the F1-Score by less than 5% in our testing data. In this exercise, we selected
only ten features in contrast with the DoH exercise, where we chose a large number in
order to show the trainee that ML models can use different sets of features even when they
are going to be applied to the same task. The ten features used for the generation of this
model are listed in Table 1. Note that some features are sometimes separated into Client to
Server (CS) and Server to Client (SC) communication. These features appear in the table
with different CS and SC identifiers.

Table 1. Tstat selected features for cryptomining attack detection.

CS SC Name Metric Description

3 17 packets - Total number of packets observed from the client/server

5 19 ACK sent - Number of segments with the ACK field set to 1

7 21 unique bytes bytes Number of bytes sent in the payload

8 22 data pkts - Number of segments with payload

9 23 data bytes bytes Number of bytes transmitted in the payload, including
re-transmissions

For didactic purposes, we decided to create three different models with varying levels
of precision, which could teach the blue team that ML tools are not fool-proof and can
sometimes offer wrong results if trained incorrectly. The hyperparameters that we decided
to modify in this case were the number of estimators and the maximum depth of each tree.
The Random Forest Classifier creates a number of decision trees with a certain depth that is
used to infer a class. The number of decision trees that the algorithm will create is controlled
by the n_estimators attribute, while the maximum depth of each decision tree is controlled
by the max_depth attribute. As these numbers become smaller, the algorithm will have
fewer decision trees to contrast an estimation and will be able to create decision trees with
less complex solutions. Therefore, both of these parameters can negatively impact the
model performance if they are not correctly adjusted for the problem at hand. A manual
selection of values for these hyperparameters was performed to obtain a variety of models
with different performance levels. We list these values in Table 2.

Table 2. Hyperparameters for each cryptomining Random Forest Classifier model generated

Model Name Max. Depth Num. Estimators

crypto_spider_5g_rf_10_a.pkl
(Good performance) Unlimited 100

crypto_spider_5g_rf_10_b.pkl
(Medium performance) 8 3

crypto_spider_5g_rf_10_c.pkl
(Bad performance) 4 1

The quality measures of Table 3 show how the variation in the hyperparameters affects
the model’s precision and the generation of false positives and false negatives. The quality
measures we have taken into account are the F1-Score, the balanced accuracy (which is
an accuracy metric that takes into account the unbalanced classes of our dataset), and the
confusion matrix.



Appl. Sci. 2022, 12, 10349 21 of 37

Table 3. Quality measures of cryptomining traffic classification models. In the confusion matrices 0:
NORMAL, 1: CRYPTO, where rows represent true values and columns predicted values.

Model Name Quality Measure Score

crypto_spider_5g_rf_10_a.pkl
(Good performance)

F1-Score 0.954
Balanced Accuracy 0.956

Confusion Matrix
0 1

0 421,968 0
1 144 1494

crypto_spider_5g_rf_10_b.pkl
(Medium performance)

F1-Score 0.822
Balanced Accuracy 0.855

Confusion Matrix
0 1

0 421,940 28
1 475 1163

crypto_spider_5g_rf_10_c.pkl
(Bad performance)

F1-Score 0.463
Balanced Accuracy 0.678

Confusion Matrix
0 1

0 421,669 299
1 1054 584

The results of Table 3 also reflect the didactic value of this exercise. By testing real
traffic against these different models, the blue team will be able to easily observe the
contrasting results shown by a decrease in result confidence and inconsistency in detecting
attacks in the worse models. This exercise thus provides a scenario that is very similar
to a real-life situation, proposing the evaluation of different ML models to check their
performance in practice and allowing the end user to judge which one is best suited to their
needs. In this way, we teach the student how to extract the full potential of this technology
while highlighting the possible pitfalls that can occur when it is applied incorrectly.

9.1.4. Description of the Cryptomining Attack Exercise

The scenario consists of two VMs communicating with each other, as shown in Figure 9.
The first VM uses the tcpreplay tool to replay real network traffic from a given PCAP file.
This network traffic belongs to existing signaling communication in the 5GCore based on
the use of service-based interfaces (HTTPS) and is generated by user activity in the 5G
network (login, registration, deregistration, handover, etc.). Furthermore, there is traffic
related to cryptomining activity by an infected component on 5GCore. Network traffic
is generated and stored in a PCAP file in the Machine Learning Lab for this exercise.
The second VM consists of the three components described below.

• softflowd component: This component receives network traffic, processes it, and sends
it to the ELK component for display.

• Snort component: This component uses a set of rules to identify unencrypted cryp-
tomining connections from the received network traffic. It also sends alerts to the
ELK component.

• STA Machine Learning component: This component uses the Tstat tool for feature
extraction, processes the obtained data, and makes inferences for each connection. It
also sends the labeled connections to the SPIDER control panel for visualization.

The trainee will have to use each of these components effectively to solve the proposed
exercises. All the phases and processes the blue team needs to perform to complete the
cryptomining exercise are described in Figure 10. In the following paragraphs, we describe
the exercise and expand upon its different phases.
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Figure 9. Cryptomining discovery scenario.

Figure 10. Cryptomining scenario phases.
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In the exercise introduction of Phase A, the blue team is asked to assume the role of a
security expert in the SOC (Security Operative Center) of a 5G cloud infrastructure provider.
In this scenario, the user receives a ticket from the 5G operator team, reporting that they
are experiencing performance problems in their service. The user must, therefore, analyze
the traffic provided to them, detect the compromised devices, and identify the malware
in the form of encrypted and non-encrypted cryptomining attacks that are impacting
the performance. To that end, the user is asked to follow steps that include different
detection strategies, including Netflow analysis and the STA component with several
inference engines customized for cryptomining detection. Before starting the exercise,
as represented by Phase B, the blue team is asked to execute a command that will reset
all logs and dashboards of the scenario. In that way, the exercise can be performed in a
clean environment. The blue team will also have access to this command to reinitialize the
environment and restart the exercise from the beginning in case it is needed.

Part 1: Capturing Flows with Netflow

The first part of the scenario contains the instructions for analyzing 5G cryptomining
traffic using the softflowd tool, as depicted in Phase C. The blue team will be tasked with
starting a container with the tool using a command prepared on the first machine, which
we will refer to as VM1. Once the container is active, the blue team will be able to inject 5G
traffic into it, which contains a mixture of normal and cryptomining attack traffic. To do this,
the blue team will run another ready-made shell script on the traffic-generating machine,
which from now on, we will call VM2. After executing the traffic injector command, the blue
team will be able to visualize the generated statistics on a Kibana dashboard. Using the
statistics shown in the Kibana dashboard, the blue team is tasked with extracting some
basic information regarding the traffic distribution, such as the most used ports. The blue
team will also be able to use different filters to explore the characteristics of the traffic using
different features, such as IPs or protocols in an attempt to distinguish between normal
and cryptomining traffic. However, the main goal of this section is to lead the blue team to
the conclusion that this information is not enough to monitor and protect a 5G network,
as the softflowd tool merely provides basic information about the current traffic, such as
origin and destination IPs and ports, which cannot be directly used to infer a cryptomining
attack automatically. The next section will help teach the blue team how to identify the
cryptomining activity.

Part 2.1: Identifying Cryptomining Activity with Snort

In this section, which corresponds to Phase D, the blue team will be tasked with
identifying cryptomining attacks using the Snort tool in VM1. This tool is provided in
a different container, and a different command is made available to start it. The blue
team will have to send traffic to the tool from VM2, which can be performed in the same
way as described in the previous section. Back in the Kibana dashboard, the blue team
is tasked with observing the alerts generated by Snort. However, after performing this
step, the trainees will discover that Snort does not display any alerts because the rules are
intentionally not correctly specified. The reason is to familiarize the blue team with the
format of Snort rules and to get them to invest effort in researching their correct specification.
The blue team is responsible for modifying existing rules to allow Snort to correctly identify
cryptocurrency traffic and send alerts to Elasticsearch. After researching the resources
provided in the instructions, the blue team will be able to edit a specific configuration file
and lay out the rules to detect cryptomining connections from Monero pools. The blue
team will then be able to test their rules and observe the alerts displayed in the Kibana
dashboard. Using the results, the blue team is then asked to provide the IPs that have been
identified by Snort as belonging to Monero pools and thus being flagged as cryptomining
attacks according to the specified rules. The blue team is then asked to reflect on the type
of traffic with which Snort can be used and will come to the conclusion that this tool will
be completely ineffective in detecting attacks that use encrypted traffic. As a solution to
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this problem, the next step discusses the use of the STA component for the identification of
both encrypted and unencrypted cryptomining traffic.

Part 2.2: Identifying Cryptomining Activity with STA

In this step of the exercise, the blue team will be provided with three different ML mod-
els, trained with the same dataset to detect cryptomining activity. The difference between
these three models is the hyperparameters used to train them, which will greatly influence
their performance and the confidence of their predictions. In Phase E1, the blue team will
be tasked with starting the STA containers in the VM1 with the provided command and
restarting it with a different model each time. In Phase E2, by sending traffic from the
VM2 using the methods described in the previous sections, the STA container will be able
to analyze it. In the Kibana display, as part of Phase E3, the blue team will be able to see
the classification of the traffic in real-time and analyze the confidence of the predictions,
as well as the IPs and ports that are being classified as cryptomining attacks. The Kibana
dashboard also displays the average confidence of the predictions, which the blue team
will have to analyze along with the number of attacks detected to determine the best model
of the three. Once the blue team has decided which is the most effective model, they will
be provided with a command to compare the hash of their selected model against the truly
best one in order to determine if their answer is correct. The blue team will also be tasked
with providing the IPs of the flows that the selected model has classified as cryptomining
attacks. Finally, the blue team is asked to reflect on the differences and advantages between
this method and Snort. In particular, the blue team is expected to conclude that Snort
will have trouble detecting cryptomining attacks when traffic is encrypted, a situation in
which the use of rules for attack detection is completely ineffective. However, since the ML
models integrated into the STA component are trained to detect these cryptomining attacks
without having to rely on the payload as they are based on flow statistics, the use of ML
models can overcome Snort’s limitations in this regard. Furthermore, the trainee has to
conclude that ML performance is not guaranteed and, therefore, appropriately trained ML
models should be used to obtain the best performance.

9.2. DoH Flooding Attack Detection Scenario

In this section, we describe the DoH flooding attack detection scenario that occurs in
the data plane of a 5G network. First, we provide an explanation of the DoH flooding attack
scenario. We then introduce the integration of ML/DL models into the training scenario
for this particular attack. Finally, we describe the proposed exercise to train cybersecurity
operators in the use of traditional and more advanced ML/DL-based methods to detect
DoH flooding attacks in a 5G network.

9.2.1. DoH Flooding Attack Description

DoH is a DNS query transport protocol that has become widespread in recent years. Its
purpose is to allow DNS queries to be sent and received over an encrypted connection, thus
ensuring privacy and protection against attacks such as DNS spoofing or eavesdropping.
The standard DNS protocol transmits information in plain text and, therefore, does not offer
any sort of protection against malicious actors. Using the DoH protocol, the communication
between the DoH client and the DoH server is protected by the HTTPS protocol, which uses
the TLS/SSL security protocol to encrypt information. In this way, DNS queries remain
private and, therefore, the domain name of the websites accessed by users is hidden from
the network infrastructure owner.

Attackers can abuse DoH to launch a DoH flooding attack. DoH flooding is a DNS-
based denial-of-service (DoS) attack that consists of flooding a DNS server with a large
number of DNS queries to overload its network bandwidth and computational resources
in order to prevent it from processing legitimate queries [44]. For this purpose, the attacker
will send many DNS queries to the DNS server. One of the main features introduced by the
DoH protocol is that users can bypass local DNS resolvers and instead query a DoH server
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directly, thus completely hiding queries from network operators. For this reason, DoH
traffic will appear as regular encrypted traffic on the network. Therefore, this malicious
traffic sent by the attacker will not be able to be filtered on its way through the network
and will inevitably reach the DNS resolver. The DNS server will be unable to process all
queries it receives due to its high number, leading to a DNS server DoS. It is important to
note that the DNS flooding attack should not be confused with a DNS tunneling or DNS
data exfiltration attack because, although they also rely on sending a large number of DNS
queries to carry out the malicious activity, their purpose is not to exhaust the DNS server
resources, but rather to exfiltrate data from the network.

Despite its simple nature, this attack can cause significant overload on DNS servers
and can result in complete denial of service for DNS servers, making the 5G network
unavailable for legitimate users to perform this task. For this reason, it is important for
cybersecurity operators to be able to detect signs of this attack on a 5G network. Since DoH
is an encrypted communication protocol, detecting this attack will require more advanced
methods, such as the use of ML/DL models, as traditional rule-based NIDS, such as Snort,
are known to be ineffective and impractical in this context. Moreover, even for unencrypted
DNS flooding attacks, these traditional defensive methods are known to be very inflexible
and can be easily evaded. For this reason, traditional methods cannot be relied upon when
dealing with critical infrastructure, and more advanced methods are required. Therefore,
to address this critical issue, in this exercise, we propose training cybersecurity operators
in the use of these more advanced ML/DL-based methods to successfully deal with this
threat and demonstrate their advantages over classical methods.

9.2.2. DoH Flooding Attack Detection Using Machine Learning

To effectively protect against DNS flooding attacks, it is crucial to prevent this ma-
licious traffic from reaching the targeted DNS servers. For this reason, detection and
mitigation of this type of attack are typically performed at intermediate nodes in the net-
work by analyzing DNS traffic (i.e., DNS queries and responses) in transit to and from
DNS servers. DNS flooding attacks can be detected and filtered at the network level with a
variety of methods based on the statistical analysis of DNS packets. This can be achieved,
for example, by blacklisting domains or source IPs or by analyzing the frequency of DNS
resolution performed by each client and dropping its packets if abnormal behavior is
observed [44,45]. However, since DoH encapsulates DNS traffic using the HTTPS secure
protocol, DoH traffic is not visible to the network infrastructure, being only available at
the DoH client and server. This makes traditional DNS flooding attack detection meth-
ods that rely on deep inspection of DNS packets completely obsolete [45]. Furthermore,
attackers can use the HTTP/2 connection (which is the minimum version of the HTTP
protocol that the latest DoH standard defined in RFC8484 recommends for DoH use [46])
to send multiple DoH requests without creating a separate connection for each request
(i.e., multiple packets are sent in the same request). The same is true for the responses
that the DoH server returns to the client. Through this method, malware can hide the
frequency of its DNS resolution, further reducing the number of methods available to
detect DNS flooding [45]. Attackers can exploit these vulnerabilities in the DoH protocol
to evade the security mechanisms currently implemented for the detection of flooding
attacks. Despite the advantages of DNS over HTTPS (DoH) in terms of user privacy and
security, it is clear that its current specification has critical weaknesses that can be exploited
to cause considerable harm to the network infrastructure while increasing the difficulty
for network administrators to deal with these attacks in order to prevent the misuse of
network resources.

To the best of our knowledge, there are no works that address the specific problem
of detecting DNS flooding attacks based on the DoH protocol. Other related approaches
proposed in the literature have focused mainly on protection against tunneling attacks,
such as [45,47], but, as we have pointed out above, the problem of DoH flooding attacks
has been neglected so far in the scientific community. The adoption of the DoH protocol
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is on the rise, and DNS flooding attacks using this protocol are very likely to increase in
frequency in the near future. Therefore, the development of new mechanisms to detect
DNS flooding attacks is essential to prevent the misuse of network resources and the denial
of DNS services to end users.

To fill this gap, we propose a novel technique for the real-time detection of network-
level DoH flooding attacks based on ML models that use a large set of network flow
statistics as features. Using these features, we were able to train several ML models with
different performance levels that were later integrated as part of the DoH STA toolbox. This
DoH STA toolbox could then be used during the proposed exercise on the SPIDER cyber
range to help the trainee defend against DoH flooding attacks.

9.2.3. Application and Integration of Machine Learning for DoH Flooding Attack Detection

The preprocessing of the data for the DoH scenario was very similar to the one in
the cryptomining scenario described in Section 9.1.2. One of the main differences was the
tagging of the traffic connections included in the dataset, which now need to be separated
into the following classes: 0 (Normal traffic), 1 (Standard DNS over HTTPS traffic), and
2 (DoH flooding attack traffic). For the training of this model, we decided to explore the
first 37 features that Tstat statistics provide. In contrast with the cryptomining exercise,
in this exercise, we selected a larger number of features to warn the trainee that different
feature selection strategies can be applied to ML models. After eliminating the four features
containing information about the ports and IPs, which cannot be used as training data as
they were used to label the traffic connections, and two features that contained timestamps
and that did not only offer any additional information but biased our results, we used
the remaining 31 features for the training of our models. We list these features in Table 4.
Note that some features are sometimes separated into Client to Server (CS) and Server
to Client (SC) communication. These features appear in the table with different CS and
SC identifiers.

Table 4. Tstat selected features for DoH flooding attack detection.

CS SC Name Metric Description

3 17 packets - Total number of packets observed from the client/server

4 18 RST sent 0/1 0 = no RST segment has been sent by the client/server

5 19 ACK sent - Number of segments with the ACK field set to 1

6 20 PURE ACK sent - Number of segments with ACK field set to 1 and no data

7 21 unique bytes bytes Number of bytes sent in the payload

8 22 data pkts - Number of segments with payload

9 23 data bytes bytes Number of bytes transmitted in the payload, including
retransmissions

10 24 rexmit pkts - Number of retransmitted segments

11 25 rexmit bytes bytes Number of retransmitted bytes

12 26 out seq pkts - Number of segments observed out of sequence

13 27 SYN count - Number of SYN segments observed (including rtx)

14 28 FIN count - Number of FIN segments observed (including rtx)

31 Completion time ms Flow duration since first packet to last packet

32 C first payload ms Client first segment with payload since the first flow segment

33 S first payload ms Server first segment with payload since the first flow segment

34 C last payload ms Client last segment with payload since the first flow segment

35 S last payload ms Server last segment with payload since the first flow segment

36 C first ack - Client first ACK segment (without SYN) since the first flow segment

37 S first ack - Server first ACK segment (without SYN) since the first flow segment
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In the same way as the previous exercise, we decided to create three different models
with varying levels of precision, which could teach the blue team that ML-based tools are
not fool-proof and can sometimes offer wrong results if trained incorrectly, regardless of
the problem being resolved. The hyperparameters with which we decided to experiment
were also the number of estimators and the maximum depth, which are both explained
in Section 9.1.2. However, a key difference in this exercise is that the third model, named
’doh_rf_31_c.pkl’, was trained, including only normal traffic, to force it to always predict
all traffic as belonging to that particular class. In that way, the users will be provided with
a model that is useless for identifying DoH traffic and which they can use in one of the
sections to poison a correct model. To all the models, a random selection of values for
the aforementioned hyperparameters was performed to obtain a variety of models with
different performance levels. We list these values in Table 5.

Table 5. Hyperparameters for each DoH Random Forest Classifier model generated.

Model Name Max. Depth Num. Estimators

doh_rf_31_a.pkl
(Good performance) Unlimited 100

doh_rf_31_b.pkl
(Medium performance)

8 3

doh_rf_31_c.pkl
(Bad performance)

2 1

An additional challenge for the blue team in this exercise is to test models created with
a different ML algorithm. For this purpose, we created two models using Fully Connected
Neural Networks (FCNN). Similarly to the other models, we trained them with a different
number of layers to yield varying degrees of performance. The structure of each of the
FCNN models is specified in Table 6. The model structures are described using a compact
notation that is common in the ML literature [48]. This notation is described below. In the
first line, a list of values describes the FCNN architecture: [X0, X1, . . . , Xi, . . . , Xn] where n
is the number of fully connected layers and Xi is the number of units in the fully connected
layer i. In addition. The activation function of each fully connected layer is listed below.
Finally, the final activation function that serves as the output of the model is listed at
the bottom. The training hyperparameters for the two models used in the DoH exercise
were manually tuned to achieve the intended performance. The training hyperparameters
of both models are the same, except for the maximum number of epochs, the value of
which is given in Table 6 for each model. In particular, we use a batch size of 2048. We
also use the Adam optimizer with a learning rate of 0.001. In addition, we use the early
stopping technique to automatically terminate the training process if the validation loss
does not improve for two epochs. For the validation procedure, we reserve 10% of the
training data for the validation split. Finally, as a loss function, we use the categorical
cross-entropy function.

The quality measures of Table 7 display how the variation in the hyperparameters
and structure affects the model’s precision and the generation of false positives and false
negatives. The quality measures that we have taken into account are the same as the ones
we used to evaluate the cryptomining attack detection models: F1-Score, balanced accuracy,
and confusion matrix. We also used balanced accuracy in this case, to evaluate the models,
as the DoH dataset is not perfectly balanced.
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Table 6. Hyperparameters for each DoH Deep Learning model generated.

Model Name Structure Max. Epochs Batch Size

doh_dl_a.pkl
(Good performance)

FC Layers: [62, 31, 15, 3]
Activation: ReLU

Final Activation: SoftMax
100 2048

doh_dl_b.pkl
(Medium performance)

FC Layers: [62]
Activation: ReLU

Final Activation: SoftMax
1 2048

FC: Fully Connected Layer.

Table 7. Quality measures of DoH traffic classification models. In the confusion matrices 0: NORMAL,
1: DOH, 2: DDOS DOH, where rows represent true values and columns predicted values.

Model Name Quality Measure Score

doh_rf_31_a.pkl
(Good performance)

F1-Score 0.940
Balanced Accuracy 0.935

Confusion
Matrix

0 1 2
0 199,645 2174 790
1 6977 116,008 12,343
2 6257 246 169,298

doh_rf_31_b.pkl
(Medium performance)

F1-Score 0.620
Balanced Accuracy 0.654

Confusion
Matrix

0 1 2
0 193,883 0 8726
1 34,377 24,348 76,603
2 30,824 0 144,977

doh_rf_31_c.pkl
(Bad performance)

F1-Score 0.189
Balanced Accuracy 0.333

Confusion
Matrix

0 1 2
0 202,609 0 0
1 135,328 0 0
2 175,801 0 0

doh_dl_31_a.pkl
(Good performance)

F1-Score 0.750
Balanced Accuracy 0.759

Confusion
Matrix

0 1 2
0 194,575 2165 5869
1 7220 48,059 80,049
2 6220 521 169,060

doh_dl_31_b.pkl
(Medium performance)

F1-Score 0.665
Balanced Accuracy 0.702

Confusion
Matrix

0 1 2
0 194,700 1643 6266
1 8525 24,447 102,356
2 6166 27 169,608

In the same way as in the cryptomining exercise, by observing Table 7, we can clearly
appreciate the didactic value of this exercise. By applying ML models to detect DoH
traffic, the blue team can test real traffic against different models observing the contrasting
results, varying in confidence and consistency of detecting attacks. This inconsistency
in detecting attacks will be clearly observed in the third model, ’doh_rf_31_c.pkl’, which
will show the blue team that a model can also be modified to always predict the same
result, something that they will be able to apply when taking the role of the attacker to
poison the model. In the case of our exercise, the model poisoning method consists of
obtaining root access to the machine and overwriting the best model with the bad model
mentioned above. Although there are other ways of poisoning an ML model, we decided
to use this method because it is considered one of the most straightforward methods to
accomplish this task, while also being highly effective. More sophisticated methods of
model poisoning that are more difficult to detect or do not require privilege escalation
could also be applied at the cost of increased complexity, but they are beyond the scope of
our exercise, as we only intend to provide a potential vulnerability that could be effectively
exploited to compromise the model and its results to teach the blue team to be aware of this
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type of attack vector when working with ML models. By including models with different
ML technologies to classify traffic, we show the blue team that the field is diverse and
several different methods, with varying degrees of performance and efficiency, may be
applied according to the particular needs of the organization. In conclusion, similar to the
cryptomining exercise, this exercise provides a scenario that perfectly mimics a real-life
situation, tasking the trainee to evaluate different ML models to compare their performance
and allowing the end user to judge which one is best suited to their particular needs. In this
way, this exercise aims to reveal the potential of this technology and its possible pitfalls
when applied incorrectly.

9.2.4. Description of the DoH Flooding Attack Exercise

The scenario consists of two virtual machines communicating with each other. The first
VM uses the tcpreplay tool to replay real network traffic from various PCAP files. Network
traffic is generated and stored in PCAP files in the Machine Learning Lab for this exercise
and includes different 5G DNS infrastructure attacks captured in the UPF plane over the
GTP protocol. The traffic involved includes multiple 5G user sessions, flooding attacks
against 5G DNSo53 (DNS over UDP on port 53), and DoH (DNS over HTTPS). The second
VM includes the tools to analyze and detect attacks. The exercise emulates a situation
where the malicious DNS attack must be detected before leaving the UPF node on the N9
interface for communication between UPF nodes or in a roaming scenario. This scenario is
illustrated in Figure 11.

Figure 11. DNS attack scenario.

All the phases and processes the blue team needs to perform to complete the DoH
flooding attack detection exercise are described in Figure 12. In the following paragraphs,
we describe, in detail, the different phases shown in the diagram.

Starting the exercise with an introduction in Phase A, the blue team is asked to
assume the role of a security expert in the SOC (Security Operative Center) of a 5G cloud
infrastructure provider. In this role, the blue team receives a ticket from the 5G operator
team, reporting that they are experiencing performance problems in their 5G IPX access.
The blue team must hence analyze the traffic provided to them, detect the compromised
devices, and identify the malware in the form of DNS and DoH flooding attacks that are
impacting the performance. In order to achieve this, the blue team is asked to follow steps
that include different detection strategies, including Snort analysis and a novel ML-based
tool with several inference engines customized for different attacks.
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Figure 12. DoH scenario phases.
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Part 1: Detecting Classical DNS Flooding Attack with Snort

In this section, which corresponds to Phase C, the blue team will be tasked with using
the Snort tool on the first machine, which we will refer to as VM1. The tool is available
in a container that the blue team will have to start using a provided script. Once the
container is active, the blue team will be able to inject the traffic into it. To do this, the blue
team machine will run another shell script file already prepared on the traffic generator
machine, which from now on, we will call VM2. Back in the Kibana dashboard, the blue
team is tasked with observing the alerts generated by Snort. However, by observing the
information displayed, they will eventually find out that Snort is not showing any alerts
since the rules are intentionally not correctly written in order to teach them to specify
the correct rules to detect classical DNS flooding attack (DNS over UDP, port 53—Do53
for short) traffic connections. Using several valuable resources on the subject provided
along with the exercise, the blue team will have to update the existing rules so that they
will correctly send alerts to Elasticsearch. After researching the resources provided in the
instructions, the blue team will be able to edit a specific configuration file and rewrite
the rules to detect the Do53 flooding attacks. The blue team will then be able to test their
rules by restarting the Snort container and observing the alerts displayed on the Kibana
dashboard. Using the results, the blue team is then asked to provide the IPs that have
been identified as Snort for belonging to Do53 flooding attacks and the servers that are
being compromised. The blue team is then asked to reflect on the effectiveness of Snort in
analyzing DoH traffic instead of unencrypted Do53 traffic and should conclude that this
tool will have difficulty detecting attacks that are being performed using the DoH protocol
due to the encryption. To address this issue, in the next part, we introduce the use of the
Smart Traffic Analyzer (STA) that will enable the detection of DoH flooding attacks. As can
be observed in Figure 12, this phase branches out into two different phases. This is meant to
show that even though they are presented in sequential order in the exercise, these phases
are independent of one another and can be performed in any order. Completing these
phases in a different order will not have an impact on the final score of the blue team due
to the nature of the evaluation process, reflected in Section 9.3.

Part 2: Detecting DoH Flooding Attack with STA

In this next step of the exercise, the blue team will be provided with three different
ML models trained with the same dataset to detect DoH flooding attacks. As was the
case in the cryptomining attack detection exercise, the difference between these three
models is, once again, the hyperparameters used to train them, which will influence the
confidence of the predictions and, ultimately, the number of attacks detected by each model.
Furthermore, the model named ’doh_rf_31_c.pkl’ has only been trained with normal traffic
so that it predicts everything belonging to this particular class. As part of Phase D1, the blue
team will begin the section by starting the STA containers in the VM1 with the provided
command and restarting it with a different model each time. Then, the blue team will
follow Phase D2, where they will send traffic from VM2 using the methods described in
the previous sections; the STA container will be able to analyze it and classify it according
to the predicted class. In Phase D3, the blue team will access the Kibana display to be able
to see the classification of the traffic in real-time and perform an analysis on the confidence
of the predictions, as well as the IPs and ports which are being classified as DoH flooding
attacks. To facilitate the examination of the results, the Kibana dashboard also displays the
average confidence of the predictions, which the blue team will have to take into account,
along with the number of attacks detected to determine the best model. The blue team
will be provided a command to compare the hash of their selected model against the best
one in order to determine if their answer is correct. Lastly, the blue team is asked to reflect
on the difference between this method and the previously mentioned Snort. They are
expected to conclude that the STA’s ability to discern attacks, regardless of encryption, is a
key advantage over the use of Snort.
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Part 3: Poisoning a Machine Learning Model

The purpose of this part is for the blue team to act as an attacker whose goal is to poison
the ML model in order to manipulate its behavior in such a way that it completely inhibits
its detection capability and, therefore, does not notify the operator of DoH flooding attacks
that may be occurring in the network. The attacker is tasked with reading documentation
about the LinPEAS script [49], which is a tool that detects vulnerabilities in a system and
uses this information to gain root access to the machine. This step is labeled Phase E1.
With this root access, the attacker will transition to Phase E2, where they must replace
the best model with the poisoned one, which classifies all traffic as normal, as previously
mentioned in the above section. Once this change has been made, in Phase E3, the blue
team is asked to start the STA container again using the model that was previously the
best and verify that all traffic is being classified as normal. The blue team will then have
to execute a command to test the hash of the best model file against the malicious one
to ensure that they have completed the exercise correctly. The blue team is then asked
to reflect on how this type of exploitation could have been prevented. A complementary
goal of this section is for the blue team to reach the conclusion that cybersecurity must
be taken into account in every step of the process, and a vulnerable environment lends
itself to multiple types of attacks. This lesson, therefore, encourages security teams to be
proactive in the search for vulnerabilities that could be exploited to enable this kind of
attack, which, as this exercise has shown, could result in unfortunate consequences if not
properly mitigated. In this case, the vulnerability could have been spotted by the blue team
using the same script that the attacker used and could have been fixed to prevent this type
of privilege escalation.

Part 4: Using a Different ML Technology

Before starting this last section, the blue team is asked to execute a script that is
already created to reset the models to their initial state, thus clearing the model poisoning
performed in the previous step. This step is not explicitly needed if the blue team has
saved the results of their analysis on the three Random Forest models previously tested,
but it will be useful if they need to use those models again for testing purposes. Starting in
Phase F1, the blue team will be tasked with restarting the STA containers in the VM1 with
the provided command and testing the new models that are based on Neural Networks
instead of the Random Forest models that have been used so far. In the same way as the
previous sections, the blue team will send traffic from VM2 in Phase F2 and will analyze
the results shown in Kibana in Phase F3. The blue team is encouraged to compare the mean
confidence and DoH flooding attacks detected by each model. This section is meant to
introduce the blue team to a different ML technology (Neural Networks, in this case) and
show them how the same problem may be resolved effectively using different tools. This is
a valuable lesson, as the use of a different ML algorithm to build the detection models may
provide some advantages in terms of performance, efficiency, or easier training and, thus,
is an important aspect to take into account when implementing detection solutions that
are based on ML technology. Finally, the blue team will be asked to provide the IPs of the
attackers and the IPs of the compromised servers that they have detected.

9.3. Performance Evaluation of the Exercises Executed by the Blue Team

The Evaluation Agent is in charge of monitoring the commands executed by the
trainee host during the exercise and evaluating the performance of the blue team based on
the correct answers at the end of the session. To do this, the Evaluation Agent records the
commands executed by the blue team and their corresponding output during the exercise.
The output of the script command is saved in the file /tmp/exercise\_<crypto|doh>.out.
The file is transferred at the end of the session to the Evaluation Engine, which uses this
information to generate the performance report. The file transfer is performed with an
HTTP POST request to the Evaluation Engine. The HTTP server running in the Evaluation
Engine waits until it receives the file and stores it in the /tmp/ folder. The Evaluation
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Engine then compares the commands executed by the blue computer with the expected
commands in the exercise. The output of the expected commands is stored in /opt/
exercise\_<crypto|doh>.sol. The Evaluation Engine determines the blue team’s score
based on the matches between the output of the executed commands and the expected
output. Each correct command is only considered once to avoid alteration of the results.
The final score of the exercise is calculated by summing the number of matches.

Once the analysis is complete, the Evaluation Engine provides the blue team’s score to
the Evaluation Agent by sending an HTTP GET request to the Evaluation Agent. The Eval-
uation Agent then sends this information to the operational dashboard to inform the blue
team of the evaluation results. To send this information, the Evaluation Agent uses a Kafka
producer to send the information to the operational dashboard. The operational dashboard
subscribes to the Kafka topic to receive the information. When the information is received,
the operational dashboard prints this information on the console and sends a notification
to the blue team. The operational dashboard is also responsible for storing the information
in the database so that it can be consulted later. For convenience, the performance results
are also printed on the terminal where the exercise has been performed.

10. Conclusions, Open Challenges, and Future Work

In this section, we summarize and conclude the main findings of this work. Addi-
tionally, we briefly discuss several open challenges to be considered that are interesting,
and finally, we suggest interesting future work to explore.

10.1. Conclusions

This work presented the integration of machine learning-based attack detection exer-
cises into SPIDER, an innovative Cyber Range as a Service (CRaaS) for 5G networks. Two
recently appeared attacks, cryptomining attack and DNS over HTTP (DoH) flooding, were
selected as support use cases for the proposed exercises. For didactic purposes, poisoning
techniques were also introduced in the DoH flooding exercise. The proposed exercises
use realistic 5G network traffic that is generated in a new environment based on a fully
virtualized 5G network. We can conclude in this respect that in addition to the usefulness of
experimenting with the detection of two recently appeared attacks, the proposed exercises
help to exemplify how other attacks and their counterparts, the ML-based attack detectors,
can be integrated as cyber range exercises.

From an industrial perspective, the proposed Smart Traffic Analyzer (STA) using
container technology and standard interfaces will facilitate the design and deployment of
new exercises based on the emulation of other attacks.

Finally, the application of the recently discovered Generative Adversarial Networks
(GANs) to obtain on-demand synthetic flow-based network traffic allows replication of
high fidelity network attacks and normal traffic and, therefore, the synthetic data can
be seamlessly integrated into SPIDER exercises to be used instead of real traffic. This
solution allows for the generation of unlimited amounts of synthetic data for a concrete
type of exercise and thus prevents trainees from always learning an exercise with the same
set of real data. In addition, this GAN-based solution can foster the interconnection of
federations of cyber ranges as it allows importing and exporting network traffic data from
one cyber range to another without incurring any privacy violation as the shared data are
only synthetic.

10.2. Open Challenges

Although the development and deployment of a cyber range solution is a very valuable
contribution to the security community and has proven to be a powerful tool for assessing
the security capabilities of systems and networks, the applicability of this solution to real-
world scenarios is still limited. In this subsection, we identify some open challenges related
to our work that are worth addressing to increase the applicability of the proposed solution
to real-world scenarios.
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1. Lack of contextualization: Although ML models can be very effective in characteriz-
ing and detecting malicious behavior on the network, they often lack the ability to take
advantage of contextual information to provide the user with a clear understanding of
the events that have been detected and the potential impact of the threat. In addition,
ML models do not take into account organization-specific policies, which limits the op-
erator’s ability to move beyond the detection of an attack event to achieve end-to-end
protection of the system. ML models are not sufficient to fully automate the process of
detecting and mitigating an attack, and considerable effort is still required on the part
of the operator to understand and react appropriately to the detected threat.

As long as cyber ranges do not have that capability and do not teach the trainee how
to take advantage of all available contextual information to detect attacks efficiently and
implement mitigations, the usefulness of Ml-based exercises to detect and mitigate threats
in real-world settings is limited.

2. Difficulty of data collection and labeling: One of the most difficult tasks that orga-
nizations are often confronted with in the design and development of a cyber range
solution is the collection and labeling of a realistic dataset that can be used to train
and evaluate the performance of ML models. The lack of public datasets that cover a
wide range of different types of attacks (e.g., network intrusion detection, malware
detection, data exfiltration, etc.) is one of the main limitations to the development
of an efficient cyber range system. This situation has forced organizations to gather
their own datasets. However, this brings with it a number of technical challenges that
organizations often have trouble justifying. In the case of cybersecurity applications,
collecting a realistic dataset is a highly challenging task due to the many different
types of attacks that can be carried out and the large amount of data that must be
collected in order to correctly model the intrinsic variability of traffic data, which
makes the time required to tag each data sample an arduous task that requires a team
of experts. Collecting and labeling a realistic dataset is compounded by the possibility
of new attacks appearing that are not yet well characterized. While collecting network
traffic is a relatively straightforward task that can be completed through the use of
a passive monitoring system, labeling data that have been collected “in the wild” is
not possible, as the traffic is often encrypted. Therefore, simulation tools are required
to replicate these types of attacks in a controlled environment where labels can be
added as the network traffic is generated in a controlled way. However, due to the
increasing complexity of network traffic, simulation environments are often limited in
size and not realistic enough, which can lead to the development of ML models that
lack real-world effectiveness due to the oversimplification of attack scenarios.

In this context, the Mouseworld Lab proposes a controlled and realistic scenario where
normal and attack connections can be emulated in a realistic 5G network. Furthermore,
the generated packets can be collected and aggregated into connection statistics, and the
datasets containing these connections can be labeled automatically. However, one of
the topics currently being researched in the Mouseworld Lab is how to set up new attack
emulations in an automated way, as nowadays, every attack scenario needs to be configured
manually to a large extent.

10.3. Future Work

In future work, we propose to develop offensive attack exercises supported by ML
models for the red team. In these exercises, our GAN-based solution could be applied to
generate variants of a specific attack and penetration tests.

Adversarial examples are a topic of great interest in the area of information security
and defense against cybersecurity threats. In this context, we propose the development of
exercises for the red team that contains adversarial examples that can fool attack detection
models while appearing as normal traffic to human analysts. Additionally, we propose cre-
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ating lessons and exercises that teach the blue team how to defend against these adversarial
attacks to increase the robustness and resilience of ML-based detection systems.

This work focused on the integration of ML-based detectors in defensive exercises,
but the integration in these exercises of mitigation strategies to be applied after a successful
detection of an attack is another interesting research line that will be explored in the future.
This line of research is not trivial as it will involve additional synchronization between the
SPIDER cyber range running the exercises and the Mouseworld Lab acting as a network
digital twin that not only emulates the attacks but also receives the mitigation actions from
the trainee and applies them in real-time in the emulated scenario, which will produce
changes not initially programmed in the emulation.

Defensive exercises based on unsupervised ML techniques can also be a perfect
complement to the exercises developed in this work, as they allow the trainee to learn in
which attack scenarios it is better to apply unsupervised or supervised techniques or a
combination of both. The integration of unsupervised ML techniques into SPIDER exercises
must address the design of new messages between the STA and the SPIDER components
that interact with it (e.g., the Dashboard and the Evaluation Agent) as the output structure
generated by unsupervised ML models is quite different from that of supervised methods.
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6. Turčaník, M. A Cyber Range for Armed Forces Education. Inf. Secur. Int. J. 2020, 46, 304–310. [CrossRef]
7. Weiss, R.; Turbak, F.; Mache, J.; Locasto, M.E. Cybersecurity Education and Assessment in EDURange. IEEE Secur. Priv. 2017,

15, 90–95. [CrossRef]
8. Smyrlis, M.; Somarakis, I.; Spanoudakis, G.; Hatzivasilis, G.; Ioannidis, S. CYRA: A Model-Driven CYber Range Assurance

Platform. Appl. Sci. 2021, 11, 5165. [CrossRef]
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