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Abstract: The electric shaver market in China reach 26.3 billion RMB by 2021. Nowadays, in addition
to functional satisfaction, consumers are increasingly focused on the emotional imagery conveyed by
products with multiple-senses, and electric shavers are not only shaped to attract consumers, but their
product sound also conveys a unique emotional imagery. Based on Kansei engineering and artificial
neural networks, this research explored the emotional imagery conveyed by the sound of electric
shavers. First, we collected a wide sample of electric shavers in the market (230 types) and obtained
the consumers’ perceptual vocabulary (85,710 items) through a web crawler. The multidimensional
scaling method and cluster analysis were used to condense the sample into 34 representative samples
and 3 groups of representative Kansei words; then, the semantic differential method was used to assess
the users’ emotional evaluation values. The sound design elements (including item and category) of
the samples were collected and classified using Heardrec Devices and ArtemiS 13.6 software, and,
finally, multiple linear and non-linear correlation prediction models (four types) between the sound
design elements of the electric shaver and the users’ emotional evaluation values were established by
the quantification theory type I, general regression neural network, back propagation neural network,
and genetic algorithm-based BPNN. The models were validated by paired-sample t-test, and all of
them had good reliability, among which the genetic algorithm-based BPNN had the best accuracy. In
this research, four linear and non-linear Kansei prediction models were constructed. The aim was to
apply higher accuracy prediction models to the prediction of electric shaver sound imagery, while
giving specific and accurate sound design metrics and references.

Keywords: electric shavers; sound imagery; Kansei engineering; artificial neural networks; web crawler

1. Introduction

With the upgrading of consumers’ demand, consumers are no longer concerned
with products that tend to be homogeneous in terms of function, but with products that
convey emotional imagery to meet user needs [1]. Emotional imagery is a cognitive
experience proposed by cognitive psychology. It represents the emotional experience
that the information conveyed by objects brings to the user [2,3]. As the research on
emotionality deepens, the way of conveying product emotional imagery is no longer limited
to the innovation of product modelling. Sound imagery, the introspective persistence of the
auditory experience, is an important channel for the transmission of perceptual information,
and it can elicit different emotional experiences [4]. Auditory perception, the degree of
accuracy in conveying imagery, as an intuitive way of feeling a product, has become more
and more important in influencing consumers’ emotional experience [5].

As an important approach to emotional design, Kansei engineering aims to quantify
design elements and users’ evaluation values to build predictive models for correlations, and it
has been widely used in product modelling innovation [6–8]. However, there is little research
in the area of sound, which is equally important for conveying emotional imagery. As sound
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becomes increasingly important in product design, the application of Kansei engineering to
the research of product sound can objectively and accurately guide the optimization of sound
design and the ability of products to convey emotional imagery to a greater extent.

Traditional Kansei engineering mainly uses the KJ method, literature research, and user
interviews to collect the pre-required perceptual vocabulary for product modelling, and it
has now accumulated a large number of imaginative adjectives for product modelling [9,10].
However, there is few research in Kansei engineering that focus on sound imagery, so research
may suffer from a shortage of objectivity due to the lack of collection of sound imagery in
the traditional method. With the development of computer technology and the Internet,
consumers are giving feedback on product imagery when they purchase products [11].

This research used Python Crawler and Natural Language Processing (NPL) to mine
and analysed users’ reviews to collect users’ sound imagery in a more specific way, so
as to solve the problem of time-consuming and inefficient preliminary data collection in
Kansei engineering and to provide a complete and realistic users’ emotional evaluation of
the product’s sound.

For the construction of posterior prediction models, traditional Kansei engineering
uses the quantification theory type I (QTTI) and a back propagation neural network (BPNN)
to construct linear and non-linear correlation models [8,12].

Although such methods can understand the difference in prediction effectiveness be-
tween linear and non-linear methods and give better design metrics and users’ emotional
evaluation predictions, considering that the BPNN construction algorithm is based on the gra-
dient descent approach to find the local optimal solution, it will lead to the convergence of the
model into local extreme points, resulting in a lack of prediction accuracy improvement [13].

Therefore, this research introduces the general regression neural network (GRNN),
which is based on the mathematical and chemical theory of multiple regression analysis,
and the genetic algorithm-based BPNN (GA-BPNN) used to build two kinds of prediction
models. In this way, it is possible to explore the application of different classes of neural
networks to the research of sound in the field of Kansei engineering and, ultimately, to
compare the prediction results of the four models and to apply the better model to guide
the optimal design of product sound.

2. Literature Review
2.1. Web Crawler and Natural Language Processing

Web crawler and natural language processing are data acquisition and processing
techniques applied to crawl online shopping platforms for real consumer reviews [14].
By using Python and Word2vec, this research can obtain first-hand real users’ emotional
evaluations after using the product, avoiding the shortcomings of insufficient objectivity in
preliminary data collection and improving the accuracy of building predictive models of
design elements and users’ emotional evaluation values. Lai used the natural language
Word2vec [15,16] to process the crawled user reviews of new energy vehicles, enabling
automotive companies to obtain a clearer picture of what users really think of the car’s
styling, thus providing objective guidance and suggestions for subsequent product opti-
mization design [17]. Liu used Python Crawler to crawl detailed reviews of smartwatches
on e-commerce websites to mine users’ emotional needs based on the word frequency of
emotional words, thereby building a library of users’ emotional needs [11].

This research is based on a Python web crawler’s ability to automatically traverse
and download user comments on China e-commerce websites for a faster method of user
emotional requirement gathering and to provide more complete pre-requisite information
for Kansei engineering.

2.2. Kansei Engineering and Quantification Theory Type I

Kansei engineering is a qualitative and quantitative product emotional research method
proposed by Sanso Naganawa in Japan that aims to guide the design process by quantita-
tively modelling the correlation between design elements and users’ emotional evaluation
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values [1]. QTTI is a common method used for the multiple linear regression analysis of
Kansei engineering to establish correlation models, often using design elements (product
modelling) as a multivariate mapping of users’ perceptual imagery (Kansei words) depen-
dent variables to form a multiple linear regression equation, which has been widely used
in the field of form design [6–9]. The advantage is that the predictive models constructed
have excellent reliability and accuracy and provide clear design metrics to avoid black-box
operations in the design process. Based on Kansei engineering, Mele used QTTI to quantify
the design elements that affect the user’s emotional imagery in the kettle and combined
it with computer technology to build a design aid system to help designers balance the
emotional impact of each design element [7]. Myung Hwan Yun used Kansei engineering
and the semantic differential (SD) method to construct a correlation model between vehicle
instrument panel design and users’ emotional evaluation values, which can provide objec-
tive advice and guidance on the design of vehicle instrument panel design [8]. Therefore,
this research constructed a prediction model between product sound and users’ emotional
evaluation values through QTTI and explored its reliability and prediction accuracy.

2.3. General Regression Neural Network

GRNN is a modified model of the radial basis function network based on mathematical
statistics proposed by Professor Specht in the United States [18] based on multiple linear
regression analysis as the theoretical basis, which approximates the function by activating
neurons in order to finish building the prediction model. GRNN predicts the outcome with
sample data independent variables and finally calculates the regression values between
the independent and dependent variables. The advantage of GRNN is that it has good
predictive effects with small sample data and has been widely used in design studies in
different fields. Tomasz applied GRNN and BPNN to the innovation of optimization of
yacht design parameters and confirmed that GRNN has excellent mapping capabilities
with a high degree of fault tolerance. It is suitable for building correlation prediction
models for products [19]. Salman used GRNN and Kansei engineering to build a predictive
model to assist companies in making decisions about refrigerator design solutions, thereby
increasing consumer satisfaction with optimal design [20].

2.4. Back Propagation Neural Network and Genetic Algorithm

BPNN is a multilayer feedforward artificial neural network trained according to the
error back propagation algorithm proposed by Rumelhart and McClelland [21], which is
trained in a model structure of input, implicit, and output layers for data simulation so as
to simulate the human neural network learning process and establish non-linear mapping
relationships. BPNN is often used to construct predictive models in a non-linear manner to
assist in generating design decisions [12,22,23]. The genetic algorithm (GA) is based on the
natural evolutionary principle of “survival of the fittest” and builds up an “artificial genetic
system” through gene crossover, mutation, and replication, which eventually converges to a
near-optimal solution of the problem according to specific convergence criteria. It can be used
to optimize BPNN to solve the problem of non-convergence or falling into local extremes,
thereby improving prediction accuracy. By comparing the prediction accuracy of BPNN and
GA-BPNN on agricultural tractor morphology design, Yu-En Yeh demonstrated that the GA
can effectively improve the prediction accuracy of BPNN on modelling morphology [24].
Runliang used GA-BPNN to input watch design elements and users’ emotional evaluation
values as training samples to develop a product customization system that reflects user
satisfaction, improving the difficulty for companies to predict user satisfaction [22].

In summary, the QTTI multiple linear regression model and the GRNN, BPNN, and
GA-BPNN non-linear multiple linear regression models have been well studied in per-
ceptual design, but which one is the best method to be applied in the construction of
perceptual prediction models for sound? In this research, these four prediction models
were constructed, and the reliability and accuracy of their predictions were verified by
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t-test and mean error comparison method in order to apply the optimal prediction solution
to the imagery prediction and design guidance of sound Kansei engineering.

3. Representative Samples and Kansei Words Selection

In this research, the quantitative and qualitative analysis of electric shaver design
was carried out by combining QTTI, BPNN, and GA-BPNN through Kansei engineering.
The specific research can be divided into the following aspects (as shown in Figure 1):
I. Representative samples are selected through multidimensional scaling and cluster analy-
sis. II. Representative Kansei words were chosen by Web crawler and shortest Euclidean
distance method. III. Items and categories were deconstructed based on product sound
design elements. IV. The prediction models were built based on QTTI, GRNN, BPNN, and
GA-BPNN. V. The accuracy of the three prediction models was compared and analyzed to
select the optimal prediction model.

Figure 1. Research flow chart.

3.1. Representative Sample Screening

Different brands of electric shavers differ in sound imagery; in order for this research to cover
all brands of electric shavers, a total of 230 models were obtained after collecting an extensive
sample and eliminating images with overly complex backgrounds, as shown in Figure 2.

Figure 2. Collection of 230 electric shaver samples.

After two rounds of screening (eliminating those with high similarity), 80 samples
were obtained. After grey-scale processing of the samples, 25 design postgraduates and
industrial design experts with relevant product design background were invited to classify
the 80 samples according to their band representativeness into 12 to 19 groups, which were
coded into an 80 × 80 dissimilarity matrix. The six-dimensional coordinates of the samples
were analyzed in SPSS 23.0 software, with a stress factor = 0.04334 and RSQ = 0.97915;
finally, the cluster analyses were clustered by Ward’s method to obtain the clustering tree
of the 17 clusters, as shown in Figure 3.
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Figure 3. Diagram of clustering of 80 samples to 34 representative samples. is 17 cluster training
sample cut-offs; ...... is 4 cluster validation sample cut-offs.

In order to balance the representativeness of the selected samples and the accuracy of
the prediction models, five experts with relevant product design background were invited
to vote for two samples in 17 clusters, and the top two samples with the highest votes in
each cluster were selected [25], making a total of 34 representative samples, and one sample
from each of the four clusters was selected as the validation sample, as shown in Figure 4.

Figure 4. The 34 representative samples.

3.2. Web Crawler Collect Representative Kansei Words

The basic process of obtaining web data through a Python web crawler is i. send
request: initiate a request to the server HTTP through the Urllib library and the requests
library in Python; ii. obtain web page: the service will receive a response, and after the
normal response, the content may include HTML, Json string, or binary data; iii. parse
the page: according to the returned content to parse, if it is an HTML code, you can use
the web page parser to parse, if it is Json data, they can be converted into a Json object for
parsing, etc.; iv. extract and store the content: after parsing, the data will be saved, and the
crawl result will be saved in text format.

The keyword “electric shavers” was used to crawl through a total of 18 brands in the
E-commerce; in a sample purchase page of 10 electric shavers for each brand, 50 pages of
user reviews were collected in descending order. The function was called to loop through
the crawl process and set the page to 50, resulting in a total of 85.71 million valid comments.

3.3. Representative Kansei Words Screening

The collected comment texts were extracted through the Word2Vec neural network
to find the Kansei words regarding the evaluation of sound imagery. Then, the Kansei
words were objectively filtered again through cluster analysis and the shortest Euclidean
distance method, and, finally, three representative Kansei words were identified; the details
are as follows.

The text of the comments was cleaned using Jieba splitting and data cleaning, and
the semantic network was generated using the co-occurrence frequency matrix of high-
frequency vocabulary to analyze the distribution of users’ comments on sound imagery.
The Word2Vec model was then used to set “sound evaluation” as a search term, the output
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word nature was set to adjective word nature using the skip-gram algorithm, and, finally, a
perceptual vocabulary of 82 sound imagery phrases was extracted.

In order to reduce the cognitive load of the participants in the later SD method of
rating perceptual imagery, and to eliminate semantically similar and ambiguous phrases,
15 Kansei words were first filtered through two rounds of screening by the focus group
method and then combined with the sample to form the Likert-7-scale questionnaire, and
50 participants with a long experience of using the products were invited to evaluate them;
the 50 male participants involved in this research had at least 3 years of experience with
electric shavers. The age range was 20–55 years, with a mean age of 28.5 years. The statistics
were analyzed by principal component analysis through maximum variance rotation, with
eigenvalues extracted above 4 and pivoted by the maximum variance method. Observation
of the gravel plot allowed the extraction of a factor number of 3 and obtained a rotated
component matrix, which, after cluster analysis, allowed the classification of the 15 Kansei
words into three clusters, as shown in Figure 5.

Figure 5. Clustering diagram of three groups of representative Kansei words. is the 3-cluster
training sample cut-off.

The shortest Euclidean distance was used as the representative Kansei words and
paired anonymously. The final three sets of representative Kansei words were: “Weak-
Powerful”, “Inexpensive-Premium”, and “Annoyance-Comfortable”, as shown in Table 1.

Table 1. Results of factor analysis and shortest Euclidean distance method for three Kansei words.

Groups Kansei Words Factor1 Factor2 Fator3 Euclidean
Distance

Distance
Squared

1

Coordinated −0.669 0.028 −0.148 0.968 0.937
Modern
Popular 0.132 −0.015 0.747 0.669 0.448

Modern 0.167 −0.371 −0.605 1.004 1.008
Perfect 0.264 0.708 0.215 0.992 0.984

Premium 0.518 −0.044 0.046 0.325 0.106

Center coordinates
of cluster 0.082 0.061 0.051

2

Powerful −0.561 0.541 0.013 0.014 0.012
Stable −0.130 0.112 0.112 0.099 0.010
Rigid −0.058 −0.025 −0.286 0.364 0.132
Flashy −0.015 0.668 0.111 0.769 0.591

Pleasant 0.355 0.286 −0.793 0.147 0.022
Hardy −0.608 −0.022 0.270 0.355 0.126

Center coordinates
of cluster 0.664 0.26 −0.096

3

Comfortable 0.703 0.135 −0.602 0.120 0.011
Safety 0.205 0.047 0.245 0.281 0.079

Pleasing −0.015 −0.544 −0.072 0.848 0.719
Relaxing 0.578 0.140 0.046 0.548 0.300

Center coordinates
of cluster 0.368 −0.056 −0.096
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3.4. Classification of Sound Design Elements

By dividing sound design elements into five items (including A-weighted sound
pressure level, loudness, sharpness, roughness, and tonality), this research constructed
linear and non-linear correlation models between sound elements and Kansei words
through QTTI and artificial neural networks.

A-weighted sound pressure level [26], for which the symbol is LA, in dB mainly reflects
the effect of frequency on the perception of loudness of sound. The sound pressure level
can be derived from the effective values of the sound pressure (ρe). A-weighted sound
pressure level is a more accurate representation of the impact of loudness at different
frequencies [27], as shown in Equation (1), and this research introduces the IEC 61672-1 [28]
standard as the calculation model, as shown in Equation (2).

The formula n is the total number of octave bands; Lpi and ∆Ai are the weighted
correction values for the sound pressure level in the i-th octave band. A1000 are normaliza-
tion constants, in decibels, representing the electrical gain needed to provide frequency
weightings of zero decibels at 1 kHz [28], A1000 = −2.000 dB.

LA = 10lg
n

∑
i=1

100.1(Lpi+∆Ai
). (1)

A( f ) = 20lg

 f 2
4 f 4

( f 2 + f 2
1 )( f 2 + f 2

2 )
1
2 ( f 2 + f 2

3 )
1
2 ( f 2 + f 2

4 )

− A1000 (2)

Loudness [29], for which the symbol is N, in sone is used to reflect the user’s perception
of volume level, and, in this research, electric shaver loudness affects the user’s perception
of power strength. It is usually calculated using the method of deriving loudness (N)
based on the specific loudness (N’) [30], where the specific loudness reflects the regional
distribution of loudness in the frequency band in soneG/Bark. The specific loudness can
be calculated from the excitation (E), as shown in Equation (3) [27].

N’ in the formula stands for the critical band specific loudness, z stands for the
corresponding critical band (pure tone frequency as the central frequency of the noise
frequency within a certain band width), EQT stands for the absolute listening value under
the excitation, and E0 stands for the benchmark sound intensity under the excitation, for
which the integration of the specific loudness in the Bark domain can be obtained by the
total loudness (N). N′ = 0.08

{
ETQ
E0

}0.23[
0.5 + 0.5 E

ETQ

0.23 − 1
]
(soneG/Bark)

N =
∫ 24Bark

0 N′(z)dz Sone
(3)

Sharpness [31], for which the symbol is S, in acum is used to describe the timbral
characteristics of a sound, with the user perceiving more sharpness for higher frequency
sounds and less vice versa. In this research, the Aures algorithm, based on the optimized
Von Bismarck model [32], was used, and its calculation model in HEAD Acoustics’ Artemis
software [33,34] takes into account the effect of loudness, making the results more accurate,
as shown in Equation (4).

In the formula, K1 is a weighting factor of 0.11, N is the total loudness values, N’ is the
critical band specific loudness, and z is the critical band Bark value.

S = K1 ×
∫ 24Bark

0 N′(z)×g(z)dz
ln( N

20+1)
acum

g(z) =

{
1 z ≤ 16
0.0625× e0.1733z z>16

(4)

Roughness [35], for which the symbol is R, in asper is used to describe the different
fluctuation characteristics of the sound. Generally, when the sound frequency is below
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20 Hz, the fluctuation characteristics are shown, and above 20 Hz the roughness character-
istics are shown. When the roughness is larger, it conveys fluctuation and complex feelings,
and vice versa, it conveys stable feelings, as the electric shaver sounds are above 20 Hz;
thus, this research did not consider fluctuation due to its unsuitability. The traditional
roughness calculation method was proposed by Aures and optimized by Zwicker and
Fast [36], as shown in Equation (5).

The formula ƒmod denotes the modulation frequency, ∆LE(z) denotes the excitation
level difference calculation model in the characteristic frequency band, and N′max and N′min
denote the maximum and minimum values of the specific loudness, respectively.{

R = 0.3 fmod
∫ 24Bark

0 ∆LE(z)dz Asper
∆LE(z) = 2log10

{
N′max(z)
N′min(z)

} (5)

In this research, the roughness procedure of the software ArtemiS 13.6 (version
13.6.22143.02, HEAD Acoustics Company, Herzogenrath, Germany) was used, as shown
in Figure 6 (data from HEAD acoustics company), and the results were calculated based
on loudness rather than sound pressure alone and, therefore, were more appropriate to
human ear perception [37].

Figure 6. Flow chart for roughness index calculation.

Tonality [36], for which the symbol is T, in tu is a sound quality metric aimed at
identifying and quantifying the strength of tones in a given noise spectrum. Ideally,
tonality metrics should align well with the human perception of tones and help the user to
differentiate between tones that may be objectionable and those that may not be apparent
to the listener (information from SIEMENS company). The current method of calculation
was proposed by Terhardt and Aures, as shown in Equation (6).

In the formula, W1(∆zi) is the relationship between the i-th single frequency com-
ponent and the critical band difference; W2 fi is the relationship between the i-th single
frequency component and the frequency; W3∆Li is the sound level surplus effect of the ith
single frequency component.

T =

√√√√ N

∑
i=1

[W1(∆zi)W2( fi)W3(∆Li)]
2 (6)
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3.5. Sound Sample Collection and Analysis

In this research, 34 electric shavers were sampled by non-contact skin-based recording
in a silent environment. The samples were placed at a distance of 15 cm from the HEADREC
headset, were sampled by the Headrec device, and were analyzed by ArtemiS 13.6 software
for sound metrics. The five items included in this research were A-weighted sound pressure
level (LA), loudness (N), sharpness (S), tonality (T), and roughness (R).

As shown in Figure 7, “ Ch1” represents the data collected in the left ear of the
device, and “ Ch2” represents the data collected in the right ear of the device. The
average of the data recorded in the left and right ears was taken after obtaining the single
values [38].

Figure 7. Diagram of the ArtemiS 13.6 for electric shaver non-contact skin-based recording:
(a) A-weighted sound pressure level, (b) loudness, (c) sharpness, (d) tonality, and (e) roughness.

The 34 electric shaver operating sounds were collected as reference material and then
collated and recorded for five items, resulting in data corresponding to each item in the
sample, as shown in Table 2.
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Table 2. Parameters corresponding to each item in the 34 representative samples.

No. LA
(dB(A))

Loudness
(sone)

Tonality
(tu)

Sharpness
(acum)

Roughness
(asper)

1 69 19.7 1.43 4.0 0.69
2 74 26.9 0.28 5.2 0.09
3 71 25.6 1.32 5.0 1.05
4 75 25.9 0.96 5.0 0.04
5 68 31.7 0.82 5.6 0.03
6 69 34.7 0.71 4.9 0.08
7 69 35.8 0.70 4.3 1.11
8 60 33.1 0.25 4.5 0.05
9 71 18.1 0.40 5.5 0.39
10 61 36.7 0.26 4.4 0.07
11 69 23.4 0.15 4.5 0.09
12 71 33.6 1.60 3.5 0.97
13 65 28.1 1.16 4.4 0.57
14 63 33.1 1.64 4.6 0.79
15 67 27.9 0.53 4.7 0.13
16 77 27.8 0.73 3.8 0.07
17 61 18.1 0.40 5.0 0.26
18 61 34.1 1.10 2.5 0.61
19 74 27.6 1.07 4.6 0.97
20 62 31.0 0.43 4.6 0.02
21 63 33.9 0.26 4.4 0.01
22 67 28.8 1.26 4.7 0.76
23 71 39.5 0.31 5.1 0.29
24 69 36.7 0.24 6.4 0.11
25 64 48.3 0.28 4.6 0.01
26 60 19.6 0.49 4.3 0.14
27 66 43.3 1.18 4.3 0.58
28 63 44.9 1.02 4.3 0.78
29 71 18.1 0.40 5.5 0.39
30 68 29.0 0.69 5.1 0.81
31 70 21.9 0.67 4.7 0.69
32 65 52.7 0.93 3.6 1.03
33 71 50.3 0.31 5.1 0.29
34 68 13.2 0.21 3.8 0.60

By inviting five master’s students with a music background to form a focus group, the
given samples were divided into categories based on the different parameters that brought
different imagery to the different parameter intervals. The final table of design elements is
shown in Table 3.

Table 3. Classification of items and categories of electric shaver sounds.

Item Category

LA 60 ≤ x > 65 65 ≤ x > 70 70 ≤ x > 75
X1 X11 X12 X13

Loudness 10 ≤ x > 25 25 ≤ x > 40 40 ≤ x > 55
X2 X21 X22 X23

Tonality 0.1 ≤ x > 0.6 0.6 ≤ x > 1.2 1.2 ≤ x > 1.7
X3 X41 X42 X43

Sharpness 2.2 ≤ x > 4.4 4.4 ≤ x > 6.5
X4 X41 X42

Roughness 0 ≤ x > 0.5 0.5 ≤ x > 1.2
X5 X51 X52
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3.6. Users’ Emotional Evaluation Values Questionnaires

In order to obtain accurate user emotional evaluation values of sound, this research
used the SD method to pair and combine each of the 34 audios with three pairs of Kansei
words and form the Likert-7 scale questionnaire.

This survey was recruited offline and was conducted from May to July 2022. The head-
phones tested were SHP9500 playback headphones, sampled by a Binaural Microphone,
with a headphone equalizer (hardware) and ArtemiS (software) for general equilibrium
at the playback level [39]. After recruiting 142 men (age range 20–56 years, average age
27.8 years) with experience in using electric shavers to complete the test, the average
questionnaire length was 15.3 min. Then, 126 valid questionnaires were obtained after
eliminating 16 questionnaires that were incomplete (Equation (9)) and those that took less
than 10 min to complete (Equation (7)). Users were asked to rate the perception of sound
on a Likert-7 scale to indicate different levels of consumer psychological perception. The
final sound element and questionnaire rating values were used in subsequent linear and
non-linear regression analyses to construct predictive models.

4. Predictive Modelling of Sound Design Elements and User’s Emotional Evaluation
4.1. QTTI Prediction Model Construction and Analysis

QTTI is often used to establish a linear relationship between quantitative and qualita-
tive variables in the form of a multiple linear regression equation (as shown in Equation (7)).
The equation was constructed using the sound design elements (13 items) as the inde-
pendent variables and each user emotional evaluation values as the dependent variable,
e.g., the coefficient represents the score point of the b-th class under the a-th item as the
coefficient of this multiple linear regression equation; X11, X12 . . . . . . X52, X53 represent the
individual categories; k denotes the constant term of the multiple linear regression equation
under the x-th group of Kansei words [40].

Yx = a11X11 + a12X12 + a13X13
+a21X21 + a22X22 + a23X23
+a31X31 + a32X32 + a33X33
+a41X41 + a42X42
+a51X51 + a52X52
+k

(7)

The design element codes of the 30 experimental samples and user emotional evalua-
tion values were analyzed by SPSS 23.0 for QTTI. A predictive model was constructed, and
the results are shown in Table 4.

The table above shows that the coefficient of determination R2 for “Annoyance-
comfortable” is 0.891, meaning that this multiple linear regression equation is able to
explain 89.1% of the variation in the dependent variable, while the coefficients of determi-
nation for the other 2 groups of perceptual words are 89.9% and 85.9%, respectively, and
the three equations have a good fit.

By comparing the partial correlation coefficients of the items with the category score
points, the degree of influence of each sound design element on the user’s imagery can
be obtained.
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Table 4. Kansei impact analysis for each item and category in the QTTI prediction model.

Item Category Y1 Annoyance-Comfortable Y2 Inexpensive-Premium Y3 Weak-Powerful

C P S C P S C P S

LA
X1

60 ≤ x > 65 0.544

0.623 3rd

0.290

0.419 5th

−0.317

0.511 4th65 ≤ x > 70 −0.012 −0.008 0.031

70 ≤ x > 75 −0.121 −0.062 0.040

Loudness
X2

10 ≤ x > 25 0.332

0.837 1st

0.223

0.748 2nd

−0.268

0.845 1st25 ≤ x > 40 −0.245 −0.159 0.202

40 ≤ x > 55 −0.296 −0.223 0.216

Tonality
X4

0.1 ≤ x > 0.6 0.074

0.375 5th

0.129

0.608 4th

0.133

0.653 3rd0.6 ≤ x > 1.2 −0.071 −0.125 −0.125

1.2 ≤ x > 1.7 −0.083 −0.144 −0.164

Sharpness
X4

2.2 ≤ x > 4.4 0.371
0.712 2nd

0.462
0.809 1st

0.289
0.708 2nd

4.4 ≤ x > 6.5 −0.186 −0.231 −0.14 5

Roughness
X5

0 ≤ x > 0.5 0.078
0.419 4tht

0.156
0.704 3rd

−0.054
0.352 5th

0.5 ≤ x > 1.2 −0.136 −0.269 4.236

Constant term 3.714 3.460 4.246

Multiple correlation coefficient (R) 0.952 0.948 0.92h

Coefficient of determination (R2) 0.891 0.899 0.859

C/category score points; P/partial correlation coefficient; S/ranking.

(I) Item impact analysis

The partial correlation coefficient of the items indicates the relevance of each item to
the Kansei words, with higher values indicating a stronger relevance to the imagery, i.e., a
higher influence on that imagery.

The most relevant item for the word “Annoyance-Comfortable” is loudness, with a
partial correlation coefficient of 0.837, which is the strongest correlation with this word. The
order is loudness > sharpness > A-weighted sound pressure level > roughness > tonality.
When conducting sound design, priority can be given to items with a higher number of
partial correlations. In the word “Inexpensive-Premium”, the influence of each item is
ranked as sharpness > loudness > roughness > tonality > A-weighted sound pressure
level. In the words “Weak-Powerful”, the influence of each item is ranked as loudness >
sharpness > tonality > A-weighted sound pressure level > roughness.

(II) Category impact analysis

The category score points indicates the positive and negative correlation between
each category and the discourse, with larger positive values indicating more correlation
with the positive discourse and larger negative values indicating more correlation with the
negative discourse.

For example, in the case of the “Annoyance-Comfortable” word, the item with the
highest partial correlation coefficient is ‘loudness’, where a positive value for the category
score point belongs to ‘comfortable’ imagery, indicating that the lower the loudness, the
more comfortable the imagery conveyed, and, conversely, the louder the loudness, the
more annoying it is. The second-ranked item is sharpness, with a positive point score
in the sharpness category indicating that the lower the sharpness the more comfortable
the imagery is conveyed, and vice versa, the more annoying. The influence of the other
categories of the word can be followed in this way (as shown in Table 4).
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4.2. Multiple Linear Regression Equation Construction

Based on the QTTI multiple linear regression equation, three sets of equations between
design elements and Kansei words were constructed using the 13 categories of the sample
as independent variables, the users’ emotional evaluation values as dependent variables,
and the category score points as coefficients, as shown in Equations (8)–(10).

“Y1 Annoyance-Comfortable”: “Y2 Inexpensive-Premium”: “Y3 Weak-Powerful”:

Y1 = 0.544X11 − 0.012X12 − 0.121X13
+0.332X21 − 0.245X22 − 0.296X23
+0.074X31 − 0.071X32 − 0.083X33
+0.371X41 − 0.186X42
+0.078X51 − 0.136X52
+3.714

(8)

Y2 = 0.290X11 − 0.008X12 − 0.062X13
+0.223X21 − 0.159X22 − 0.223X23
+0.074X31 − 0.071X32 − 0.083X33
+0.462X41 − 0.231X42
+0.156X51 − 0.269X52
+3.460

(9)

Y3 = −0.317X11 + 0.031X12 + 0.040X13
−0.268X21 + 0.202X22 + 0.216X23
+0.133X31 − 0.125X32 − 0.164X33
+0.289X41 − 0.145X42
−0.054X51 + 4.236X52
+4.246

(10)

4.3. GRNN Prediction Model Construction and Analysis

GRNN is a modified model of radial basis function networks based on mathematical
and statistical foundations, using multiple linear regression analysis as a theoretical basis to
approximate functions by activating neurons in order to complete predictions [14]. GRNN
has strong mapping capability and high fault tolerance, so it can be used for simulation
prediction with a smaller number of samples because its approximation capability, classifi-
cation capability, and learning speed are better than BPNN. The meaning of each symbol in
the GRNN training model (Figure 7) is shown below:

P is the input vector; Q is the number of input vectors; b1 is the hidden layer threshold;
||dist|| is the distance function; R is the number of elements of each set of vectors; Lw1,1 is
the weight of the input layer; Lw2,1 is the weight matrix; n2 is the output vector; a2 is the
linear transfer function, as shown in Figure 8.

Figure 8. GRNN model prediction flow chart.
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In this research, GRNN was used to investigate its reliability and accuracy in predicting
the sound imagery of electric shavers. The spread of the model was taken as 1, and 30
and 4 samples were used as training and validation samples, respectively. The prediction
model was constructed after simulation training with MATLAB, as shown in Figure 9.

Figure 9. GRNN model of (a) “Annoyance-Comfortable”, (b) “Inexpensive-Premium”, and (c) “Weak-
Powerful”.

4.4. BPNN Prediction Model Construction and Analysis

A total of 13 neural nodes in the input layer among the three-layer network were
determined, with 12 neural nodes in the hidden layer (determined by the hidden layer
equation) and 3 neural nodes in the output layer, as shown in Table 5.

Table 5. Neural nodes and corresponding information at each layer in the BPNN.

Network Layers Neural Nodes Meaning

Input layer 13 13 sound categories
Hidden layer 12 Processing data
Output layer 3 3 Kansei words

The ‘tansig’ and ‘purelin’ functions were defined as the combination of the transfer
functions in the input and hidden layers. In addition, the ‘trainlm’ algorithm was identified
as the heuristic algorithm [20], and 30 identified samples were used for training, with four
samples as verification samples. Data in the input layer were normalized to enable the
BP neural network to recognize data. In that case, the frequency of the network training
was set to 10,000 times, with an error of 0.0001. On this basis, the prediction model was
constructed after training, as shown in Figure 10.
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Figure 10. BPNN model prediction flow chart.

4.5. GA-BPNN Prediction Model Construction and Analysis

Different initial weights might lead to the problem of converging network trapping
into local extreme points. Since the BPNN-based construction algorithm’s purpose is to
seek the locally optimal solution based on the gradient descent method. In order to enhance
the prediction effect of BPNN, weights and thresholds between BPNN neutrons were
optimized using the GA in this research.

The GA-BPNN was built by tuning the neural network weights and thresholds through
the fitness function based on the previously constructed BPNN, and, then, the BP algorithm
corrected the network weights and thresholds in the negative gradient direction for network
training. The GA-BPNN algorithm flow is shown in Figure 11.

Figure 11. GA used to optimize BPNN model flow chart.

The GA-BPNN was implemented using the roulette wheel method, with the crossover
process using the two-point crossover method and the variation process using the Gaussian
variation method; the initial population size was 30, the maximum number of iterations
was 50, and the variation probability was 0.2; the number of training sessions was set to
1000, the learning rate was set to 0.01, and the minimum training error was set to 0.0001.
When the generation best fitness is 1.9421E-02, the mean fitness is 3.564 × 10−2, the best
validation performance is 1.8671 × 10−2 at epoch 4, and the GA-BPNN is constructed, as
shown in Figure 12.
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Figure 12. (a) GA iterative process, (b) GA-BPNN training completion chart.

The four test sample design elements were coded as GA-BPNN input data for predic-
tion, and the results showed that the GA-BPNN prediction ( was closer to the user
evaluation values ( than the BPNN prediction ( )), as shown in Figure 13.

Figure 13. Predicted results for (a) “Annoyance-Comfortable”, (b) “Inexpensive-Premium”, and
(c) “Weak-Powerful” of Kansei words.

4.6. Comparative Analysis of Linear and Non-Linear Prediction Models

The experimental samples were simulated by QTTI, GRNN, BPNN, and GA-BPNN
models to obtain their respective predicted values. Then, they were tested by paired sample
t-test with the user emotional evaluation values and the predicted values, and the results
showed that their p-values were all greater than 0.05. It shows no significant difference
between the predicted and the assessed values, indicating the reliability of the application
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of QTTI multiple linear regression analysis, GRNN, BPNN, and GA-BPNN non-linear
analysis predictions.

The four validation samples were put into each of the four prediction models for
prediction, the prediction results were compared and analyzed with emotional evaluation
values of users, and the error comparison method was used to make a comparison of
the three prediction accuracies. The relative error rate for each sample was calculated as
({|users’ evaluation value—predicted value|/users’ evaluation value} × 100%) [24], which
was used to determine a better prediction model, as shown in Table 6.

Table 6. Comparative analysis of prediction results of linear and non-linear prediction models.

Sample× Adj Y1 Annoyance-
Comfortable

Y2 Inexpensive-
Premium

Y3 Weak-
Powerful

Test1

QTTI
AEV * 0.240 0.400 0.200
REV * 5.15% 9.01% 4.57%

BPNN
AEV 0.529 0.264 0.347
REV 11.4% 5.94% 7.92%

GA-BPNN
AEV 0.181 0.179 0.523
REV 3.89% 4.04% 11.9%

GRNN
AEV 0.203 0.373 0.269
REV 4.37% 8.42% 6.15%

Test2

QTTI
AEV 0.210 0.030 0.400
REV 5.50% 0.85% 8.66%

BPNN
AEV 0.819 0.360 0.131
REV 21.5% 10.2% 2.84%

GA-BPNN
AEV 0.145 0.094 0.117
REV 3.80% 2.65% 2.54%

GRNN
AEV 0.243 0.163 0.092
REV 6.39% 4.64% 2.01%

Test3

QTTI
AEV 0.110 0.090 0.300
REV 3.49% 2.71% 7.25%

BPNN
AEV 0.799 0.357 0.340
REV 25.3% 10.8% 8.22%

GA-BPNN
AEV 0.089 0.172 0.167
REV 2.83% 5.19% 4.03%

GRNN
AEV 0.081 0.068 0.336
REV 2.56% 2.06% 8.14%

Test4

QTTI
AEV 0.100 0.400 0.300
REV 2.24% 9.03% 9.10%

BPNN
AEV 0.240 0.030 0.515
REV 5.38% 0.68% 15.6%

GA-BPNN
AEV 0.154 0.407 0.361
REV 3.46% 9.18% 10.9%

GRNN
AEV 0.517 0.761 0.574
REV 11.6% 17.2% 17.4%

AEV
(Total)

QTTI 4.10% 5.40% 7.40%
BPNN 15.87% 6.89% 8.65%

GA-BPNN 3.50% 5.27% 7.37%
GRNN 6.23% 8.08% 8.43%

* REV/Relative error value; AEV/Average error value.

The comparison shows that the average error values for GA-BPNN are 6.23%, 8.08%,
and 8.43%; the average error values for QTTI are 4.10%, 5.40%, and 7.40%; the average
error values for GRNN are 6.23%, 8.08%, and 8.43%; the average error values for BPNN are
15.87%, 6.89%, and 8.65%.

The results showed that GA-BPNN has a better prediction accuracy, followed by QTTI.
The four prediction models were ranked in order of accuracy: 1. GA-BPNN, 2. QTTI,
3. GRNN, 4. BPNN.
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5. Discussion and Conclusions

This research was based on Kansei engineering and artificial neural networks and used
web crawler and natural language processing techniques to mine consumers’ Kansei words
on the sound of electric shavers online and the cluster analysis to extract representative
product samples and Kansei words. Through ArtemiS 13.6 analysis, the sound design
elements were divided into five items and 13 categories. Lastly, the QTTI multiple linear
regression, GRNN, BPNN, and GA-BPNN non-linear analysis were combined with the
SD method to construct prediction models between sound design elements and users’
emotional evaluation values and to compare and select the best. The results of this research
are as follows:

The web crawler and Word2Vec neural network can collect a wide range of data
on users’ imagery and feelings when using the product, which can compensate for the
time-consuming and subjective problem of collecting data in the early stages of traditional
Kansei engineering, while providing complete and effective preliminary data support.

The QTTI, GRNN, BPNN, and GA-BPNN methods were applied to the research of
product sound imagery. Multiple linear regression and non-linear perceptual prediction
models were constructed and finally proved to be reliable, with GA-BPNN being the
best in terms of accuracy and the rest being QTTI, GRNN, and BPNN, in that order. GA-
BPNN uses GA to optimize BPNN, which can help designers to more accurately grasp the
users’ emotional evaluation of sound, while QTTI multiple linear regression modelling can
provide designers with clear design indicators and references.

A linear correlation model between sound design elements and imagery vocabulary
was constructed using QTTI. It was able to provide a ranking of the degree of influence of
each design item and category on the imagery, and the influence of its items and categories
on the imagery was as follows:

1. In the ranking of the impact of each item, the items in the “Annoyance-Comfortable”
word are ranked in order of loudness > sharpness > A-weighted sound pressure
level > roughness > tonality; in “Inexpensive-Premium” the items are ranked in order
of influence as sharpness > loudness > roughness > tonality > A-weighted sound
pressure level; in “Weak-Powerful” the items are ranked in order of influence as
loudness > sharpness > tonality > A-weighted sound pressure level > roughness.

2. In the ranking of the impact of each category, the ‘loudness’ of “Annoyance-Comfortable”
is taken as an example. Its score points indicate that the lower the loudness, the more
comfortable the imagery conveyed, and, conversely, the higher the loudness, the
more annoying it is. The second ranked item is sharpness, and its category score
points indicate that the lower the sharpness, the more comfortable the imagery is
conveyed, while the opposite is more annoying. The effects of the other categories
can be followed in this way, as shown in Table 4.

In conclusion, this research adopted a systematic approach, applying Kansei engineer-
ing and artificial neural networks to the research of product sound imagery, and provides
an objective and accurate understanding of the relationship between the sound of electric
shavers and consumers’ emotional evaluation, and provides designers with explicit sound
design indicators and references for optimal design.
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