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Abstract: This paper presents an efficient real-coefficient fitting both Green’s function and its gradient
with Fast Fourier Transform (RFGG-FG-FFT) with cube polynomial inter/extrapolation method
(CPIE), which is established for the analysis of scattering from antenna over a wide frequency.
To improve the computation efficiency, the CPIE is utilized. In order to reduce memory requirements
and accelerate matrix vector multiplication, the RFGG-FG-FFT is adopted. The accuracy, correctness
and efficiency of the new method are researched on some examples. Compared with the direct
method, the examples show that the new method is superior in broadband without loss of accuracy.
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1. Introduction

The method of moments (MoM) [1] are competent candidates for various electro-
magnetic radiation and scattering problems of the objects. In the MoM, the surface inte-
gral equation (SIE) is usually convenient to be applied. In addition, the MoM consumes
a lot of memory required and CPU time, when the scale of solution is large. To date,
a large number of the fast algorithms have been developed to accelerate the solving
large-size electromagnetic problems [2,3], such as the fast Fourier transform (FFT) based
algorithms (P-FFT, AIM, FGG-FG-FFT, IE-FFT, etc. [4–12]) and the fast multipole method
based algorithms [13,14], etc.

In addition to these acceleration technologies, researchers also focus on improving the
computational efficiency. Even if skeletonization [15] and adaptive cross approximation
algorithm [16,17], etc. are used, broadband scattering calculation still requires a lot of time.
Some interpolation techniques, such as fast kernel-independent modeling [18], asymptotic
waveform evaluation (AWE) [4,19], skeleton based broadband algorithm [20], reduced
basis method (RBM) [21,22], interpolation method [23], model-based parameter estimation
(MBPE) [24], and Clenshaw-Lord-type Pade-Chebyshev approximation [25], etc. have been
developed with a view to improve the efficiency of computation.

To quickly solve the problem of the broadband electromagnetic scattering, the RFGG-
FG-FFT combined with the CPIE is proposed in this paper. In this way, the broadband
electromagnetic scattering of objects can be calculated with only one grid generation.
The CPIE is used to avoid the replicative calculations of near field impedance elements.
The RFGG-FG-FFT not only reduces memory requirements but also speeds up matrix
vector multiplications.
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2. Method of Moments of Electromagnetic Field

According to the boundary condition, the magnetic field integral equation (MFIE) and
electric field integral equation (EFIE) are established as:
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where P.V. is Cauchy Principal value integral in Equation (2) k and η are wave number

and wave impedance, G(
→
r ,
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r
′
) is Green’s function in the free space.

→
J S represent current

densities on surface.
In order to solve Equations (1) and (2), triangular patches are used to discrete the

surface. The RWG basis functions [1] are defined on triangular patches. Hence the current
vector I can be expressed into
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and N are the basis function and the number of unknowns, respectively. In

is current coefficient vector. The following conclusions can be drawn from the Galerkin test:

N
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· · ·
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(4)

where Zmn, (m = 1, 2, · · · , N) means impedance matrix. Vm is excitation vector. The specific
form of Zmn is as follows

ZEFIE
mn = jkη

∫
Sm

ds
→
J m

(→
r
)
·
∫

Sn
G
(→

r ,
→
r
′)→

J n

(→
r
′)

ds′ − j
η

k

∫
Sm

ds
[
∇ ·

→
J m

(→
r
)]
·
∫

Sn
G
(→

r ,
→
r
′)[
∇ ·

→
J n

(→
r
′)]

ds′ (5)

ZMFIE
mn =

1
2

∫
Sm

→
J m

(→
r
)
·
→
J n

(→
r
)

ds +
∫

Sm
ds
[

n̂×
→
J m

(→
r
)]
·
∫

Sn
∇G

(→
r ,
→
r
′)
×
→
J n

(→
r
′)

ds′ (6)

where,
→
J m

(→
r
)

indicate the testing functions. Sm and Sn are their support sets.

3. Interpolation Technique of MoM Matrix

According to the previous statement, Equation (4) are actually functions of frequency
point f :

N

∑
n=1

Zmn( f )In( f ) = Vm( f ), m = 1, 2, · · · , N (7)

If the wideband response is of interest, it will take more time to solve EFIE and MFIE
at each f using the MoM. [ fl , fh] is the frequency variation range. The object is discretized
at the highest frequency fh using triangular meshes. λh is the wavelength. Zmn( f ) of EFIE
and MFIE are:
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where kr = 2π fr, fr = f / fh. Therefore, the range of fr is [ fl , / fh, 1]. The following changes:

zK
mn( fr) :=

ZK
mn( fr)

λ2
h

(10)

where, the superscript K represents E, M, C.
The phase term e−jkr R can cause the fluctuation. The matrix elements are corrected by:

z̃K
mn( fr) =

{
zK

mn( fr) frejkr Rmn Sm ∩ Sn = 0
zK

mn( fr) fr Sm ∩ Sn 6= 0
(11)

Sm and Sn are triangles, and the relationship between them can be found in [23]. Thereby,
z̃K

mn( fr) becomes a quadratic polynomial.
The cubic polynomial interpolation/extrapolation method is mainly adopted to gener-

ate the corrected matrix at yv = fv/ fh( fv ∈ [ fl , fh]; v = 0, 1, 2, 3), where fv are the optimal
points. The specific formula for each fr is as follows [23]:

z̃S
mn( fr) =

3

∑
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mn(yv)φv( fr) (12)

where,

φk(t) =
l=3

∏
l=0,l 6=k

(
t− tl
tk − tl

)
(13)

4. RFGG-FG-FFT Algorithm

The impedance matrix ZC consists of the near field interactions ZC−near and the far-
field interactions ZC− f ar [6,10]. In general, γ ∈ [0, 1] is selected as 0.5. In this way, CFIE can
avoid internal resonance, thus ensuring high accuracy and small matrix condition number.

ZC ≈ (ZC−near
MoM − ZC− f ar

FFT ) + ZC− f ar
FFT

= [γ(ZE−near
MoM − ZE− f ar

FFT ) + (1− γ)(ZM−near
MoM − ZM− f ar

FFT )] + γZE− f ar
FFT + (1− γ)ZM− f ar

FFT

(14)

In Equation (14) ZC−near
MoM is near field interaction part computed by MoM, ZC− f ar

FFT is

the approximation by FFT-based algorithm in near field. ZC−near
MoM − ZC− f ar

FFT is precorrected

matrix. ZC−near
MoM and ZC− f ar

FFT are stored as sparse matrices. ZE− f ar
FFT and ZM− f ar

FFT are the
calculated by FFT-based algorithm expressed as:

ZE− f ar
FFT = jkη0 ∏ ·G ·∏T −j

η0

k ∏d ·G ·∏
T
d (15)

ZM− f ar
FFT = ∏g ·G ∏T (16)

where ∏, ∏d and ∏g are sparse coefficient transformation matrices. G are triple Toeplitz
matrices (called numerical Green functions) formed by Green functions between spatial
grid points. Superscript T represents the transpose of a matrix. In this way, FFT can
accelerate the matrix vector products of each iteration.

Let M be expansion order, Cm be fitting cube. Cm consists of (M + 1)3 grid nodes.
The center of Cm is cm. hx, hy, hz are Cartesian grid spacing in three coordinate directions.
S̃m is testing spherical surface, which’s center is cm and radius is Rm = rm + 0.05λ. rm
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is the minimum radius of sphere surrounding Cm. {→p} are testing points located on S̃m.
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}

Nc

u=1 are fitting coefficients. The real and imaginary part of

G(◦) are RG(◦) and IG(◦).

5. Numerical Results

The applicability and correctness of the RFGG-FG-FFT with cube polynomial in-
ter/extrapolation method will be tested by analyzing the scattering problems in this section.
All the computation is carried out on M = 2 and hx = hy = hz = h, where M denotes the
expansion order and h denotes the Cartesian grid spacing.

5.1. A PEC Cube with Four Monopole Antennas

The wideband EM scattering from 15 GHz to 30 GHz of a PEC cube (4λh × 4λh × 4λh)
with four monopole antennas shown in Figure 1 is analyzed. ∆ f = 1 GHz is selected
as the frequency interval. The cube with four monopole antennas is discretized with
23,044 triangular patches resulting into 34,566 RWG basis functions.
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Figure 1. A PEC Cube with four monopole antennas. 
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Figure 1. A PEC Cube with four monopole antennas.

Figures 2 and 3 show the bistatic RCS of the PEC cube with four monopole antennas
obtained by direct RFGG−FG−FFT, the proposed method, FGG−FG−FFT. It can be also
noted that direct RFGG-FG-FFT, the proposed method and FGG-FG-FFT gave identical
numerical results. Hence, it indicates that the results of the proposed method, the direct
RFGG-FG-FFT and FGG-FG-FFT are almost indistinguishable. In Table 1, the time costs
of near field calculation at 24 GHz are given by direct RFGG-FG-FFT and the proposed
method. The proposed method took 1307 s CPU time to obtain the results of the cube
with four monopole antennas in the frequency domain, whereas the direct RFGG-FG-FFT
took 2723 s. This comparison clearly shows that the proposed method can obtain the RCS
simultaneous versus frequency more quickly.
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Table 1. CPU time required for the example at 24 GHz.

Ex. Computing Method CPU Time Cost of Znear(s) CPU Time Cost of the
Near Part in Zfar(s)

A PEC Cube with four monopole
antennas

Direct RFGG-FG-FFT 103 0.5
The proposed method 5 0.5

FGG-FG-FFT 123 0.7

A complex combination object of
monopole antenna arrays and cuboid

Direct RFGG-FG-FFT 2320 46
The proposed method 84 44

FGG-FG-FFT 2718 63

5.2. A Complex Combination Object of Monopole Antenna Arrays and Cuboid

As shown in Figure 4, a complex combination object of monopole antenna arrays and
cuboid is considered. The object is discretized with 30,988 triangular patches to generate
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N =46,482 RWG basis functions. The wideband EM scattering over 15 GHz to 30 GHz is
analyzed. ∆ f = 1 GHz is used as the interval.
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The results are compared with the bistatic RCS at 19 GHz and 28 GHz is shown in
Figures 5 and 6. Figure 7 shows the broadband RCS curve with scattering angle (θs, φs) =
(130o, 0o) obtained by using the RFGG-FG-FFT with cube polynomial inter/extrapolat- ion
method, direct RFGG-FG-FFT and FGG-FG-FFT. The results obtained by three algorithms
shows that they have fine consistency. It is obvious that the three sets of results agree
well. Table 1 lists the CPU time costs by three methods at 24 GHz. Therefore, it can be
found that the proposed method significantly enhances the computing efficiency. The CPU
time required for direct RFGG-FG-FFT and the proposed method are 961 and 510 min,
respectively.
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6. Conclusions

This paper proposes an effective method combining RFGG-FG-FFT with cube poly-
nomial inter/extrapolation method for the broadband scattering of antennas. The cube
polynomial inter/extrapolation method is introduced into RFGG-FG-FFT to reduce the
generation time of near-field matrix. Thus, the calculation efficiency of each frequency point
calculated by RFGG-FG-FFT is improved. Specifically, the calculations of the proposed
scheme are very consistent with those of direct RFGG-FG-FFT and FGG-FG-FFFT. It is
worth pointing out that it is a meaningful future research to solve wideband and wide-angle
scattering problems rapidly by adopting integral equations.
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