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Abstract: Multicomponent plasmas are ubiquitous in astrophysics and space plasma environments.
In the present manuscript, we assumed a dusty plasma system consisting of negative and positive
dust species and kappa-distributed electrons and ions. The analysis is based on the fluid model of
plasmas, and the reductive perturbation method was used to study the behavior of propagating
waves. New arbitrary parameters were obtained to measure the strength of nonlinearity, dispersion,
and dissipation in the plasma system. We investigated the effects of the arbitrary parameters on the
appearance of the different nonlinear waves as soliton, shock, and solitary waves. Furthermore, we
studied the effects of the kappa parameter, the viscosity of dust species, and the ratio between the
temperature of positive and negative dust species in the type of wave, i.e., compressive or rarefactive.

Keywords: four component plasma; kappa distributions; small amplitude wave; nonlinear equations

1. Introduction

Dust-acoustic waves (DAWs) have many industrial applications such as laboratory
plasma devices, semiconductor chips, and fusion reactors [1–4]. They are also commonly
observed in various space environments such as asteroid zones, the lower and upper meso-
sphere and ionosphere of the Earth, cometary tails, interplanetary spaces, and interstellar
media [5–9]. The numerous applications of DAWs have motivated researchers to study
these waves for different plasma conditions. For instance, Angelis et al. [10] studied dusty
ion acoustic waves (DIAW), and their results were compared with observations of Halley’s
Comet. Rao et al. [11] showed, theoretically, that the propagation of low energetic acoustic
waves in both linear and nonlinear modes is due to the existence of dusty particles. Piel
et al. [12,13] studied low energetic acoustic waves under microgravity conditions. Looking
for a different way of propagating acoustic waves in dusty plasma was continued by many
researchers [14–19].

The propagation of nonlinear dust-acoustic (DA) solitary waves in unmagnetized
dusty plasma composed of Maxwellian electrons, vortex-like (trapped) ions, and cold
mobile dust grain was studied by Rahman et al. [20]. The Korteweg–de Vries (KdV)
equation, which emits the solitary wave solution and was derived using the standard
reductive perturbation method for positively and negatively charged warm dust species
and ions, was found to have nonthermal distribution by Abdel Mannan and Mamun [21].
The reductive perturbation method, used to study shock waves that may exist in a dusty
plasma system, is composed of four components via the derivation of Burgers’ equation
under the effect of viscosity, which causes the dissipation of energy in the system under
consideration [22]. The possibility of observing shock waves related to the dust-charging
process was studied for three components of dusty plasma [23]. The reductive perturbation
method was used to derive the KdV–Burgers’ equation to study the effects of dust size
distribution on the propagation of shock waves that propagate in a dusty plasma system
composed of negatively dust species, two types of ions that differ in temperature, and

Appl. Sci. 2022, 12, 10288. https://doi.org/10.3390/app122010288 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010288
https://doi.org/10.3390/app122010288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122010288
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010288?type=check_update&version=1


Appl. Sci. 2022, 12, 10288 2 of 11

electrons [24]. Mahmoud et al. studied the propagation of dust-acoustic solitary waves
and double-layer waves for four-component dusty plasma system containing nonextensive
distributed electrons and ions via Sagdeev pseudopotential and using the traditional
reductive perturbation method to derive KdV and modified KdV equations [25–27].

Suprathermal populations are ubiquitous in space plasmas. The observed particle
velocity distributions from space show superthermal, high-energy tails, which take the
formula as a power law. As such, the so-called kappa distributions fit very well into the
observed populations of plasma species [28]. In the mid-1960s, the formulas of kappa
distributions were firstly introduced by Binsack, Olbert, and Vasyliũnas [29–31]. The effects
of kappa distribution parameters and viscosity on the polarity of shock waves propagated
in four-component dusty plasma composed of positive and negative cold dust species and
kappa distributed electrons and ions were studied by L. Akpabio and S. Akpabio [32].

In this paper, the effects of both thermal motion and viscosity on the inertial species in
a four-component, collision-less, unmagnetized dusty plasma system were investigated,
while the effects of kappa parameters for inertialess species were introduced. Thus, a
plasma system under consideration contains negative and positive dust species as well
as kappa-distributed electrons and ions, and this system can be found in both space
environments and laboratories [33–35]. This paper is arranged as follows: Section 2 presents
the governing equations that account for the four-component dusty plasma system. The
momentum equation contains the effect of the viscosity on both the positive and negative
dust species. In Section 3, the generalized reductive perturbation method is used to derive
some nonlinear partial differential equations, which propagate some interesting waves,
such as soliton, shock, solitary, and double layers waves. The results and a discussion are
presented in Section 4.

2. Governing Equations

In our multicomponent complex plasma system, the negative and positive dust species
are taken as two fluids, while the light species, i.e., electrons and ions, are assumed to be
kappa distributed. The following normalized continuity and momentum equations were
used to study the motion of the two fluids [25,26] after adding the effect of viscosity and
taking the distribution of inertialess species via kappa distribution:

∂

∂t
N1 +

∂

∂x
[N1V1] = 0, (1a)

∂

∂t
V1 + V1

∂

∂x
V1 −

∂

∂x
φ + η1

∂2

∂x2 V1 = 0, (1b)

∂

∂t
N2 +

∂

∂x
[N2V2] = 0, (2a)

∂

∂t
P + V2

∂

∂x
P + 3P

∂

∂x
V2 = 0, (2b)

µ

[
∂

∂t
V2 + V2

∂

∂x
V2

]
+

∂

∂x
φ +

σ

N2

∂

∂x
P + η2

∂2

∂x2 V2 = 0. (2c)

In order to make a self-consistent system, the following Poisson’s equation is used:

∂2

∂x2 φ− N1 + µ+N2 + µi Ni − µeNe = 0 (3)

where Ni(x, t) and Ne(x, t) are the number densities of ions and electrons, respectively. In
this paper, the normalized densities of ions and electrons are provided in kappa distribution
forms as

Ni =

(
1 +

φ

ki − 3/2

)−(ki−1/2)
, (4a)
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Ne =

(
1− σe

φ

ke − 3/2

)−(ke−1/2)
(4b)

In Equations (1)–(3), N1(x, t)(N2(x, t)) and V1(x, t)(V2(x, t)) are, respectively, the nega-
tive (positive) normalized densities by their equilibrium values, N10(N20), and the negative
(positive) normalized velocity by the dust-acoustic speed, Cd =

√
µvT ; µ = Z1m2/(Z2m1),

vT = (kBTiZ2/m2)
1/2 is the thermal velocity, m2(m1) and Z2(Z1) are the rest mass of posi-

tive (negative) dust fluid and the number of charges on the positive (negative) dust grain
surface, Ti is the ion temperature, and kB is the Boltzmann constant. P(x, t) and φ(x, t) are
the normalized pressure and electrostatic potential by N20kBT and (kBTi/e), respectively.
Space and time are normalized by the dusty Debye length (λD = [kBTi/(4πe2N10Z1)]

1/2)
and the inverse of the dusty plasma frequency ω−1

− = [m1/(4πN10e2Z2
1)]

1/2, respectively.
σe = Ti/Te and σ = T2/(Z2Ti) is the temperature ratio between the positive dust and
ions, where Te is the electron temperature. µ+ = N20Z2/(N10Z1), µe = Ne0/(N10Z1),
and µi = Ni0/(N10Z1), which satisfy the neutrality condition, and µ+ − µe + µi = 1, Ne0,
and Ni0 are the densities of electrons and ions at equilibrium, respectively. η1(η2) is the
normalized viscosity of negative (positive) massive species. κi(κe) is the kappa parameter
of ions (electrons).

Equations (1)–(4) are complex, nonlinear, partial differential equations of six unknown
functions: N1, V1, N2, P, V2, and φ. Therefore, in the next section, we perform a small
amplitude wave analysis by using the reductive perturbation method (RPM) [36,37].

3. Small Amplitude Wave Approximation

To study the properties of propagating DAW by deriving nonlinear partial differential
equations, that is emit the most important waves that may appear in the plasma system
under consideration, the following stretching is introduced [36,37]:

τ = εα+βt, ξ = εα(x− λt), η1,2 = εγη1.2 (5)

where the strength of the nonlinearity is measured by using the small parameter, ε. α, β,
and γ are positive arbitrary parameters that are greater than or equal to zero. λ is the phase
velocity of the dust fluid. All the unknown quantities manifest in Equations (1)–(4) can be
expanded around their equilibrium values as:

N1(ξ, τ) = 1 + εN11 + ε2N12 + ε3N13 + . . . (6a)

V1(ξ, τ) = 0 + εV11 + ε2V12 + ε3V13 + . . . , (6b)

N2(ξ, τ) = 1 + εN21 + ε2N22 + ε3N23 + . . . (6c)

V2(ξ, τ) = 0 + εV21 + ε2V22 + ε3V23 + . . . (6d)

P(ξ, τ) = 1 + εP1 + ε2P2 + ε3P3 + . . . , (6e)

φ(ξ, τ) = 0 + εφ1 + ε2φ2 + ε3φ3 + . . . (6f)

By substituting (5) and (6) into the system of Equations (1)–(4) and collecting the
like-power of ε, the least order of ε yields:

V11 = −φ1

λ
, N11 = −φ1

λ2 , (7a)

N21 =
1

(λ2µ− 3σ)
φ1, V21 =

λ

(λ2µ− 3σ)
φ1, (7b)

P1 =
3

(λ2µ− 3σ)
φ1, (7c)
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The following complementary equation can be obtained due to the substitution of
Equation (7) into the Poisson equation, yielding:

1
λ2 +

µ+

(λ2µ− 3σ)
+ α1 = 0, (8a)

where

α1 = −
[

µi(2ki − 1)
(2ki − 3)

+ µeσe
(2ke − 1)
(2ke − 3)

]
(8b)

The next order of ε yields a set of equations that are dependent mainly on the values
of the introduced arbitrary constants, α, β and γ; thus, for the sake of simplicity, different
cases are studied.

3.1. Case 1 (β = 1)

The next order of ε provides a set of equations that gathers between the first and
second perturbed quantity, and by eliminating the second perturbed quantities, we obtain
the following evolution equation:

∂

∂τ
φ1 + Aφ1

∂

∂ξ
φ1 + Bε2α+1 ∂3

∂ξ3 φ1 + Cεα+γ+1 ∂2

∂ξ2 φ1 = 0 (9)

where

A =
1

A0

[
2α2 −

3
λ4 +

3µ+
(
λ2µ + σ

)
(λ2µ− 3σ)

3

]
, (10a)

B =
1

A0
, (10b)

C =
1

A0

[
η1

λ3 +
µ+η2λ

(λ2µ− 3σ)
2

]
, (10c)

A0 =

[
2

λ3 +
2µ+λµ

(λ2µ− 3σ)
2

]
, (10d)

α2 =
1
2

[
µi

4k2
i − 1

(2ki − 3)2 − µeσ2
e

4k2
e − 1

(2ke − 3)2

]
(10e)

Equation (9) represents the Kortweg–de Vreis Burger equation, where the second term
describes the nonlinearity, while the third and fourth terms represent the dispersion and
dissipation, respectively. Equation (9) shows that the dispersion and dissipation terms are
mainly dependent on the two arbitrary parameters, α and γ. At α = 1

2 , γ > 1
2 , Equation (9)

tends to the so-called KdV evaluation equation. This means that at γ > 1
2 the effect of the

dissipation term can be neglected in comparison with the dispersion term. Consequently,
the KdV equation has a soliton solution at the balance between nonlinear and dispersion
terms as

φKdV(ξ, τ) = φ0KdV sec h2
(

ξ − vτ

∆

)
, φ0KdV = 3v/A, ∆ = v/4B, (10f)

However, at α = 1, γ = 0, Equation (9) converts to Burgers’ equation, and the effect of
dispersion can be neglected in comparison with the effect of the dissipation term. In this
case, Equation (9) has a shock wave solution:

φB(ξ, τ) = φ0B

(
1 + tanh

(
ξ − vτ

∆

))
, φ0B = v/A, ∆ = 2C/v (10g)
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Conversely, the effects of both dispersion and dissipation exist, and a solitary wave
appears from the interaction between nonlinearity with dispersion and dissipation at
α = 1

2 , γ = 1
2 . At β = 1, as is clear from (10f) and (10g), there is a possibility of two types

of propagating wave (compressive and rarefactive), depending mainly on the sign of the
nonlinear coefficient, but when the nonlinear coefficient equals zero, the propagated waves
are undefined, so the nonlinear term must have more strength.

3.2. Case 2 (β = 2)

In this case, the least order of ε provides relations (7) and (8), while the next order of ε
leads to the following relations:

V12 = − 1
λ

φ2 +
1

2λ3 φ2
1, (11a)

N12 = − 1
λ2 φ2 +

3
2λ4 φ2

1, (11b)

V22 =
λ

(λ2µ− 3σ)
φ2 +

λ
(
λ2µ + 9σ

)
2(λ2µ− 3σ)

3 φ2
1, (11c)

N22 =
1

(λ2µ− 3σ)
φ2 +

3
(
λ2µ + σ

)
2(λ2µ− 3σ)

3 φ2
1, (11d)

P2 =
3

(λ2µ− 3σ)
φ2 +

9
(
λ2µ + σ

)
2(λ2µ− 3σ)

3 φ2
1, (11e)

By substituting Equation (11) into the Poisson Equation (3), the following relationship
can be obtained(

1
λ2 +

µ+

(λ2µ− 3σ)
+ α1

)
φ2 +

(
− 3

2λ4 +
3µ+

(
λ2µ + σ

)
(λ2µ− 3σ)

+ α2

)
φ2

1 = 0 (12)

In Equation (12), the coefficient of φ2(ξ, τ) is complementary (Equation (8a)) is equal
to zero and φ1(ξ, τ) 6= 0; therefore, the coefficient of φ2

1(ξ, τ) can be considered equal to
zero, and in this case, the following relation can be obtained:(

− 3
2λ4 +

3µ+
(
λ2µ + σ

)
(λ2µ− 3σ)

+ α2

)
= 0, (13)

The third order of ε represents the following evolution equation:

∂

∂τ
φ1(ξ, τ) + A′φ2

1(ξ, τ)
∂

∂ξ
φ1(ξ, τ) + Bε2α+1 ∂3

∂ξ3 φ1(ξ, τ) + Cεα+γ+1 ∂2

∂ξ2 φ1(ξ, τ) = 0 (14)

where

A′ =
1

A0

[
3α3 +

15
2λ6 +

3µ+
(
5λ4µ2 + 30λ2µσ + 9σ2)

2(λ2µ− 3σ)
5

]
, (15a)

α3 = −1
6

µi

(
4k2

i
+ 8ki + 3

)
(2ki − 1)

(2ki − 3)3 + µeσ3
e

(
4k2

e + 8ke + 3
)
(2ke − 1)

(2ke − 3)3

 (15b)

Equation (14) represents the modified Kortweg–de Vreis –Burger equation, with dis-
persion and dissipation terms depending mainly on the arbitrary parameters α, and γ.
At α = 1, γ > 1, Equation (14) tends to the modified KdV equation, but at α = 2, γ = 0,
Equation (14) converts into the modified Burgers’ equation, while at α = 1, γ = 1, the
modified KdV–Burgers’ equation appears. In Equation (12) the coefficient of φ2

1(ξ, τ) can



Appl. Sci. 2022, 12, 10288 6 of 11

be considered of the order of ε and not equal to zero, so
(
− 3

2λ4 +
3µ+(λ2µ+σ)
(λ2µ−3σ)

+ α2

)
φ2

1(ξ, τ)

becomes an order of ε3, and it must appear in the higher order of Poisson’s equation.
Therefore, in this case, the higher order of ε, it yields the Further–Burgers equation as:

∂

∂τ
φ1 +

(
A′φ2

1 + Aφ1

) ∂

∂ξ
φ1 + Bε2α+1 ∂3

∂ξ3 φ1 + Cεα+γ+1 ∂2

∂ξ2 φ1 = 0 (16)

At α = 1, γ > 1, Equation (16) tends toward the so-called Further equation, but at
α = 2, γ = 0, and A = 0, Equation (16) converts into the modified Burgers’ equation,
while at α = 1, γ = 1, the Further–Burgers equation appears as:

∂

∂τ
φ1 +

(
A′φ2

1 + Aφ1

) ∂

∂ξ
φ1 + B

∂3

∂ξ3 φ1 + C
∂2

∂ξ2 φ1 = 0 (17)

4. Results and Discussion

In this paper, the reductive perturbation method in its generalized form (5) was used to
derive some important nonlinear partial differential evolution equations (the KdV–Burgers
family) to theoretically study some important waves, such as soliton, shock, and solitary
waves, for unmagnetized, collisionless four-component dusty plasma, as taken from [25,26],
after adding the effect of viscosity and taking the distribution of inertialess particles as a
kappa distribution. Some arbitrary parameters were presented in a reductive perturbation
method to control the strength of nonlinearity, dispersion, and dissipation in the system
under consideration.

As shown in the theoretical analysis for the system under consideration, the existence
of three arbitrary parameters is very important: α, which controls the strength of dispersion;
β, which controls the strength of nonlinearity; and γ, which controls the strength of
dissipation in our system. The nonlinear KdV–Burgers equation (9) can be obtained at
β = 1, and this equation is a very important in plasma physics because it is a combination of
two important equations, that is, the KdV and Burgers equations. This equation combines
the nonlinear, dispersion, and dissipation terms in one equation with their coefficients
depending on the arbitrary parameters α and γ. At α = 1

2 , γ > 1
2 , i.e., the dissipation

effect can be neglected in comparison with the dispersion, and the resultant equation is
called the KdV evaluation equation, which balances between nonlinearity and disperses a
soliton solution given by (10f), while at α = 1, γ = 0 (in this case, the effect of dissipation is
larger than that of dispersion), in Equation (9) it can be converted to the so-called Burgers’
equation, which emits a shock wave solution given in (10g).

As shown from the soliton solution of the KdV Equation (10f) and the shock wave
solution for Burgers’ Equation (10g), the sign of the amplitudes of the propagated waves
depends on the sign of the nonlinear coefficient, A, as given in (10a), which depends
mainly on the configurationally plasma parameters. The plotting of electrostatic potential,
φKdV(ξ, τ), given by (10f) at σ = 0. σe = 0.5, µe = 0.2, µ2 = 0.5, µ = 2, τ = 0.01, v = 0.04
and at different values of the kappa parameter, k, shows the propagation of negative
(rarefactive) solitons at k < 1.5 and positive (compressible) solitons at k > 1.5 in Figure 1.
The effects of the kappa parameter, k, are obvious in Figure 1 in the shape (width and
amplitude); that is, at k > 1.5, the change in both width and amplitude for the compressive
soliton is very sensitive to the change in the kappa parameter, while the shape of the
rarefactive soliton is slightly changed by the kappa parameter in comparison with that of
the compressive soliton. The effects of the thermal motion of the positive dust fluid on
the propagation of the compressive parameter at k = 2.5 and the rarefactive solitons at
k = 1 are shown in Figure 2. It is clear from the graph that as the thermal parameter, σ,
increases, both the width and amplitude decrease, but the compressive soliton is affected
by the thermal parameter, which is higher than that of the rarefactive parameter.
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At α = 1, γ = 0, the effect of dispersion can be neglected in comparison with the
dissipation effect in this case, and absent the effect of thermal motion, the system under
consideration is converted to that of [32]. The appearance of both positive and negative
shock waves, which are provided by the graph of the electrostatic potential, φB(ξ, τ),
via the space parameter, ξ, for different values of the kappa parameter, k, and the other
parameters taken from Figures 1 and 2 are shown in Figure 3. The effects of viscosity
for both positive and negative dust components are shown to be able to plot the positive
electrostatic potential, φB(ξ, τ) (at k = 2.5, and σ = 0) in Figure 4. The graphs in Figure 4
show that the shapes of the positive shock waves are changed due to varying the viscosity
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values of the positive and negative dust fluids, but the variations in both the amplitude and
steepness of the propagated shock wave are more sensitive to variations in the viscosity of
the negative dust than that of positive dust.
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Figure 5 shows that positive and negative solitary waves are propagated by the
interaction between a nonlinear term with dispersion and dissipation, taking the introduced
arbitrary parameters as α = 1

2 , γ = 1
2 . In this case, Equation (9) has a solitary wave solution:

φB(ξ, τ) = φ0KdV−B

(
1− eC1(ξ−vτ) cos(C2(ξ − vτ))

)
,

φ0KdV−B = 2v/A, C1 = −C/2B, and C2 =
√

v
B .

(18)

From the solutions of the KdV Equation (10f), Burgers’ Equation (10g), and the KdV–
Burgers Equation (18), we can say that the types (compressive or rarefactive) of propagated
waves are controlled by the values of nonlinear term coefficient A. Compressive waves
(soliton, shock, and solitary) are propagated at A > 0, while rarefactive waves are propa-
gated at A < 0. At A = 0, the propagated wave cannot be defined. Thus, the strength of
the nonlinear term must be increased. The so-called modified KdV–Burgers and Further–
Burgers equations are derived at β = 2, with the dispersion and dissipation coefficient
depending mainly on the arbitrary parameters α and γ.
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Figure 5. The 2D oscillatory wave electrostatic potential yielded by the solution of the KdV–Burgers’
equation for different values of k, with η1 = 0.6, σ = 0, η2 = 0.7.

Finally, as shown from the introduced stretching and derived equations, there are three
parameters that can directly affect the strength of nonlinearity and the appearance of the
effects of both dispersion and dissipation in the medium, in addition to the propagation of
compressive and rarefactive waves, which depend mainly on the kappa parameter values,
as shown in Figures 1–5. As it appears from the form of the dissipation coefficient, the
dissipation of energy depends mainly on the dust fluid viscosity. This analysis may be
useful in predicting the types of propagated dust-acoustic waves in the auroral zone of
the ionosphere, for laser-produced plasma, and for interstellar dust plasma where non-
Maxwellian distributions are considered. The chosen plasma parameters are relevant to
different areas of space science, such as Jupiter’s magnetosphere, Earth’s mesosphere, and
cometary tails [33–35].
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