
Citation: Mireles, C.; Lozano, A.;

Ballesteros, M.; Cruz-Ortiz, D.;

Salgado, I. Asymmetric Constrained

Control of a Cervical Orthotic Device

Based on Barrier Sliding Modes. Appl.

Sci. 2022, 12, 10286. https://doi.org/

10.3390/app122010286

Academic Editor: Jesús Picó

Received: 27 August 2022

Accepted: 4 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Asymmetric Constrained Control of a Cervical Orthotic Device
Based on Barrier Sliding Modes
Caridad Mireles 1,2 , Alejandro Lozano 2,† , Mariana Ballesteros 1,2 , David Cruz-Ortiz 2 and Ivan Salgado 1,∗

1 Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional,
Mexico City 07700, Mexico

2 Medical Robotics and Biosignal Processing Laboratory, Unidad Profesional Interdisciplinaria de Biotecnología,
Instituto Politécnico Nacional, Mexico City 07340, Mexico

* Correspondence: isalgador@ipn.mx
† Current address: Department of Biomedical Data Science, Standford University, Stanford, CA 94305, USA.

Abstract: This work proposes a robust sliding mode controller to enforce the tracking trajectory
of a cervical orthotic device subjected to asymmetric box constraints. The convergence analysis
employs an asymmetric barrier Lyapunov function (ABLF), whose argument is a restricted sliding
surface. The stability analysis demonstrates the finite-time convergence of the states towards the
sliding surface and, therefore, the exponential stability of the system trajectories. The controller
ensures the fulfillment of the restrictions imposed on the sliding surface and consequently over the
states. Numerical simulations exhibit the performance of the proposed controller ensuring restricted
movements for flexion and extension of a virtual orthotic cervical device. The restricted movements
obey asymmetric constraints according to the therapies proposed by medical specialists.

Keywords: asymmetric box-type constraints; barrier Lyapunov function; first-order sliding modes;
finite-time convergence

1. Introduction
1.1. Preliminaries

Currently, emerging technologies provide feasible solutions for medical problems [1].
In terms of physical medicine and rehabilitation, the improvement of classical static orthosis
and prosthesis has helped patients to recover their functional abilities in a shorter period of
time [2]. Static orthosis usually immobilizes or restricts the motion of human limbs. They
are made with diverse materials depending on their applications [3]. On the other hand,
an active orthosis is a device that increases the ability of a person suffering from pathology
or a fracture augmenting the power at one or more joints of the extremities by means of a
mechanical actuated structure [4]. Depending on the physical affectation, the specialists
should suggest the kind of orthosis to use. Cervical orthoses are a particular case of these
devices which are designed to control head movement and neck function, cervical orthoses
vary greatly in the degree to which they immobilize the neck and unload head weight [5,6].

The most common cervical orthoses applications include the physiotherapy of head
pain such as migraines [7], correction of spinal deformities, rehabilitation in postoper-
ative procedures [8], whiplash-associated disorders, and non-operative treatment for
fractures [9,10]. Some examples are the halo vest, Philadelphia collars, Minerva collars,
aspen, stiff-neck Miami collar, among others [3,11]. Even though, several studies support
the effectiveness of these orthoses immobilizing the fracture sites [10], current studies
have demonstrated the advantages of using active orthoses, not only in cervical injuries
but also in lower-limb rehabilitation [12]. The design of a cervical orthosis must satisfy
the support, prevention, and correction of cervical injuries in patients [3]. Moreover, it
must satisfy three-point pressure in parts of the body where nerves and tissues are not
affected by the structure system [13]; the manufacturing of cervical orthosis devices should
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be circumferential for supporting the neck and limiting the range of motion. In addition,
the manufacturing device needs to be elaborated with material that does not irritate the
skin. Indeed, some researchers evaluated different types of orthosis that have effects on
the quality of treatment depending if the injury is a fracture, postoperative treatment, or
deformity [14]. The main parameters to be evaluated in the design of an orthosis are the
restricted motion, the correct size, comfort assessment control of snaking, and control of
flexion/extension/rotation [8,10]. Some evaluations compare the efficiency of common
cervical orthosis finding the main complications of wearing those devices [10]. The main
issues related to wearing a cervical orthosis are infections, pressure in plastic vests, injuries
in nerves, occipital ulceration, stiffness of facial muscles, and control motion [8,15].

Robotic cervical orthoses have to ensure a correct control range of motion during
rehabilitation for either postoperative surgeries, fractures, or cervical injuries during re-
habilitation sessions [16,17]. Some of them use new mechanical technologies for their
design, as well as control algorithms to ensure the safety and correct treatment of the
patient. The robotic cervical systems which are bio-inspired designs usually incorporate
the measurements of bio-potentials such as electromyography or electroencephalography
for active control [17–20].

Therefore, the control theory applied in any orthosis device must guarantee the
security of the patient during the tracking trajectory of natural neck motion [17]. Among
others, adaptive controllers, impedance adaptive controllers [21], and active disturbance
theory [22] have been used in the control of active orthoses. To enhance the safety capacity
of active cervical orthoses, the control development ought to consider movement and
velocity restrictions. Barrier Lyapunov functions (BLF) have been implemented to deal
with state and control restrictions [23]. BLFs have solved many problems related to state
restrictions. The main idea of this strategy is to produce a strong control signal when
the system trajectories approach a given boundary [24]. The strategies developed under
the concept of BLFs include robust controllers using a constrained attractive ellipsoid
approach [25], adaptive constrained control [26,27], neuroadaptive learning algorithm for
constrained nonlinear systems based on time-varying barrier Lyapunov functions [28],
sliding mode control [23], among others.

Sliding mode control offers attractive features such as robustness against matched per-
turbations, finite-time convergence, and model reduction [23,29]. For mechanical systems,
this theory is mainly selected when the system is partially unknown. Restricted sliding
modes (SM) ensure the accomplishment of position and velocities through the restriction
of the sliding motion. To reach this goal, logarithmic BLFs have been implemented in
first-order sliding modes (FOSM) and terminal SM. However, it considers only symmetric
restrictions that do not fulfill the requirements for an active orthosis, where the movement
is restricted according to the injury or the natural movement of the human limbs.

The work in [30] develops a robotic neck controlled with a proportional–integral–
derivative (PID) control strategy to coordinate head movement in patients with differ-
ent neurological disorders, such as amyotrophic lateral sclerosis and cerebral palsy. For
whiplash syndrome, the authors of [21] provide an impedance adaptive PID controlled
device for rehabilitation. Notice that these two approaches do not consider state restrictions
that can damage the patient if an overshoot appears in the control signal. The authors
of [31] propose a novel mechanical design for a neck orthosis implementing a restricted
non-terminal sliding mode with a convergence proof based on a logarithmic BLF. The
controller ensures the fulfillment of symmetric box-type constraints.

1.2. Contributions

The work presented in [26] deals with the design of an adaptive asymptotic tracking
control for a class of uncertain nonlinear systems with parametric uncertainties. An asym-
metric BLF (ABLF) achieves asymptotic convergence with zero-tracking error, bounded
closed-loop signals, and the fulfillment of asymmetric state restrictions. This manuscript
introduces an ABLF for SM controllers. The main contributions of this work includes the
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design of an asymmetric controller based on first order sliding modes and a BLF, and its
implementation for controlling a virtual robotic orthosis.

1.3. Manuscript Organization

The organization of the manuscript is the following: Section 2 introduces some math-
ematical definitions to understand the control design. Section 3 defines the problem
statement with the requirements the controller have to consider dealing with a robotic or-
thosis. Section 4 describes the mathematical representation for a mechanical orthosis device
that obeys a fully actuated second-order nonlinear system. The nature of the constraints
are addressed in this section. Section 5 purposes an asymmetric FOSM control strategy for
second-order systems with asymmetric state restrictions. This section summarizes the main
result in the main theorem. In Section 6, some numerical simulations show the behavior
of the proposed controller. Some comparisons against classical strategies demonstrate
the advantages of using the constrained first-order sliding mode controller. Finally, some
remarks are given in Section 7.

2. Mathematical Preliminaries

The solution of the problem proposed in this manuscript requires some well-known
mathematical preliminaries.

Definition 1. (Barrier Lyapunov function [32]). Let Ω ⊂ Rn represents an open set with the
boundary ∂Ω, and V : Ω → R+ be a continuous function in R+, it means V is a BLF if it is
positive definite, continuously differentiable in Ω, as

lim sup
x→∂Ω−

V(x(t))→ +∞,

and V(x(t)) ≤ b, ∀t ≥ 0 for some b ∈ R+ and for any x(0) ∈ Ω. If V̇(x(t)) ≤ 0 and x(0) ∈ Ω
then, b = V(x(0)) and any future trajectory is bounded in Ω.

Lemma 1. For any constant |ρ| < 1, the following inequalities are satisfied

a) ρ ≤ − log(1− ρ) ≤ ρ

1− ρ

b) − ρ2

1− ρ2 ≤ − log
(

1
1− ρ2

)
Proof. The proof of this Lemma is analyzed in [23].

Lemma 2 ([23]). Let ρ a positive constant satisfying |ρ| ≤ 1, then, the following inequality holds

− 1
ρ
≤ − 1

log

√
1

1− ρ2

(1)

3. Problem Statement

Physical real systems should consider state restrictions that can be maximum and
minimum values for both, position and velocity. In the case of robotic systems used in
medical applications (like robotic orthosis and prosthesis). These restrictions play an
important role designing control strategies to avoid any damage or undesired movement
that can affect the patient. For the cervical orthosis designed in this manuscript, as a
consequence of a particular muscle injury, some positions can not be attainable by the
patient. Therefore, a cervical orthotic device should consider asymmetric restrictions in
position and velocity. The problem to solve can be summarized as follows:
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The control problem in this manuscript aims to design an effective robust tracking
control for the orthosis mechanical system such that a) the origin becomes an asymptotic
equilibrium point for the tracking error; b) all signals in closed-loop systems are bounded;
and c) the full asymmetric state constraints are not violated.

To deal with this problem statement, the following mathematical tools will be applied
developing the stability proof of the proposed controller.

4. Mathematical Description of the Cervical Orthotic Device

The mathematical description consider to be fulfilled by the mechanical orthosis device
is obtained through the Euler–Lagrange approach. Therefore, the following mathematical
model can describe the complete dynamics of the orthosis [23]

q̈(t) = F(q̇(t), t) + G(q(t), t) + Ψ(q(t), t), (2)

with q(0) = q0 and q̇(0) = qd0 being the initial conditions, q0, qd0 ∈ Rn. q ∈ R2n is the
vector of generalized coordinates and q̇ ∈ R2n its corresponding derivative. Function
F : R2n ×R+ → Rn is the drift term and it satisfies the Lipchitz condition and the term G :
Rn×R+ → Rn×n is a known matrix associated with the input signal u ∈ Rn. The nonlinear
function Ψ : R2n ×R+ → Rn represents uncertainties and non-modeling dynamics that
satisfies the next condition

‖Ψ(q, t)‖ ≤ Ψ0 + Ψ1‖q‖2, Ψ0.Ψ1 ∈ R+. (3)

defining x1 = q and x2 = q̇, by the state variable approach, system in (2) becomes (the time
dependence is omitted to facilitate the reading of the manuscript)

ẋ1 = x2

ẋ2 = f (x, t) + g(x1)u + Ψ(x, t),
(4)

where x1 =
[
x1,1 x1,2 . . . x1,n

]> and x2 =
[
x2,1 x2,2 . . . x2,n

]>.

As it was mentioned before, the orthotic device should be restricted in movement and
velocity. Therefore, the following assumption is taking into account in this manuscript.

Assumption 1. The states are bounded by

x−1 ≤ ‖x1(t)‖2 ≤ x+1 , x−2 ≤ ‖x2(t)‖2 ≤ x+2 , ∀t ≥ 0,

with x1,+, x2,+ being positive known constants and x2,− andx1,− being negative constants. For
n-dimensional systems, it is possible to assume that each state is bounded individually by

k−c1,i
≤ x1,i ≤ k+c1,i

, k−c2,i
≤ x2,i ≤ k+c2,i

k+c1,i
, k+c2,i

∈ R+, k−c1,i
, k−c2,i

∈ R−,

previous equation implies an asymmetric box-type constraints for the second order system in (2).

Remark 1. The definition of the constraints in Assumption 1, without loss of generality, im-
plies asymmetric-type box constraints centered at zero. For positive asymmetric constraints, a
transformation can be implemented to apply the control design proposed in this manuscript.

Assumption 2. The nonlinear function f (x, t) accepts the next upperbound

‖ f (t, x)‖2 ≤ f0 + f1‖x‖2, f0, f1 ∈ R+,
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based on Assumption 1, previous inequality is equivalent to

f− ≤ ‖ f (t, x)‖2 ≤ f+,

where f− = f0 + f1x− and f+ = f0 + f1x+

As a consequence of the restrictions imposed over the physical system, the tracking
trajectories should be restricted according the next assumption.

Assumption 3. The vector of target signals yr and its first time derivative ẏr are continuous and
bounded. Moreover, the ith components of yr and ẏr called yr,i and ẏr,i, respectively, accepts the
following bounds

k−c1,i
≤ y−r,i ≤ yr,i ≤ y+r,i ≤ k+c1,i

k−c2,i
≤ dy−r,i ≤ ẏr,i ≤ dy+r,i ≤ k+c2,i

Based on Assumptions 1 and 3, the tracking error defined as z = x − ȳr should

be bounded inside an asymmetric box-type constraints. Here ȳr :=
[
y>r ẏ>r

]> and x :=[
x>1 x>2

]>. The associated restrictions are given by

kai ≤ z1,i ≤ kbi
dkai ≤ z2,i ≤ dkbi

, (5)

where kbi
= k+c1,i

− y−r,i, dkai = k−c1,i
− y+r,i, dkbi

= k+c2,i
− dy−r,i, and dkai = k−c2,i

− dy+r,i.

5. Control Design Based on an Asymmetric Barrier Lyapunov Function

The control strategy adopts the well-known FOSM theory. SM theory implies the
selection of a sliding surface with a desirable convergence behavior and a control algorithm
to enforce the reaching of the surface in finite time. An ABLF analyzes the equilibrium
point of the tracking error.

System Decomposition

The uncertain system (4) can be decomposed as n-second order systems, that is,

ẋ1,i = x2,i

ẋ2,i = fi(x) + gi(x1,i)ui +
n

∑
i=1,i 6=j

gi,j(x1)uj + ψi(x1, t),
(6)

where gi is the diagonal matrix taking the element gi,i of matrix G(x) i-th element of
function, fi is the ith element of function F. The matrix gi,j groups the effect of the remaining
control actions uj with i 6= j. Taking into account the definition of the tracking error zi, its
dynamics becomes

ż1,i = z2,i

ż2,i = fi(x) + gi(x1,i)ui +
n

∑
i=1,i 6=j

gi,j(x1)uj + ψi(x1, t)− ÿr,i.
(7)

Let proposes the following control to solve the tracking trajectory task

ui = g−1
i (ua,i + ub,i), (8)
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in last equation, the component ua,i compensates the nonlinear dynamics and the interaction
of the control components in the i-th state, that is

uai =


− f+ − γiz2,i −

n

∑
i=1,i 6=j

gi,jui,j + ÿr,i if σ(si) = 1

− f− − γiz2,i −
n

∑
i=1,i 6=j

gi,jui,j + ÿr,i if σ(si) = 0

(9)

the definition of function σ(·) is

σ(·) :=

{
1 if · > 0
0 if · ≤ 0

(10)

and si is the i-th component of the sliding surface, which is defined as,

si = z2,i + γiz1,i, (11)

here, γi ∈ R+ defines the rate of convergence of the tracking error. The control component
ubi

forces the tracking error to converge in finite time to the sliding surface defined in (11),
and it has the following definition

ubi
= −k̄i(t)sign(si)

k̃i :=

k̃+i if σ(si) = 1

k̃−i if σ(si) = 0

(12)

the definition of the adaptive gains are the following

k̃+i = k̄si (0.5)
3
2 µi

1
1− ηb,i

+ sign
(
ηbi

) Ψ+
i

1− ηb,i
,

k̃−i = ksi
(0.5)

3
2 µi

1
1− ηa,i

+ sign(ηai )
Ψ−i

1− ηa,i
,

(13)

with µi ≥ 0. The values of ηa,i and ηb,i are defined as

ηai :=
si
ksi

, ηbi
:=

si

k̄si

, (14)

and si is the sliding surface, that is,

si = z2,i + γiz1,i. (15)

Notice that the sliding surface has the following bounds based on the constraints imposed
over the states

ksi
≤ si(t) ≤ k̄si , ∀t ≥ 0

ksi
:= dkai + γikai , k̄si := dkbi

+ γikbi
.

(16)

The main result of this manuscript is given in the following Theorem

Theorem 1. Let consider the close-loop system in (7) that represents the tracking error for a
mechanical system in form of Equation (6). If the control action is selected as in Equation (8) with
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µ > 0 and the time varying gains described by Equation (13). Then, the origin of the sliding surface
is a finite-time equilibrium point with a convergence time defined as

T(s) ≤ 4
√

0.5 min
i∈1,2,...,n

(√
V(si)

µ0.5
i

)
, (17)

and the tracking error has an asymptotically stable equilibrium point at the origin.

Proof. Consider the following ABLF

V(s(t)) :=
n

∑
i=1

Vi(si(t)),

where the i-th element is

Vi =
σ(si)

2
log

(
k̄2

si

k̄2
si
− s2

i

)
+

1− σ(s1)

2
log

(
k2

si

k2
si
− s2

i

)
. (18)

These function takes into account the approaches developed in [23,26]. With the function σ
defined in Equation (10). Defining the variable ηi as

ηi := σ(si)ηbi
+ (1− σ(si))ηai , (19)

equation in (18) becomes

Vi :=
1
2

log
1

1− η2
i

, (20)

notice that ηi > 0 for any time great or equal to zero. Therefore, V1 is a positive definite
and continuously differentiable function. Its first time derivative is given by

V̇1 = λisi ṡi, (21)

with

λi :=
σ(si)

k̄2
si
− s2

i
+

1− σ(si)

k2
si
− s2

i

, (22)

the derivative of the sliding surface satisfies

ṡi = ż2,i + γi ż1,i. (23)

Therefore, the dynamics of the sliding surface becomes

ṡi = fi(x) + gi(x1,i)ui +
n

∑
i=1,i 6=j

gi,j(x1)uj + ψi(x1, t)− ÿr,i + γiz1,i, (24)

taking the upper-bound of ψi and fi, and the control action as in (8), one has,

ṡi ≤ ‖ fi‖2 +
(
uai + ubi

)
+

n

∑
i=1,i 6=j

gi,j(x1) + ‖Ψi‖2 − ÿr,i + γiz2,i. (25)

Based on Assumptions 1–3 and Equation (16), the derivative of the sliding surface is
bounded asymmetrically. Taking the upper and lower bounds for function fi in Assumption
2 and Equation (3) and selecting the control gains uai and ubi

as in (8), Equation (25) becomes

ṡi ≤ −k̄i(t)sign(si) + ‖Ψi‖2. (26)
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Substituting Equation (26) in (23), one has

V̇i ≤ λisi

(
−k̄i(t)sign(si) + ψ+

0,i + ψ+
1,i‖xi‖2

)
(27)

with the definition of λ as in (22), Equation (27) is equivalent to

V̇i ≤ −
σ(t)ηb,i

ksi

(
1− η2

b,i

)(k̄i(t)sign(si) + ψ+
i
)
− (1− σ(t))ηa,i

ksi

(
1− η2

a,i

) (k̄i(t)sign(si) + ψ−i
)
, (28)

where ψ+
i = ψ+

0,i + ψ+
1,i(x+)2 and ψ+

i = ψ+
0,i + ψ+

1,i(x−)2. Using the following expressions

sign(si) =
si
|si |

, |si| ≤ |ηa||ksi
|, |si| ≤ |ηb||k̄si |,

Equation (28) turns into

V̇i ≤
σ(si)

k̄si

(
1− η2

b,i

)(−k̄i(t)ηb,i(1− ηb,i)si

k̄si ηb,i
+ |ηb,i|Ψ+

i

)
+

1− σ(si)

ksi

(
1− η2

a,i

)(−k̄i(t)ηa,i(1− ηa,i)si

|ksi
|ηa,i

+ |ηa,i|Ψ−
)

,

(29)

Selecting the control gain k(t) as in Equations (13) and (29) becomes

V̇i ≤ −σ(si)
η2

b,i

1− η2
b,i

0.53/2µi
ηb,i

− (1− σ(si))
η2

a,i

1− η2
a,i

0.53/2µi
ηa,i

with the application of Lemma 1 part b, the next inequality is valid

V̇i ≤ −
σ(si)

2
log

(
1

1− η2
b,i

)
0.51/2µi

ηb,i
− (1− σ(si))

2
log

(
1

1− η2
a,i

)
0.51/2µi

ηa,i
. (30)

Taking into account the result showed in Lemma 2, last equation can be bounded as

V̇i ≤ −σ(si)
1
2

log

(
1

1− η2
b,i

)
0.51/2µi√√√√1

2
log

(
1

1− η2
b,i

)−

(1− σ(si))
1
2

log

(
1

1− η2
a,i

)
0.51/2µi√√√√1

2
log

(
1

1− η2
a,i

) ,

(31)

which is equivalent to

V̇i ≤ −0.51/2µi

σ(si)

√√√√1
2

log

(
1

1− η2
b,i

)
+ (1− σ(si))

√√√√1
2

log

(
1

1− η2
a,i

). (32)

Applying the inequality
√

a + b ≤
√

a +
√

b, one finally obtains

V̇i ≤ −0.51/2µi

√√√√(σ(si)
1
2

log

(
1

1− η2
b,i

)
+ (1− σ(si))

1
2

log

(
1

1− η2
a,i

))
. (33)
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Taking the definition of the BLF, Equation (33) is equivalent to next inequality

V̇i ≤ −0.51/2µiV
1
2

i . (34)

Therefore, the time derivative of V(s) is equivalent to

V̇(s) ≤ −0.51/2
n

∑
i=1

µiV
1
2

i ≤ −0.51/2µ̄V
1
2 (35)

Equation (35) implies the finite-time convergence of the sliding surface with a reaching
time defined in Equation (17) in the main theorem [33]. This concludes the proof.

6. Numerical Simulations
Orthosis Specifications

Figure 1 describes the robotic orthosis that is made up of three principal sections:
(1) the head support that holds the head of the patient preventing falling and (2) the collar
structure which supports the whole mechanism. This structure should be positioned on
the shoulders of the patient to prevent any cervical damage. Finally, (3) the mechanical
actuators that forces the movement of the orthosis.

a)x xy y

z z
z

b) c)

Figure 1. Orthosis design in a CAD software. (a) Isometric view; (b) frontal view; and (c) lateral view.

The movement of actuators allows to control the range, and the trajectory of the neck
during rehabilitation therapies. The corresponding motion trajectories should be suggested
by professional physicians. Figure 2 shows the class of actuators selected for the orthosis.
The orthosis employs linear actuators that generates a movement in the x-y direction.

q4

q1

q2

q3

r3

r2

r1

Figure 2. The mechanism of movement generated by a set of linear actuators. The closer view
describes the position and orientation of the actuators.
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Once the proposal design was approved, the CAD design is exported to Simulink in
Matlab to prove the orthosis in a virtual environment. The SimMechanics environment
allows to prove virtually the functions of the orthosis. With the measurements of position
and velocity obtained from SimMechanics, it is possible to evaluate the control performance
for a future implementation. The control must satisfy the neck motion for the rehabilitation
according to the trajectories suggested by physicians.

A comparison is done employing a classical PID controller. The control gains employed
in this controller are kP = 10, kD = 2.5 and kI = 0.5. For the FOSM controller the gains are
γ = 0.002, µi = 0.1. The positive restriction in position is 5.795× 10−4 m, while the negative
restrictions is −5.725× 10−4 m, the restrictions in velocity were 1 cm/s and −1.3 cm/s.
Figure 3 shows the results obtained with the proposed asymmetric FOSM controller. Notice
that the position of the orthosis follows the desired trajectories without violating the
state restrictions. A comparison against a classical proportional–integral–derivative (PID)
controller demonstrates the advantages using the analysis based on BLF. Even though, the
results obtained with the PID strategy do not violates the asymmetric state restrictions
imposed on the orthosis, the trajectories do not reach the desired ones. Figure 4 describes
the tracking trajectory task for the velocity. Similar to previous results the trajectories
remain inside the constraints. The initial overshoot presented by the PID controller does
not fulfill the state restrictions, while the overshoot provided by the asymmetric FOSM
that is smaller than the PID remains inside the restrictions. Notice that the convergence
is improved applying the controller proposed in this manuscript. Figure 5 describes the
control signal obtained with each approach. Finally, Figure 6 shows the comparison of
the tracking error obtained with the PID and the AFOSM. The tracking error resulted
from applying the PID is bigger than the one obtained with the AFOSM. These numerical
simulations corroborate the theoretical results showed in Theorem 1.
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Figure 3. Tracking trajectory of position.
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Figure 6. Tracking error for the position.

7. Conclusions

This manuscript showed the control of an orthotic cervical device assuming asym-
metric state restrictions based on FOSM and ABLF. The stability analysis demonstrated
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the finite-time convergence of the nonlinear system towards the sliding surface and con-
sequently, asymptotic convergence of the tracking error. Numerical results compared the
trajectories obtained with classical controllers showing how the trajectories do not fulfil
the restrictions when a PID is applied. Further research should be oriented to study time-
varying restrictions based on sliding mode approaches and to validate through a clinical
study the advantages of using these active devices.
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