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Abstract: An automatic quality assessment of stitched images is an essential task in image analysis
and is particularly useful not only in the creation of general-purpose panoramic images but also
in terrain exploration and mapping made by mobile robots and drones. In Visual Simultaneous
Localization and Mapping (VSLAM) solutions, the environment maps acquired by cameras mounted
on the mobile robots may be captured in dynamically changing lighting conditions and subject
to some other distortions influencing the final quality of the panoramic images representing the
robot’s surroundings. Such images may also be used for motion planning and visual navigation for
other robots, e.g., in follow-the-leader scenarios. Another relevant application area of panoramic
imaging is Virtual Reality (VR), particularly head-mounted displays, where perceived image quality
is even more important. Hence, automatic quality evaluations of stitched images should be made
using algorithms that are both sensitive to various types of distortions and strongly consistent with
subjective quality impression. The approach presented in this paper extends the state-of-the-art
metric known as the Stitched Image Quality Evaluator (SIQE) by embedding it with some additional
features using the proposed new combination scheme. The developed combined metric based on
a nonlinear combination of the SIQE and additional features led to a substantially higher correlation
with the subjective quality scores.

Keywords: image quality assessment; stitched images; panoramic images; image analysis

1. Introduction

Image stitching is typically defined as a method for creating panoramic images from
a set of constituent images or, more generally, a combination of multiple images into a larger
image with a wider field of view. It may be applied for various purposes including popular
smartphone applications, where such panoramas may be constructed directly during the
acquisition of an image series by the smartphone camera. Nevertheless, the application
areas of stitched images are much wider, including in mobile robotics and robot vision [1,2],
non-destructive testing and surface inspections [3,4], civil engineering construction [5], as
well as medical X-ray imaging [6].

The main idea of image stitching is based on the application of feature extraction
methods, making it possible to identify some pairs of small image fragments (features)
present in two constituent images that represent the same physical objects or their fragments,
e.g., corners. For this purpose, several methods may be applied from the classical Harris
corner detector and Difference of Gaussians (DoG) to the use of feature detectors and
descriptors, such as the Scale Invariant Feature Transform (SIFT) [7], Speeded-Up Robust
Features (SURF) [8], Features from Accelerated Segment Test (FAST) [9], as well as some
more advanced ones such as BRIEF (Binary Robust Independent Elementary Features) [10],
ORB (Oriented FAST and Rotated BRIEF) [11], BRISK (Binary Robust Invariant Scalable
Keypoints) [12], or FREAK (Fast Retina Keypoint) [13]. Having determined the interest
points (keypoints), the next step is to find their matches and use affine transformations.
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Typically, the homography estimation is made using the Random Sampling Consensus
(RANSAC) algorithm [14], which is used for the outliers’ removal, and then each image
is projected onto the same surface and blended. Image blending can also be conducted
using several techniques, including alpha blending and gain compensation, influencing the
final quality of the stitched image. Hence, by using more images partially overlapping each
other, it is possible to construct a single high-resolution image representing a larger scene.

Such methodology can be useful in many applications related to mobile robotics from
target recognition [1,15] to robot-based inspection systems, where the 3D point clouds
can also be stitched with additional texture projection helping to calculate the sensor’s
movement [3]. Another interesting application is related to crack detection during concrete
bridge inspections by combining point and line features. During a typical inspection
process, thousands of individual images are collected so the detection of cracks on them
would take a lot of time. More reliable and comprehensive results may be obtained for
images representing the surface as a whole. Such a system constructed for the inspection
of the bottom surfaces of bridges has been presented by Xie et al. [5]. Similar methods
may be useful in industrial applications for video inspection of many types of large,
particularly long, elements, as well as in electrical engineering for the inspection of power
lines using drones.

Recently, Schlagenhauf et al. [4] utilized image-stitching methods for the automated
surface inspection of rotationally symmetric parts, e.g., ball screw drives or cylinder walls
of a combustion engine, particularly for images obtained using line-scan cameras. An inter-
esting method for stitching video sequences from a fisheye camera and a wide-angle lens
camera was presented by Dong et al. [16]. The typical assumed scenario was a telepresence
robot, where the quality of the stitched image frames obtained after the final blending
played an important role, similar to mobile robotics. In this case, the detected low-quality
images might have been removed from the analysis, influencing the robot’s motion con-
trol to prevent its improper steering. Some other image- and video-stitching applications
that require high-quality images, and preferably some reliable metrics for their quality
monitoring, include virtual reality (VR) and digital entertainment [17,18] as well as video
surveillance [19]. Obviously, such methods may be applied for stitching images captured
by drones; however, in this case, an additional source of the potentially degraded quality
may have been the wind turbulence.

The rest of the paper is organized as follows: in Section 2, some state-of-the-art
solutions for the quality assessment of stitched images are discussed together with methods
for their verification. The proposed approach is presented in Section 3, whereas Section 4
contains the results of the experimental verification with the ablation study. Section 5
concludes the paper.

2. The Quality Evaluation of Stitched Images
2.1. The Verification Methodology of the Developed Metrics

The quality of stitched images depends on several factors, although these are different
to those of the general-purpose image quality assessment (IQA). Some other types of
distortions may also be expected that may be caused by the improper choice of image
features, incorrect blending and interpolation, differing lighting conditions in constituent
images, etc., rather than, e.g., the presence of noise or lossy compression. Some other
sources of visible errors may be geometrical distortions as a result of lens imperfections, or
an overlapping region that is too small leading to a small number of detected keypoints.
Capturing the constituent images during camera motion may result in motion blur or
ghosting artifacts. These types of artifacts can be found in the images from the Indian
Institute of Science Stitched Image Quality Assessment (ISIQA) dataset [20] used in our
experiments. Nevertheless, general-purpose IQA metrics developed for natural images
cannot be efficiently applied to panoramic images and new metrics dedicated to stitched
images are necessary.
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Although great progress in image quality assessment has been made during recent
years, one of its limitations has been the availability of image quality datasets containing
reference images and their degraded versions together with the results of subjective evalu-
ations by human observers, which are usually expressed as Mean Opinion Score (MOS)
values. The use of several such databases makes it possible to conduct a cross-database
validation for the newly proposed metrics. A further development in larger datasets addi-
tionally allows the use of deep Convolutional Neural Networks (CNNs) for this purpose.
Nevertheless, the development of new quality evaluation methods for stitched images is
limited by the availability of databases that require a lot of effort related to the preparation
of images and collection of subjective evaluation scores. Therefore, the applicability of
popular data-driven CNN methods for this purpose is significantly limited, as stated by
Hou et al. [21], who emphasized the necessity of training using a great number of images
to avoid potential overfitting.

A relatively large-scale dataset for omnidirectional image quality assessment known as
OIQA was proposed by Duan et al. [22], which contains 16 source images and 320 distorted
images assessed by twenty subjects. They have been degraded by four commonly met
distortion types: JPEG compression, JPEG2000 compression, Gaussian blur, and Gaus-
sian noise. Nevertheless, these types of distortions are not specific for stitched images,
and therefore most general-purpose IQA metrics demonstrate good performance for this
dataset. Another example of an image dataset containing panoramic images was recently
proposed, that is, the Color Correction-based Stitched Image Database (CCSID), containing
10 stitched images generated from 10 source panoramic image pairs with consistent colors,
400 stitched images generated from 50 panoramic image pairs with inconsistent colors, and
350 panoramic image pairs with color correction [23]. Nevertheless, this database focused
only on color distortions and therefore its universality and diversity are substantially lim-
ited. Additionally, the experimental results obtained for this database presented in [23]
demonstrate the different performances of various metrics in comparison to those obtained
for the ISIQA dataset, which is discussed further.

The two other datasets proposed previously, which also contain images degraded
with limited types of distortions, were the Stitched Image Quality Assessment (SIQA)
database proposed in [24] containing 816 stitched samples with perspective variations
obtained from 12 different 3D scenes assessed by 28 viewers and the Compressed VR Im-
age Quality Database (CVIQD2018) containing 6 source images and 528 compressed ones
using three coding technologies (JPEG, H.264/AVC and H.265/HEVC) and assessed by
20 observers [25]. Another dataset known as the Multi-Distortions Visual Attention Qual-
ity Dataset (MVAQD) containing 15 high-quality uncompressed omnidirectional images
and their distorted versions obtained with five distortion types at four distortion levels,
respectively, namely Gaussian blur, HEVC intra coding, JPEG compression, JPEG2000
compression, and white noise, was presented in [26]. All the images were assessed by
26 independent observers, leading to MOS values being provided in the MVAQD dataset.
Nevertheless, similar to previous datasets, the distortions present in the images were not
specific to panoramic images and can be found in many types of images. Hence, many “tra-
ditional” IQA methods demonstrate relatively good performance also for them. Therefore,
such datasets were not used in the experiments presented in our paper.

The most comprehensive dataset developed by Madhusudana and Soundararajan [20]
is known as the Indian Institute of Science Stitched Image Quality Assessment (ISIQA). It
contains 264 stitched images obtained from 26 sets of 4 or 5 constituent images representing
various scenes, together with the aggregated results of 6600 subjective assessments. The
observers used head-mounted displays and then around 25 human opinion scores were
obtained for each image, further averaged, and expressed as MOS values for each of
the 264 stitched images. One of the most important advantages of this database is the
choice of distortions that are specific to stitched images, such as ghosting and blur, color
distortion, and geometric distortion. It is the most relevant difference in comparison to
lossy compression and was mainly considered in earlier studies for omnidirectional images,
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where some of the general-purpose IQA metrics and their modifications were verified for
such types of images.

One of the assumptions of the ISIQA database is the lack of motion; therefore, only
static scenes representing buildings, gardens, and indoor and public places are included in
the dataset. Therefore, it focuses on the evaluation of horizontal stitching and modeling the
distortions introduced during the stitching process. The inventors of the dataset excluded
potential issues during image capture since the Samsung S7 Edge smartphone camera was
used for this purpose to ensure reasonably high quality of constituent images [20]. Hence,
the horizontal resolution of the obtained stitched images is around 8000–10,000 pixels,
and the vertical resolution is about 2000 pixels. Sample stitched images from 2 of 26 sets
together with the constituent images are shown in Figures 1 and 2.
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sample constituent (top row) and stitched images from set #1 of ISIQA database with
various types of distortions.
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Figure 2. Sample constituent (top row) and stitched images from set #3 of ISIQA database with
various types of distortions.

Similar to the other types of images and video sequences where the datasets containing
the subjective quality scores are available, the verification of the newly developed metrics is
based on the calculation of the three main correlation coefficients between two 264-element
sequences of scores (objective and subjective), i.e., calculated metrics and MOS values
for all 264 images from the ISIQA dataset. The most popular correlation coefficient that
reflects prediction accuracy is known as Pearson’s r or PLCC (Pearson’s Linear Correlation
Coefficient). Assuming the objective metric Q, it may be defined as

r =
cov(Q, MOS)

σQ · σMOS
, (1)

being the covariance to the product of the standard deviation ratio.
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The two other popular rank-order correlations, namely Spearman Rank-Order Correla-
tion Coefficient (SROCC), referred to as ρ, and Kendall Rank-Order Correlation Coefficient
(KROCC), denoted as τ, reflect the prediction monotonicity. SROCC may be expressed as

ρ = 1 −
6 · ∑ d2

i
n · (n2 − 1)

, (2)

where n stands for the number of images and di is the difference between the ranks of the
same images in two sequences sorted according to their objective (Q) and subjective (MOS)
quality scores. Kendall’s τ is defined as

τ = 2 · nc − nd
n · (n − 1)

, (3)

where nc and nd are the numbers of pairs of images ordered in the same way and reversely
(concordant and discordant, respectively).

Although in many papers related to image-quality assessment, the additional use of
nonlinear regression with a logistic function is postulated, as recommended by the Video
Quality Experts Group (VQEG), to linearize the relationship between the subjective and
objective scores [27,28], the nonlinear combination of multiple metrics, as proposed in
this paper, makes it possible to skip this step. As verified for all versions of the metrics
considered in the paper, the differences in the obtained PLCC values were negligible (less
than 0.0001). Additionally, from a practical point of view, the direct applicability of the
metric linearly correlated with the subjective evaluation without additional tuning would
be much more anticipated. Additional verification of the newly proposed metrics may also
be conducted by the calculation of the Root Mean Squared Error (RMSE) and Outlier Ratio
(OR); however, they lead to the same conclusions as the PLCC.

2.2. The Overview of Quality Metrics

Methods for stitched image quality assessment proposed before the development of
the ISIQA dataset focused mainly on the lossy compression artifacts and partial distortions
specific to panoramic images. Unlike in general-purpose IQA, reference-stitched images
without any distortions are often unavailable; hence, the most typical full-reference (FR)
approach, which is based on the comparison of two images (“pristine” image and the
distorted one), cannot be directly applied. On the other hand, a purely no-reference (NR)
approach may also be troublesome, as such metrics are usually less correlated with MOS
values. Nevertheless, a reasonable approach for the quality evaluation of stitched images
may be the comparison of some features extracted for the constituent and finally stitched
images. Such an approach may be considered a compromise between the FR and NR
IQA methods.

One such method known as the Multi-view Image Quality Measure (MIQM), which
was proposed by Solh and AlRegib [29,30], consists of luminance, contrast, spatial motion,
and edge-based structure components. A simplified version of some parts of this metric,
namely the luminance and contrast index, and the edge-based structural index, was used
in the construction of the combined metric and experiments presented in a later section of
the paper (Section 3). A more detailed description of this simplified implementation can be
found in [31].

Qureshi et al. [32] proposed the HFI_SSIM metric utilizing the popular Structural Sim-
ilarity (SSIM) method [33] for comparisons of the high-frequency data in the overlapping
regions of constituent and stitched images together with low-frequency information used
for the assessment of the photometric panorama quality using the intensity magnitude ratio
measures and spectral angle mapper. Bellavia and Colombo [34] combined the Feature
Similarity (FSIM) metric [35] and the improved Color Image Difference (iCID) measure [36]
in their classification framework of color correction methods for image stitching. The prob-
lem of color balancing and correction in image and video stitching was examined in [37].
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Yu et al. [38] proposed a no-reference metric called the NRQQA (No-Reference Quantitative
Quality Assessment), which was composed of three features: a multi-directional gradient,
phase congruency, and saliency. This method focused on the automatically located over-
lapping regions assuming the presence of structural discontinuity and ghosting only in
those areas. Unfortunately, its authors did not present an analysis of its agreement with the
subjective evaluations of the use of the available image datasets.

The authors of the ISIQA dataset also proposed an interesting quality metric for
panoramic images, referred to as the Stitched Image Quality Evaluator (SIQE) [20]. This
metric was based on the use of 36 features designed to capture the differences and deviations
in the statistics of images as a result of degraded quality. The first group of features is
sensitive to structural changes observed as changed, added, or removed edges as well as
the presence of blur. The second group represents the ghosting artifacts caused by the
variations in the spatial correlations. Then, the weighted average of features calculated
for the constituent and stitched image 100 × 100 pixel patches is determined and the final
quality prediction is conducted for feature differences using support vector regression.

The three main groups of features that are the inputs for the SVM regressor are
the 12 shape parameters of the subband coefficients obtained by fitting a Generalized
Gaussian Distribution (GGD), 12 eigenvalues of the bivariate distribution obtained from
the horizontal neighbors by fitting a bivariate Gaussian Mixture Model (GMM) to the
horizontally adjacent subband coefficients, and 12 eigenvalues of the bivariate distribution
obtained from the vertical neighbors by fitting a bivariate GMM to the vertically adjacent
subband coefficients. Each of the three groups of 12 parameters is obtained for two scales
and six orientations using steerable pyramids for decomposition into subbands.

One of the advantages of the SIQE metric is its relatively high correlation with the
MOS values available in the ISIQA dataset equal to 0.8393, considering the Pearson’s Linear
Correlation Coefficient (PLCC) and Spearman Rank-Order Correlation Coefficient (SROCC)
equal to 0.8318. However, the results provided in [20] were achieved using 80% of images
for training and 20% for testing (assuming median performance for 1000 iterations and the
use of additional nonlinear fitting using the logistic function for the PLCC). Nevertheless,
as reported in our previous paper [31], the calculation of these correlations for the whole
dataset leads to a PLCC = 0.7488 and an SROCC = 0.7057, which are much worse results.
Hence, there remains a gap for the further extension of this metric, as proposed in the
paper, particularly by its nonlinear combination with some other metrics and features
using methodologies similar to those successfully applied in the combined metrics for the
general-purpose IQA [39–41].

Some other previously proposed methods for the quality assessment of stitched images
mentioned earlier demonstrated a much lower correlation with the subjective quality
scores; however, they may be partially helpful in a combination as individual metrics or
features, as described in Section 3. As presented in [20], the PLCC values obtained for the
ISIQA dataset did not exceed 0.6. An interesting overview of some other methods for the
perceptual quality assessment of panoramic stitched images can be found in the recent
survey paper [42].

3. The Proposed Approach

The main idea of the proposed approach was an extension of the SIQE metric using
some additional features that may be sensitive to some other types of distortions leading
to an increase in the correlations between the developed combined metric and subjective
scores (the MOS values available from the ISIQA dataset used in the experiments). Since the
original SIQE implementation utilized 36 features based on statistical data (GGD and GMM
models) for the subbands, a substantial increase in the correlation between the developed
combined metric and the MOS values may be expected by utilizing some additional features
of a different “nature”.

Considering the experiences related to the general-purpose IQA, the presence of im-
age distortions usually leads to some changes in entropy and variance in the degraded
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image (higher values may be expected); hence, the first experimental results provided in
earlier papers [31,43], contained the effects of applying two models based on the weighted
product and weighted sum of the SIQE, entropy-based features, and simplified imple-
mentation of two features originating from the MIQM [29,30]. In comparison to the
original correlation values for the SIQE metric (PLCC = 0.7488, SROCC = 0.7057, and
KROCC = 0.5308), the “best” combinations led to a PLCC = 0.8338, SROCC = 0.8341, and
KROCC = 0.6432. Some other competitive results can be found in the paper written by
Liu and Mo [44], where the fusion of global and local features was proposed. Neverthe-
less, the authors randomly divided the dataset into training and testing sets, achieving a
PLCC = 0.8432 and SROCC = 0.8013 for the proposed method based on the extension of the
BRISQUE metric [45], compared to the median SIQE performance reported in [44], with a
PLCC = 0.8030 and SROCC = 0.7820 for the train/test split 80/20 with an additional SVR
score fitting. All these values may be considered the starting point for the further extensions
provided in this paper.

The approach to the design of the combined metric proposed in this paper was based
on the joint application of the weighted sum and the weighted product of the same set of
metrics. Therefore, the additional memory resources were not necessary for storing the
additional values of the features, and the advantages of both combination methods may
demonstrate the synergy effect. The general formula for the designed combined metric
based on the SIQE and additional features can be defined as

CombSIQE = w1 · (SIQE)a1 +
N

∑
i=2

wi · ( fi)
ai + (SIQE)b1 ·

N

∏
j=2

(
f j
)bj , (4)

where weight w and exponents a and b are subject to optimization. The list of additional
features used in Formula (4) contains the following (in this study, N = 7 features have been
used in aggregate):

• f2—differential entropy;
• f3—average local entropy for the stitched image;
• f4—differential variance of the local entropy;
• f5—median edge-based structural index (ES—a part of the MIQM [29,30]);
• f6—median luminance and contrast index (K—a part of the MIQM [29,30]);
• f7—variance of the edge-based structural index (var(ES));
• f8—variance of the luminance and contrast index (var(K));
• f9—absolute difference of standard deviations.

The entropy-based features ( f2– f4) can be determined, calculating the local and global
entropy values for the constituent and stitched images. The global entropy can be cal-
culated independently for each stitched image (ents

global) and as the average for four or
five constituent images (entc

global), and then the differential entropy is determined as the
difference of these two values. The local entropy values can be determined for the frag-
ments of the stitched (ents

local) and constituent images (entc
local) in a similar way, assuming

the use of the 9 × 9 pixel sliding window for the calculation of the local entropy for each
pixel’s neighborhood. They are further averaged for all positions of the sliding window to
obtain the average features (ents

local and entc
local). After the numerical experiments, it was

found that the differential local entropy and the average local entropy determined for the
constituent images did not increase the metric’s performance. Therefore, the average local
entropy of the stitched image ents

local is used as the feature f3. Nevertheless, the differential
variance of the local entropy values is used as the feature f4, determined as

f4 = var(entc
local)− var(ents

local) . (5)

Two sub-metrics (ES and K) incorporated from the MIQM [29,30], used as features
f5 and f6, reflect the distortion level; hence, their values close to 1 indicate high quality,
whereas their small values denote strongly distorted images. The sub-metric K is sensitive
to sharp local changes in luminance and contrast around the structured regions in the



Appl. Sci. 2022, 12, 10284 9 of 16

21 × 21 pixel macroblocks. This is based on the comparison of mean intensities and
standard deviations similar to the well-known Structural Similarity (SSIM) metric [33].
Then, the weighted average of the luminance and contrast index of each macroblock is
calculated with weights dependent on the texture randomness index of the reference
image (the constituent image in our case) for each macroblock. The calculated texture
randomness is also the basis for the edge-based structural index ES. Both sub-metrics are
calculated for regions of interest (ROIs), selected from each of the constituent images and the
corresponding ROIs detected in the stitched images, and are subject to quality evaluation.
Since the third component of the MIQM—spatial motion index—is partially dependent
on the local entropy, it was not utilized in our study due to the use of three entropy-based
features. The next two features ( f7 and f8) are the variances of these sub-metrics (ES and K).

The last feature ( f9) included in the developed combined CombSIQE metric, is the
absolute difference of standard deviations calculated for the stitched and respective con-
stituent images (obviously the values are averaged for 4 or 5 constituent images, depending
on the number of them available in the ISIQA dataset). The optimization procedure of
the parameters (weights and exponents) of the combined metric was conducted in a MAT-
LAB environment using the Nelder–Mead method implemented in the fminsearch function.
Some additional experiments, however, leading to worse results (PLCC = 0.8425, refer to
Table 1 for comparison), were also conducted using neural networks. The illustration of the
experimental procedure is presented in Figure 3.

Weight 1SIQE

f2 Weight 2

Stitched image

Subjective 
quality scores

MOS

Optimization 
of weights

CombSIQE

Subjective quality 
assessment

f3 Weight 3

f4 Weight 4

f5 Weight 5

f6 Weight 6

f7 Weight 7

f8 Weight 8

f9 Weight 9

Σ 

Π

Constituent images

Figure 3. Illustration of the experimental procedure used in the paper.

Table 1. Correlations with subjective scores obtained for the ISIQA database using the proposed
combined metric and previously proposed methods. The best results are presented in bold.

Metric
Correlation with MOS

PLCC SROCC KROCC

Results provided by other researchers for 80% training and 20% testing sets

SIQE reported in [20] 0.8395 0.8318 -
SIQE (median) reported in [44] 0.8030 0.7820 -
Liu and Mo [44] 0.8432 0.8013 -

Results obtained for the whole ISIQA database

SIQE [20] 0.7488 0.7057 0.5308
EntSIQE1 [43] 0.8012 0.7920 0.5971
EntSIQE2 [43] 0.8101 0.7945 0.5990
EntSIQE+

1 [31] 0.8338 0.8338 0.6418
EntSIQE+

2 [31] 0.8337 0.8341 0.6432

CombSIQE (proposed) 0.8684 0.8665 0.6810
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4. The Experimental Results

In the original paper [20], the ISIQA database was randomly divided into 80% training
and 20% testing sets (21 and 5 scenes, respectively) to train the SIQE so it led to an obvious
increase in correlation due to the smaller testing set. Significantly lower values were
obtained by testing the SIQE metric on the whole dataset, which is a typical approach in
the general-purpose IQA. Hence, the results of the experiments obtained for all 264 images
from the ISIQA dataset using the proposed approach and a comparison of these results
with the previously proposed methods are presented in Table 1. To illustrate the necessity
and influence of each feature and each part of the model on the obtained performance, the
results of the ablation study are presented in Table 2.

As can be seen in the results presented in Table 2, due to the choice of the PLCC
as the optimization criterion, in some cases, the removal of individual features led to
a small increase in the rank-order correlation coefficients. This was partially caused by the
repetition of the optimization procedure during the ablation study for each configuration
of features.

Table 2. The results of the ablation study—correlations with the subjective scores obtained for all
264 images from ISIQA database using the proposed combined metric and its simplified versions.
The results of the proposed metrics are presented in bold.

Metric
Correlation with MOS

PLCC SROCC KROCC

CombSIQE (proposed) 0.8684 0.8665 0.6810

only weighted sum 0.8387 0.8363 0.6439
only weighted product 0.8362 0.8338 0.6431

without f1 (SIQE) 0.3963 0.4177 0.2862
without f2 0.8671 0.8672 0.6828
without f3 0.8390 0.8350 0.6455
without f4 0.8668 0.8623 0.6773
without f5 0.8611 0.8591 0.6730
without f6 0.8655 0.8632 0.6773
without f7 0.8611 0.8590 0.6721
without f8 0.8523 0.8519 0.6610
without f9 0.8676 0.8681 0.6837

An additional illustration of the linearity of the correlation of the proposed metric with
the subjective MOS values provided for all images from the ISIQA database is presented
in Figure 4. It contains the scatter plot obtained for the proposed CombSIQE metric,
presented in comparison to the original SIQE metric. Each dot visible in the scatter plot
represents a single image and in an ideal case (PLCC equal to 1), all these dots should form
a straight line.

As can be clearly observed, the fundamental role of the SIQE metric in the proposed
approach is certain. Comparing the results obtained for the weighted sum of the nine
features and the weighted product of the same nine features, some advantages of the
weighted sum can be observed. These result from the higher flexibility of this model,
with 18 coefficients subjected to optimization: 9 weights (w1–w9) and 9 exponents (a1–a9).
Nevertheless, only the joint application of both models aggregated into the proposed
CombSIQE metric makes it possible to achieve much better performance with PLCC and
SROCC values of nearly 0.87.
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Figure 4. Scatter plots for SIQE (a) and the proposed metric (b) obtained for the whole ISIQA dataset.
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Some of the clearly visible outliers on the SIQE scatter plot removed using the proposed
method can be observed in Figure 4, e.g., for images no. 177, 182, and 193 (MOS from
20.5896 to 24.6378 and SIQE from 57.5504 to 60.0336), images no. 168, 178, and 194 (MOS
from 31.2171 to 32.8717 and SIQE from 63.1936 to 66.3105), or images no. 61 (MOS = 60.7633,
SIQE = 40.8954) and 229 (MOS = 65.4083 and SIQE = 37.2225). The last two images (shown
in Figure 5g,h) have many small details, whereas the six low-quality images with MOS < 35
(Figure 5a–f) contain some clearly visible ghosting artifacts, which may be easier to detect
using the additionally proposed features, e.g., based on local entropy and detection of edges.
In the presence of ghosting artifacts, more edges may be detected in the images and the
local entropy also increases so a combination of features based on them and the SIQE leads
to a significantly better correlation with the MOS values provided in the ISIQA dataset.

It is also worth noting that the calculation of all additional features was about 16 times
faster than the calculation of the SIQE metric; hence, the overall computation cost of the
designed CombSIQE metric is only about 6% higher than for the original SIQE, even with
the use of parallel GPU computations using 8 cores. The experiments were conducted in a
MATLAB® environment using a laptop with a 3.3 GHz AMD Ryzen 9 5900HX processor
and 32 GB of RAM.

(a)

(b)

(c)

(d)

Figure 5. Cont.
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(e)

(f)

(g)

(h)

Figure 5. Sample images from the ISIQA database representing the outliers on the scatter plot for the
SIQE metric presented in Figure 4a—from (a–h): no. 177, 182, 193, 168, 178, 194, 61, and 229.

5. Conclusions

We proposed a novel quality assessment metric by combining two models based on
the weighted product and weighted sum of features, which was an extension of the state-
of-the-art Stitched Image Quality Evaluator [20]. The proposed metric was very effective
in the automatic quality assessment of stitched images due to the novel combination of
two models based on the weighted product and weighted sum of features. Considering
the obtained high prediction accuracy, which linearly correlated with the subjective quality
evaluation, it outperformed the state-of-the-art metric. Analyzing the correlation with the
MOS values in the ISIQA database, high prediction monotonicity was also obtained, which
was measured by two rank-order correlation coefficients (SROCC and KROCC).

The conducted experiments confirmed the relevance of the SIQE metric, which played
a fundamental role in the designed solution. Nevertheless, the additional features were
useful as extensions of this metric, particularly due to the different “nature” of the image
data. Contrary to the SIQE metric itself, by using the additional features it was also possible
to obtain a significantly better correlation with the MOS values provided in the ISIQA
dataset for images containing ghosting artifacts or small details as illustrated in Figure 5.

Considering the directions of further research, attempts to aggregate the proposed
metric with some other metrics are planned. The additional verification of some other
databases would be helpful in the design of an even more universal solution that is useful
for the assessment of stitched images.
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Abbreviations
The following abbreviations are used in this manuscript:

AMD Advanced Micro Devices
AVC Advanced Video Coding
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints
CCSID Color Correction-based Stitched Image Database
CNN Convolutional Neural Network
CVIQD Compressed VR Image Quality Database
DoG Difference of Gaussians
FAST Features from Accelerated Segment Test
FREAK Fast Retina Keypoint
FR IQA Full-Reference Image Quality Assessment
FSIM Feature Similarity
GGD Generalized Gaussian Distribution
GMM Gaussian Mixture Model
HEVC High-Efficiency Video Coding
HMD Head-Mounted Displays
iCID improved Color Image Difference
ISIQA Indian Institute of Science Stitched Image Quality Assessment (dataset)
JPEG Joint Photographic Experts Group
KROCC Kendall Rank Order Correlation Coefficient
MIQM Multi-view Image Quality Measure
MOS Mean Opinion Scores
MVAQD Multi-Distortion Visual Attention Quality Dataset
NR IQA No-Reference Image Quality Assessment
NRQQA No-Reference Quantitative Quality Assessment
OIQA Omnidirectional Image Quality Assessment
OR Outlier Ratio
ORB Oriented FAST and Rotated BRIEF
PLCC Pearson’s Linear Correlation Coefficient
RAM Random Access Memory
RANSAC RANdom SAmpling Consensus
RMSE Root Mean Squared Error
ROI region of interest
SIFT Scale Invariant Feature Transform
SIQE Stitched Image Quality Evaluation
SROCC Spearman Rank Order Correlation Coefficient
SSIM Structural Similarity
SURF Speeded-Up Robust Features
SVM Support Vector Machine
SVR Support Vector Regression
UAV unmanned aerial vehicle
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VQEG Video Quality Experts Group
VSLAM Visual Simultaneous Localization and Mapping
VR Virtual Reality
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