
Citation: Schmiedt, M.; He, P.;

Rinderknecht, S. Target State

Optimization: Drivability

Improvement for Vehicles with Dual

Clutch Transmissions. Appl. Sci. 2022,

12, 10283. https://doi.org/10.3390/

app122010283

Academic Editors: Jinyang Xu,

Kai Guo and Zhi-Hui Zhan

Received: 21 September 2022

Accepted: 10 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Target State Optimization: Drivability Improvement for
Vehicles with Dual Clutch Transmissions
Marius Schmiedt 1,2,* , Ping He 2 and Stephan Rinderknecht 2

1 Magna PT B.V. & Co. KG, Hermann-Hagenmeyer-Straße 1, 74199 Untergruppenbach, Germany
2 Institute for Mechatronic Systems, Technical University of Darmstadt, Otto-Berndt-Straße 2,

64287 Darmstadt, Germany
* Correspondence: marius.schmiedt@magna.com

Abstract: Vehicles with dual clutch transmissions (DCT) are well known for their comfortable
drivability since gear shifts can be performed jerklessly. The ability of blending the torque during gear
shifts from one clutch to the other, making the type of automated transmission a perfect alternative
to torque converters, which also comes with a higher efficiency. Nevertheless, DCT also have some
drawbacks. The actuation of two clutches requires an immense control effort, which is handled in
the implementation of a wide range of software functions on the transmission control unit (TCU).
These usually contain control parameters, which makes the behavior adaptable to different vehicle
and engine platforms. The adaption of these parameters is called calibration, which is usually an
iterative time-consuming process. The calibration of the embedded software solutions in control units
is a widely known problem in the automotive industry. The calibration of any vehicle subsystem
(e.g., engine, transmission, suspension, driver assistance systems for autonomous driving, etc.)
requires costly test trips in different ambient conditions. To reduce the calibration effort and the
accompanying use of professionals, several approaches to automize the calibration process are
proposed. Due to the fact that a solution is desired which can optimize different calibration problems,
a generic metaheuristic approach is aimed. Regardless, the scope of the current research is the
optimization of the launch behavior for vehicles equipped with DCT since, particularly at low speeds,
the transmission behavior must meet the intention of the driver (drivers tend to be more perceptive
at low speeds). To clarify the characteristics of the launch, several test subject studies are performed.
The influence factors, such as engine sound, maximal acceleration, acceleration build-up (mean jerk),
and the reaction time, are taken into account. Their influence on the evaluation of launch with relation
to the criteria of sportiness, comfort, and jerkiness, are examined based on the evaluation of the test
subject studies. According to the results of the study, reference values for the optimization of the
launch behavior are derived. The research contains a study of existing approaches for optimizing
driving behavior with metaheuristics (e.g., genetic algorithms, reinforcement learning, etc.). Since
the existing approaches have different drawbacks (in scope of the optimization problem) a new
approach is proposed, which outperforms existing ones. The approach itself is a hybrid solution of
reinforcement learning (RL) and supervised learning (SL) and is applied in a software in the loop
environment, and in a test vehicle.

Keywords: parameter optimization; deep learning; machine learning; reinforcement learning; driving
behavior; dual clutch transmission; launch optimization; launch evaluation

1. Introduction

The conference paper “AI-based parameter optimization method applied for vehicles
with dual clutch transmissions” [1] was submitted to introduce a new methodology to
overcome the problem of a time consuming calibration process [2] of dual clutch transmis-
sions (DCT) by applying the target state optimization (TSO) algorithm. However, can the

Appl. Sci. 2022, 12, 10283. https://doi.org/10.3390/app122010283 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010283
https://doi.org/10.3390/app122010283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3839-4124
https://orcid.org/0000-0002-9926-1360
https://orcid.org/0000-0001-5568-1649
https://doi.org/10.3390/app122010283
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010283?type=check_update&version=2

Appl. Sci. 2022, 12, 10283 2 of 29

TSO algorithm be applied for different vehicle types and still converge faster than common
optimization algorithms?

The calibration of the vehicle launch should result in a quick reaction, without acceler-
ation inconsistencies during clutch engagement throughout the entire lifetime of the clutch
and under all driving conditions [3]. This is achieved through an embedded software solu-
tion, which includes control parameters to influence driving behavior. The ability of DCT is
to enable jerkless shifts through its two clutches. This feature comes with the drawback of
having a greater calibration effort due to the complex architecture and actuation compared
to torque converters [4]. Additionally, new powertrain concepts, like hybrid powertrains,
lead to a wider range of engine, transmission, and vehicle combinations, which also result
in an increasing calibration effort [4]. The calibration engineer usually has to optimize the
calibration parameters of the embedded software in an iterative manner [5]. With new
requirements (like legislative requirements), and therefore growing software functions and
calibration parameters, the calibration process is getting even more expensive. Striving
to optimize the system behavior in a shorter time period has lead to different attempts
in research to automize the calibration process. Therefore, the optimization of the launch
behavior of vehicles equipped with DCT is investigated in this study.

To automize the optimization, the evaluation of a launch also needs to be defined by
transferring subjective feelings into objective measurements [2]. The launch of a vehicle
can be evaluated according to its sportiness, comfort, jerkiness, and agility, which are also
called evaluation criteria. These are more or less dependent on the following influence
factors: engine sound, maximal acceleration, acceleration build-up (mean jerk: first time
derivative of the acceleration), and the reaction time [6]. Within a test subject study carried
out by He et al. [7], the influence of the maximal acceleration and acceleration build-up is
investigated and further transferred to optimization objectives for this study. The study
of Skoda et al. [8] investigated the influence of the engine sound on comfort. The original
engine sound is reinforced with a sound volume and a sound bass. Both variations lead
to poor evaluation results. Kingma [9] investigated the just noticeable difference (JND) of
the acceleration and the velocity in longitudinal and lateral directions, and has concluded
that the perception threshold regarding acceleration depends on the stimulus profile, while
the perception threshold of velocity does not. The perception threshold of the acceleration
and jerk is investigated in de Winkel et al. [10] with the help of jerky motion excitation
and statistic models. The study by Winkel et al. [10] also investigated JND. According to
Weber’s law, the JND describes the minimum amount of stimulus intensity that must be
changed in order to produce a noticeable variation in sensory experience [11]. However,
the JND does not refer to thresholds that result in significantly different evaluations of the
launch behavior, because a slight change in auditory and vestibular perception does not
necessarily lead to a different evaluation of launch behavior [7]. Haycock [12] investigated
the influence of both acceleration and acceleration build-up on the motion strength, but
the researched stimulus for the acceleration is only up to 1 m/s2, and for the acceleration
build-up up to 3 m/s3. These values are smaller than the reachable value in a vehicle
launch. In the study by He et al. [7], the evaluation difference threshold (EDT) is proposed.
The EDT describes how much the stimulus intensity must be changed, in order to generate
a variation of an evaluation (the significantly varying evaluation is determined within
statistic tests). The EDT is generally larger than the JND. There are hardly any studies
investigating the EDT for the launch behavior for determining the variation of an evaluation
according to sportiness, comfort, and jerkiness. The identified EDTs of this study offer
an orientation for choosing reference values for the automated calibration of the launch
behavior with different optimization algorithms.

Genetic algorithms (GA) are a common approach to solve multi-objective optimization
problems like the calibration of the parameters of the transmission control unit (TCU).

In general, GA are inspired by genetic evolution in nature and usually an initial
population is determined randomly [13]. Each population consists of several individuals.
For each individual, a fitness value is assigned based on the behavior the individual

Appl. Sci. 2022, 12, 10283 3 of 29

performs in the desired environment (how it fits to the optimization objectives) [14]. GA
also typically consists of the steps: selection, mutation (spontaneous altered genetic [15]),
and recombination (inheriting the shared genetic of parents to a child [16]). Based on
the fitness value, the individuals are selected for mutation and recombination [17]. After
mutation and recombination, new individuals are part of the following generation. In using
GA, the population size and the number of generations have to be defined [13].

The GA NSGA-II algorithm from Deb et al. [13] is a well-tested algorithm for solving
such kinds of multi-objective optimization problems, and has been applied in a wide range
of optimization problems [2,18–22].

Kahlbau [20,21] used this algorithm in the scope of parameter optimization for optimal
shift control of dual clutch transmissions. The shift control has been optimized through
the minimization of the jerk, and the minimization of the derivative of the jerk, as opti-
mization objectives. Additionally, the optimization of the launch process with the same
objectives as Kahlbau [20,21] have been applied by Wehbi et al. [2] for DCT. Wehbi et al. [2]
additionally introduced another optimization objective by measuring the time from start of
the launch (acceleration pedal unequal zero) to synchronization (clutch slip speed equal
zero). Bachinger et al. [23] optimized the vehicle launch using the differential evolution
algorithm for vehicles with DCT. For optimization, the clutch closing time and a scaling
factor for clutch slip speed have been applied as objectives. GA have also been applied
in other fields, like the optimization of calibration parameters of the engine control unit
(ECU). To optimize ECU calibration parameters, a novel GA has been invented based on
existing GA. With a special design of experiments, an initial population is identified for
reducing the evaluation time. For this aim, a gray-box model based on a neural network is
used to model the engine [24]. Additionally, Huang [25] and Zhong et al. [26] applied GA
to optimize driving behavior by improving the clutch engagement of a transmission.

GA, however, have some disadvantages, such as the long computation time [27]
and the potential of remaining in a local minimum [28]. The parameter population size
(number of individuals per generation), for example, directly influences the computation
time and affects the quality of the evaluation [29]. The quality of the solution of a GA is
also influenced by choosing the right parameters for crossover and mutation [30].

As deep learning has gained attention since mastering challenging tasks like speech
recognition and object recognition [31], reinforcement learning (RL) has also evolved. In
RL, information about the problem is obtained by the interaction of an agent with an
environment [32], such as the famous example of a Q-learning algorithm playing Atari
Games [33]. The RL algorithm called agent is a computational approach mimicking the
learning behavior of creatures by making machines interact with an environment. The
agent takes actions to influence the environment and the environment responds with a
state it takes in after receiving the action. The state is fed back to the agent on which
basis the next action is chosen to influence the environment towards a defined goal (which
is related to the state). The quality of an action is measured with the reward. With the
reward, the agent learns which actions are preferably to take. An action which leads to an
environmental state towards an optimization goal is rewarded higher than a contrary one.
Therefore, the aim is to increase the reward with actions of higher quality [32].

Usually, RL algorithms are used to solve combinatorial problems like the traveling
salesman problem [34,35]. Nevertheless, the improvement of clutch engagement with RL
has also been in the scope of research. Xiaohui et al. [36] tried to minimize the jerk and
the friction losses for clutch engagement during launch within simulations by varying the
parameters of a PID controller with a RL algorithm. Another approach was the minimiza-
tion of the piston velocity and the engagement time of the clutch by Gagliolo et al. [37]
and Van Vaerenbergh et al. [38] applying a RL algorithm. Their approach led to promising
results after a few hundred epochs. The optimization problem of Brys et al. [39] is similar
to the work of Gagliolo et al. [37] and Van Vaerenbergh et al. [38]. Within a simulation, a
RL algorithm is applied. The study focuses on multi-objective aspects and on the effects
of scalarization on the performance of the algorithm. The optimization of the quality of

Appl. Sci. 2022, 12, 10283 4 of 29

the clutch engagement with a RL algorithm, while ensuring an immediate response, is
investigated by Lampe et al. [40].

The optimization of the calibration parameters has not been part of the studies which
focused on clutch engagement. One possible reason is that the calibration problem is not a
combinatorial one; another could be the fact that RL needs many optimization epochs to
converge, as illustrated in [37,41].

The drawbacks of RL and GA approaches in the optimization of the launch behavior
through optimizing calibration parameters makes these approaches difficult to use in
the regular development process of dual clutch transmissions. To overcome these issues,
the TSO algorithm by Schmiedt et al. [1] is applied for the calibration problem. The
TSO algorithm is also based on machine learning (ML) as a hybrid approach of RL and
supervised learning (SL). The application of the TSO algorithm increases the efficiency of
the calibration process within different test environments.

This paper aims to dive deeper in the TSO algorithm and illustrates the influence of
the activation functions of the used neural networks on optimization behavior. Further,
it illustrates a significant advantage compared to previous approaches applied for such
optimization problems, but also mentions the drawbacks of the algorithm.

The optimization problem and the results of the subject test studies are described in
Section 2. In Section 3 the results of existing benchmark algorithms are illustrated. The
TSO algorithm is explained in Section 4. The results are outlined in Section 5. Section 6
discusses and interprets the results and finally, in Section 7, the conclusion is presented.

2. Optimization Problem and Objective Functions

The behavior of a vehicle and its components can usually be influenced through
calibration parameters. These parameters are part of the software of the corresponding
vehicle component, which offers the possibility of adjusting the software to different types of
vehicles without changing software functions, or the entire software. These parameters also
enable the possibility to influence the system behavior to meet customer requirements. The
calibration parameters have to be set iteratively under different environmental conditions
to ensure a functioning vehicle with the most achievable quality and by meeting any
requirement in most possible conditions. Therefore, many calibration parameters are
required within the software, which results in a high calibration effort. To influence the
driving behavior of a vehicle these calibration parameters are implemented in the TCU
software. To set these parameters, experienced engineers usually optimize the driving
behavior based on their subjective feelings. Therefore, the assessment of the driving
behavior can vary between different engineers, due to the fact that the evaluation is
biased by personal preferences. This obviously can lead to further adjustment loops and
an increased calibration effort [6]. Hence, to reduce the workload of an engineer, the
automated optimization of the drivability is strived to be deployed in the development
process. Therefore, subjective feelings have to be transferred into objective measurements
to let the optimization algorithms monitor the quality of the driving behavior without the
input of an engineer [2]. The transfer of these subjective feelings in this study takes place
by measuring the launch behavior with four different objectives. The objectives are: (1) the
acceleration objective, (2) the reaction time objective, (3) the engine speed objective, and
(4) the clutch torque objective.

Before applying these objectives in the automated optimization, the objectives are first
investigated in a driving simulator. The driving simulator allows the investigation of the
influence factors in a reproducible test environment and the conduct of the test subject
studies. With the help of statistical tests, the EDTs can be detected, which provide certain
optimization targets for the calibration of the powertrain.

The driving simulator is developed for the investigation of human perception during
longitudinal drive maneuvers and has the ability to simulate the dynamics in the longi-
tudinal direction of the vehicle. It is able to represent the acceleration and deceleration
by combining translatory and rotatory movements of the driver cabin [42]. By applying

Appl. Sci. 2022, 12, 10283 5 of 29

virtual reality technology, simulating the driving environment (e.g., the streets, traffic signs,
landscape), and synthesizing the engine sound the test subjects face a reality-close driving
situation. Besides the visual and auditory senses, the simulation of the haptic sense is
considered as well. More details about the driving simulator can be found in [43].

In the studies, the test subjects experienced launch procedures, with varying objectives
(engine speed with drops, maximal acceleration, jerk, and reaction time). Further, the
subjects had to evaluate these launches on a scale from 1 to 5 according to the evaluation
criteria: comfortable, acceptable, jerky, sporty, and agile. The evaluations were processed
and analyzed with statistical tests. The utilized tests in the studies were the variance
analysis [44], the t-test, and the Wilcoxon-test. These methods study the influence of the
objectives and can detect whether the evaluations of launches are significant differences
when the objectives vary. He et al. [7] introduced the test subject study and the study results
of the objectives of maximal acceleration and jerk in detail. The investigation process of
other objectives is comparable.

The optimization objectives are separated into customer objectives (Section 2.1), as
well as in discomfort objectives (Section 2.2).

2.1. Customer Objectives

The customer objectives are based on customer requirements and hence a measured
value (vmeas) is compared to a customer defined reference value (vre f). The absolute deviation
of these values is normalized so the objective values range between zero and one:

objcustomer =

∣∣∣∣∣vmeas − vre f

vre f

∣∣∣∣∣ (1)

The normalization is introduced to weigh the objectives equally and to make them
comparable and hence enables the possibility to set a relative tolerance. Therefore, if such
an objective value is lower than 0.1 it is set to zero. Hence, a tolerance of 10% based on the
reference value is introduced:

vre f ·0.9 ≤ vmeas ≤ vre f ·1.1 (2)

The customer objectives of Sections 2.1.1 and 2.1.2 is therefore finally determined with
the following equation:

objcustomer,Tolerance =

{
0 vre f ·0.9 ≤ vmeas ≤ vre f ·1.1∣∣∣ vmeas−vre f

vre f

∣∣∣ otherwise
(3)

2.1.1. Acceleration Peak and Acceleration Build-Up Objective

Humans cannot perceive speed but can perceive acceleration and jerk [45]. The percep-
tion of the driver is therefore influenced by the acceleration and the acceleration build-up
during launch, since the aim of a vehicle launch is to increase speed from standstill. The
maximal acceleration and the acceleration build-up are varied in the test subject study by
He et al. [7] to investigate the influence on the evaluation criteria: sportiness, comfort, and
jerkiness. An example of an acceleration profile is shown in Figure 1.

The test subject study of He et al. [7] is introduced to identify the EDTs of the accel-
eration for sportiness and comfort. The EDT for sportiness is depending on the intensity
of the maximal acceleration. It is lower than 0.5 m/s2 when the maximal acceleration is
lower than 3 m/s2. The EDT is between 0.5 m/s2 and 1 m/s2 as the maximal acceleration
continues to rise.

The EDT for comfort is between 0.5 m/s2 and 1 m/s2 for all the tested maximal
accelerations. It is observable that the EDT for sportiness is more sensitive to the stimulus
intensity than the EDT for comfort due to the fact that the EDT for sportiness tends to
be lower than the EDT for comfort (for lower maximal accelerations). To determine the

Appl. Sci. 2022, 12, 10283 6 of 29

concrete EDTs, more test subject studies need to be conducted. However, the maximal
acceleration does not influence the evaluation of jerkiness significantly.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 30

Figure 1. Acceleration profile of a launch [7].

The test subject study of He et al. [7] is introduced to identify the EDTs of the accel-

eration for sportiness and comfort. The EDT for sportiness is depending on the intensity

of the maximal acceleration. It is lower than 0.5 m/s2 when the maximal acceleration is

lower than 3 m/s2. The EDT is between 0.5 m/s2 and 1 m/s2 as the maximal acceleration

continues to rise.

The EDT for comfort is between 0.5 m/s2 and 1 m/s2 for all the tested maximal accel-

erations. It is observable that the EDT for sportiness is more sensitive to the stimulus in-

tensity than the EDT for comfort due to the fact that the EDT for sportiness tends to be

lower than the EDT for comfort (for lower maximal accelerations). To determine the con-

crete EDTs, more test subject studies need to be conducted. However, the maximal accel-

eration does not influence the evaluation of jerkiness significantly.

In the test subject study by He et al. [7], the acceleration build-up refers only to the

mean jerk during the rise of the acceleration. The mean jerk is determined starting from

15% and ending at 85% of the maximal acceleration [6], so that the transitions from stand-

still to a steady growing acceleration, and further the transition to the maximal accelera-

tion, are excluded from the calculation of the mean jerk. The starting and ending points

are marked in Figure 1 in red. The results indicate a logarithmically changing EDT of the

acceleration build-up, which matches the Weber–Fechner law [11]. The EDTs of the accel-

eration build-up for the criteria of sportiness, comfort, and jerkiness, are greater than 2

m/s3, while the acceleration build-up is smaller than 7 m/s3. As the acceleration build-up

increases, the thresholds for the three criteria become smaller than 2 m/s3. The influence

of the acceleration build-up for jerkiness and comfort are contrary. The higher the maxi-

mal acceleration and the acceleration build-up, the more jerky and the less comfortable

the launches are [7].

Within the study by He et al. [7] a regression analysis was carried out to identify the

borderline between negative and positive evaluations. The borderline represents a com-

bination of the maximal acceleration and the acceleration build-up. Negative launch be-

haviors (e.g., discomfort) are marked in blue. It is observable that for the borderline the

maximal acceleration and the acceleration build-up influence each other mutually for any

of the three criteria. When, for example, the acceleration is increasing the acceleration,

build-up is decreasing. The results are shown in Figure 2.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.50 1.00 1.50 2.00

A
cc

el
ar

at
io

n
 /

 m
/s

2

Time / s

Figure 1. Acceleration profile of a launch [7].

In the test subject study by He et al. [7], the acceleration build-up refers only to the
mean jerk during the rise of the acceleration. The mean jerk is determined starting from 15%
and ending at 85% of the maximal acceleration [6], so that the transitions from standstill to
a steady growing acceleration, and further the transition to the maximal acceleration, are
excluded from the calculation of the mean jerk. The starting and ending points are marked
in Figure 1 in red. The results indicate a logarithmically changing EDT of the acceleration
build-up, which matches the Weber–Fechner law [11]. The EDTs of the acceleration build-
up for the criteria of sportiness, comfort, and jerkiness, are greater than 2 m/s3, while
the acceleration build-up is smaller than 7 m/s3. As the acceleration build-up increases,
the thresholds for the three criteria become smaller than 2 m/s3. The influence of the
acceleration build-up for jerkiness and comfort are contrary. The higher the maximal
acceleration and the acceleration build-up, the more jerky and the less comfortable the
launches are [7].

Within the study by He et al. [7] a regression analysis was carried out to identify
the borderline between negative and positive evaluations. The borderline represents a
combination of the maximal acceleration and the acceleration build-up. Negative launch
behaviors (e.g., discomfort) are marked in blue. It is observable that for the borderline
the maximal acceleration and the acceleration build-up influence each other mutually for
any of the three criteria. When, for example, the acceleration is increasing the acceleration,
build-up is decreasing. The results are shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 30

(a) (b) (c)

Figure 2. Borderlines for the criteria of: (a) sportiness, (b) comfort, and (c) jerkiness, the blue fields

represent the negative evaluation areas [7].

The demands for a sporty and a comfortable launch are conflicting [20]. Minimizing

the maximal acceleration and the acceleration build-up is improving the passengers com-

fort [46]. High accelerations and mean jerks (shorter build-up times) in contrast tend to be

sportier [2]. Obviously, to increase the speed of a vehicle the maximal acceleration and

further the mean jerk must be greater than zero, but they also should not be too high ei-

ther. Therefore, a reference value with regard on the subject study should be chosen for

the maximal acceleration (𝑎𝑚𝑎𝑥,𝑟𝑒𝑓) and the acceleration build-up (𝑎̇𝑏𝑢𝑖𝑙𝑑,𝑟𝑒𝑓), respectively,

which are compared with the measured values 𝑎𝑚𝑎𝑥 and 𝑎̇𝑏𝑢𝑖𝑙𝑑. So, the maximal acceler-

ation objective is determined with the following equation:

𝑜𝑏𝑗𝑀𝑎𝑥,𝐴𝑐𝑐 = {

0 𝑎𝑚𝑎𝑥,𝑟𝑒𝑓 ∙ 0.9 ≤ 𝑎𝑚𝑎𝑥 ≤ 𝑎𝑚𝑎𝑥,𝑟𝑒𝑓 ∙ 1.1

|
𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑥,𝑟𝑒𝑓

𝑎𝑚𝑎𝑥,𝑟𝑒𝑓

| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

Accordingly, the acceleration build-up objective is determined with the equation below:

𝑜𝑏𝑗𝐵𝑢𝑖𝑙𝑑,𝐴𝑐𝑐 = {

0 𝑎̇𝑏𝑢𝑖𝑙𝑑,𝑟𝑒𝑓 ∙ 0.9 ≤ 𝑎̇𝑏𝑢𝑖𝑙𝑑 ≤ 𝑎̇𝑏𝑢𝑖𝑙𝑑,𝑟𝑒𝑓 ∙ 1.1

|
𝑎̇𝑏𝑢𝑖𝑙𝑑 − 𝑎̇𝑏𝑢𝑖𝑙𝑑,𝑟𝑒𝑓

𝑎̇𝑏𝑢𝑖𝑙𝑑,𝑟𝑒𝑓
| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

As mentioned in Section 2.1 the objectives are zero if the measured values are within

a range of 10% compared to the corresponding reference values. Both objectives are cus-

tomer objectives since they are influenced by customer requirements but preferably

should be chosen with respect to the study by He et al. [7].

2.1.2. Reaction Time Objective

The reaction time measures the time the driver has to wait from acceleration pedal

actuation to a noticeable acceleration, which is according to Simon [6] if 15% of the maxi-

mum acceleration is reached.

To identify an optimal reaction time another subject study is introduced. The study

aims to find the influence of the reaction time on the following criteria: sportiness, com-

fort, and agility. The study is carried out in the same procedure as the prior ones. The

reaction time is varied between three values: 250, 550, and 850 ms. Additionally, the ac-

celerator pedal position is varied between 20%, 40%, and 60%, during these tests (the

driver expects different vehicle reactions under different accelerator pedal positions). The

reaction time has a significant influence on the criteria sportiness and agility, but little

influence on the comfort criterion. For the sportiness and the agility, the EDT of the reac-

tion time depends on the accelerator pedal position. The EDT for sportiness is greater than

300 ms when the acceleration pedal position is 20%, which refers to a slow launch expec-

tation. With a greater accelerator pedal position, the drivers are more sensitive to reaction

times smaller than 550 ms. The EDT of the reaction time for sportiness is smaller than 300

ms when the reaction time is lower than 550 ms. However, the test subjects cannot differ

reaction times between 550 ms and 850 ms, this means the EDT is greater than 300 ms

1

2

3

4

5

6

1 3 5 8 10 12 A
cc

el
er

at
io

n
 /

 m
/s

2

Build-up m/s3

1

2

3

4

5

6

1 3 5 8 10 12

A
cc

el
er

at
io

n
 /

 m
/s

2

Build-up m/s3

1

2

3

4

5

6

1 3 5 8 10 12

A
cc

el
er

at
io

n
 /

 m
/s

2

Build-up m/s3

Figure 2. Borderlines for the criteria of: (a) sportiness, (b) comfort, and (c) jerkiness, the blue fields
represent the negative evaluation areas [7].

The demands for a sporty and a comfortable launch are conflicting [20]. Minimiz-
ing the maximal acceleration and the acceleration build-up is improving the passengers
comfort [46]. High accelerations and mean jerks (shorter build-up times) in contrast tend
to be sportier [2]. Obviously, to increase the speed of a vehicle the maximal acceleration
and further the mean jerk must be greater than zero, but they also should not be too high

Appl. Sci. 2022, 12, 10283 7 of 29

either. Therefore, a reference value with regard on the subject study should be chosen for
the maximal acceleration (amax, re f) and the acceleration build-up (

.
abuild,re f), respectively,

which are compared with the measured values amax and
.
abuild. So, the maximal acceleration

objective is determined with the following equation:

objMax,Acc =

{
0 amax, re f ·0.9 ≤ amax ≤ amax, re f ·1.1∣∣∣ amax−amax, re f

amax, re f

∣∣∣ otherwise
(4)

Accordingly, the acceleration build-up objective is determined with the equation below:

objBuild,Acc =


0

.
abuild,re f ·0.9 ≤ .

abuild ≤
.
abuild,re f ·1.1∣∣∣∣ .

abuild−
.
abuild,re f

.
abuild,re f

∣∣∣∣ otherwise
(5)

As mentioned in Section 2.1 the objectives are zero if the measured values are within a
range of 10% compared to the corresponding reference values. Both objectives are customer
objectives since they are influenced by customer requirements but preferably should be
chosen with respect to the study by He et al. [7].

2.1.2. Reaction Time Objective

The reaction time measures the time the driver has to wait from acceleration pedal ac-
tuation to a noticeable acceleration, which is according to Simon [6] if 15% of the maximum
acceleration is reached.

To identify an optimal reaction time another subject study is introduced. The study
aims to find the influence of the reaction time on the following criteria: sportiness, comfort,
and agility. The study is carried out in the same procedure as the prior ones. The reaction
time is varied between three values: 250, 550, and 850 ms. Additionally, the accelerator
pedal position is varied between 20%, 40%, and 60%, during these tests (the driver expects
different vehicle reactions under different accelerator pedal positions). The reaction time
has a significant influence on the criteria sportiness and agility, but little influence on the
comfort criterion. For the sportiness and the agility, the EDT of the reaction time depends
on the accelerator pedal position. The EDT for sportiness is greater than 300 ms when
the acceleration pedal position is 20%, which refers to a slow launch expectation. With a
greater accelerator pedal position, the drivers are more sensitive to reaction times smaller
than 550 ms. The EDT of the reaction time for sportiness is smaller than 300 ms when the
reaction time is lower than 550 ms. However, the test subjects cannot differ reaction times
between 550 ms and 850 ms, this means the EDT is greater than 300 ms when the reaction
time is greater than 550 ms. In contrast, the influence on the agility is more sensitive. In
launch situations with 20% accelerator pedal, the EDT for agility is greater than 300 ms
when the reaction time is smaller than 550 ms. However, it is smaller than 300 ms when the
accelerator pedal position is greater than 20%.

The results of this subject study can be used for setting the reference value (depending
on the accelerator pedal position) which is compared with the measured reaction time:

objReactionTime =

{
0 tres,re f ·0.9 ≤ tres, meas ≤ tres,re f ·1.1∣∣∣ tres, meas−tres,re f

tres,re f

∣∣∣ otherwise
(6)

Analogue to the acceleration and acceleration build-up objective of Section 2.1.1 the
reaction time objective is a customer objective and hence the reference value should be
greater than zero and again chosen with respect to the study by He et al. [7].

2.2. Discomfort Objectives

In contrast to the customer objectives of Section 2.1 the discomfort objectives are not
dependent of a reference value. Instead, the objectives shall be zero for achieving an optimal

Appl. Sci. 2022, 12, 10283 8 of 29

result since any value greater than zero has a negative impact on the driving behavior only.
The discomfort objectives are illustrated in Sections 2.2.1 and 2.2.2.

2.2.1. Engine Speed Objective

The engine speed behavior is affecting the perception of the driver during the launch,
through influencing the acoustics of the vehicle. Therefore, a dropping engine speed
(Figure 3b) directly affects the evaluation of the driving comfort. With the test subject
study, the EDT is evaluated by varying the engine speed drops between 0, 250, 500, and
750 rpm. The test subjects evaluate every variant according to the criteria: comfortable and
acceptable. In this study, it is observed that the engine speed drop leads to a significantly
different evaluation when the speed drops more than 250 rpm which hence is the EDT.
Therefore, the EDT for both criteria (comfort and acceptance) are equal.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 30

(a) (b)

Figure 3. (a) Engine speed (red) does not drop, (b) engine speed drops; Input-shaft speed is green.

Figure 3 illustrates the behavior of the engine speed. The left measurement (a) is

measured with a vehicle, the right one (b) is modified manually to illustrate the behavior.

2.2.2. Clutch Torque/Jerk Objective

Compared to acceleration, humans are even more sensitive to high jerks (first deriv-

ative of the acceleration). High accelerations are related to discomfort, but passenger com-

fort is also tied to the change of acceleration of a vehicle [49]. Müller et al. [50] detected

the JND of the jerk with an experiment in a vehicle. It amounts to 0.53 m/s3 with a 95%

confidence interval from 0.07 m/s3 to 1 m/s3.

The longitudinal acceleration of the vehicle is directly linked to the clutch torque

(𝑡𝑞𝑐𝑙𝑢) since the clutch torque is directly transmitted to the wheels during slip phases.

Therefore, it is necessary to take care of the clutch torque gradient during the control of

the clutch since during clutch engagement every inconsistency is related to discomfort

[25]. The objective analyzes the clutch torque during launch for local minima, which indi-

cates an inconsistency in the acceleration signal during launch. A local minimum is found

if the first derivative of the clutch torque is zero and the second derivative of the clutch

torque is greater than zero. The number of local minima is counted and optimally has to

be zero to avoid changes of jerk:

𝑜𝑏𝑗𝑇𝑜𝑟𝑞𝑢𝑒 = ∑[𝑡𝑞̇𝑐𝑙𝑢(𝑡) = 0 ∧ 𝑡𝑞̈𝑐𝑙𝑢(𝑡) > 0]

𝑛

𝑖=1

 (9)

In contrast to the other objectives the raw value is not normalized, so if an incon-

sistency occurs the objective value is equal or greater one and eliminates the chance of

having a successful launch in case of an objective value different to zero.

Although the equation above is theoretically correct, an application is difficult since

the measured clutch torque in a real vehicle is a noisy signal with several local minima.

Therefore, the signal is filtered with a one dimensional gaussian filter [51] for reducing the

noise. Despite filtering, examining local minima numerically is still difficult since the meas-

ured signal is sample based and finding an exact zero of the derivatives is often not possible.

Instead, the derivative of the filtered torque is investigated with the following Algorithm 1.

Algorithm 1. Local minima detection of the clutch torque.

Begin

Set tfg = gradient(torque_filtered)

Declare osc

Set q = 0

Set i = 1

While i < length(tfg)

 if (tfg [i] < 0 && tfg[i − 1] ≥ 0) || (tfg [i] ≥ 0 && tfg[i − 1] < 0) then

 Set osc[q] = i

 Set q++

0

1000

2000

3000

0 0.5 1 1.5 2

rp
m

Time / s

0

1000

2000

3000

0 0.5 1 1.5 2

rp
m

Time / s

Figure 3. (a) Engine speed (red) does not drop, (b) engine speed drops; Input-shaft speed is green.

The launch behavior, therefore, can be improved by ensuring a solely rising engine
speed [47] or should at least not drop more than 250 rpm according to the subject study.
Additionally, during clutch slip phases the engine speed can be influenced by the clutch
torque [5] and hence decreasing the engine speed is only achieved by increasing the clutch
torque over the engine torque, or by requesting an engine intervention. Both options to
decrease the engine speed should be avoided since increasing the clutch torque can result
in discomfort [25] and requesting an engine intervention can result in increased pollutant
emissions [48]. Therefore, it is mandatory to strive for a solely increasing engine speed.
These requirements are transferred into the following optimization objective:

objEngSpd =
ndrop

1000 rpm
(7)

The objective is normalized to keep the objective value within a similar range as
the customer objectives (see Section 2.1—between zero and one). Due to the fact that
He et al. [7] investigated an engine speed drop of less than 250 rpm as not critical, a
tolerance is also implemented for this objective. During evaluation a stricter threshold of
100 rpm is desired and thus, the objective is normalized with 1000 rpm so that comparably
with the customer objectives a calculated objective value lower than 0.1 results in an
objective value of zero.

objEngSpd =

{
0

ndrop
1000 rpm ≤ 0.1

ndrop
1000 rpm otherwise

(8)

Figure 3 illustrates the behavior of the engine speed. The left measurement (a) is
measured with a vehicle, the right one (b) is modified manually to illustrate the behavior.

2.2.2. Clutch Torque/Jerk Objective

Compared to acceleration, humans are even more sensitive to high jerks (first deriva-
tive of the acceleration). High accelerations are related to discomfort, but passenger comfort
is also tied to the change of acceleration of a vehicle [49]. Müller et al. [50] detected the JND

Appl. Sci. 2022, 12, 10283 9 of 29

of the jerk with an experiment in a vehicle. It amounts to 0.53 m/s3 with a 95% confidence
interval from 0.07 m/s3 to 1 m/s3.

The longitudinal acceleration of the vehicle is directly linked to the clutch torque (tqclu)
since the clutch torque is directly transmitted to the wheels during slip phases. Therefore, it
is necessary to take care of the clutch torque gradient during the control of the clutch since
during clutch engagement every inconsistency is related to discomfort [25]. The objective
analyzes the clutch torque during launch for local minima, which indicates an inconsistency
in the acceleration signal during launch. A local minimum is found if the first derivative
of the clutch torque is zero and the second derivative of the clutch torque is greater than
zero. The number of local minima is counted and optimally has to be zero to avoid changes
of jerk:

objTorque =
n

∑
i=1

[.
tqclu(t) = 0 ∧

..
tqclu(t) > 0

]
(9)

In contrast to the other objectives the raw value is not normalized, so if an inconsistency
occurs the objective value is equal or greater one and eliminates the chance of having a
successful launch in case of an objective value different to zero.

Although the equation above is theoretically correct, an application is difficult since
the measured clutch torque in a real vehicle is a noisy signal with several local minima.
Therefore, the signal is filtered with a one dimensional gaussian filter [51] for reducing
the noise. Despite filtering, examining local minima numerically is still difficult since the
measured signal is sample based and finding an exact zero of the derivatives is often not
possible. Instead, the derivative of the filtered torque is investigated with the following
Algorithm 1.

Algorithm 1. Local minima detection of the clutch torque.

Begin

Set tfg = gradient(torque_filtered)
Declare osc
Set q = 0
Set i = 1
While i < length(tfg)

if (tfg [i] < 0 && tfg[i − 1] ≥ 0) || (tfg [i] ≥ 0 && tfg[i − 1] < 0) then
Set osc[q] = i
Set q++

end
end
Set l = 0
Declare lp
For Each o in osc

if torque_filtered[o − 1] > torque_filtered[o] then
Set lp[l] = o
Set l++

end
end
Set objTorque = length(lp)
Return objTorque

End

The derivative of the filtered torque is observed for changes of the sign. If a change of
the sign is detected (osc) either a maximum or minimum is detected. Further, the filtered
torque is investigated with the indices of the sign changes. If the value of the found extrema
is lower than the value of the former found extrema it is an indication of a local minima.
The number of local minima is the value of the objective. The influence of the filtering is
illustrated in Figure 4.

Appl. Sci. 2022, 12, 10283 10 of 29

The number of local minima (determined with Algorithm 1) for the unfiltered signal
of the test vehicle on the left (Figure 4a) is 25 since the signal has a noisy behavior. The
result indicates an uncomfortable driving behavior. Nevertheless, such a behavior with
small amplitudes is not noticeable and hence does not affect the assessment negative. In
contrast, Algorithm 1 applied on the filtered signal (Figure 4b), indicates a driving behavior
without discomfort since no local minima is determined. A typical behavior of a discomfort
causing clutch torque is illustrated in Figure 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 30

 end

end

Set l = 0

Declare lp

For Each o in osc

 if torque_filtered[o − 1] > torque_filtered[o] then

 Set lp[l] = o

 Set l++

 end

end

Set 𝑜𝑏𝑗𝑇𝑜𝑟𝑞𝑢𝑒 = length(lp)

Return 𝑜𝑏𝑗𝑇𝑜𝑟𝑞𝑢𝑒

End

The derivative of the filtered torque is observed for changes of the sign. If a change

of the sign is detected (osc) either a maximum or minimum is detected. Further, the filtered

torque is investigated with the indices of the sign changes. If the value of the found ex-

trema is lower than the value of the former found extrema it is an indication of a local

minima. The number of local minima is the value of the objective. The influence of the

filtering is illustrated in Figure 4.

(a) (b)

Figure 4. Influence of the filtering on the signal (a) unfiltered, (b) filtered.

The number of local minima (determined with Algorithm 1) for the unfiltered signal

of the test vehicle on the left (Figure 4a) is 25 since the signal has a noisy behavior. The

result indicates an uncomfortable driving behavior. Nevertheless, such a behavior with

small amplitudes is not noticeable and hence does not affect the assessment negative. In

contrast, Algorithm 1 applied on the filtered signal (Figure 4b), indicates a driving behav-

ior without discomfort since no local minima is determined. A typical behavior of a dis-

comfort causing clutch torque is illustrated in Figure 5.

Figure 5. Clutch torque with one local minimum.

A local minimum of the clutch torque is indicated with the red marker which would

be noticeable as discomfort.

0

50

100

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

0

50

100

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

0

50

100

150

200

0 0.5 1 1.5 2

C
lu

tc
h

 T
o

rq
u

e
/

N
m

Time / s

Figure 4. Influence of the filtering on the signal (a) unfiltered, (b) filtered.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 30

 end

end

Set l = 0

Declare lp

For Each o in osc

 if torque_filtered[o − 1] > torque_filtered[o] then

 Set lp[l] = o

 Set l++

 end

end

Set 𝑜𝑏𝑗𝑇𝑜𝑟𝑞𝑢𝑒 = length(lp)

Return 𝑜𝑏𝑗𝑇𝑜𝑟𝑞𝑢𝑒

End

The derivative of the filtered torque is observed for changes of the sign. If a change

of the sign is detected (osc) either a maximum or minimum is detected. Further, the filtered

torque is investigated with the indices of the sign changes. If the value of the found ex-

trema is lower than the value of the former found extrema it is an indication of a local

minima. The number of local minima is the value of the objective. The influence of the

filtering is illustrated in Figure 4.

(a) (b)

Figure 4. Influence of the filtering on the signal (a) unfiltered, (b) filtered.

The number of local minima (determined with Algorithm 1) for the unfiltered signal

of the test vehicle on the left (Figure 4a) is 25 since the signal has a noisy behavior. The

result indicates an uncomfortable driving behavior. Nevertheless, such a behavior with

small amplitudes is not noticeable and hence does not affect the assessment negative. In

contrast, Algorithm 1 applied on the filtered signal (Figure 4b), indicates a driving behav-

ior without discomfort since no local minima is determined. A typical behavior of a dis-

comfort causing clutch torque is illustrated in Figure 5.

Figure 5. Clutch torque with one local minimum.

A local minimum of the clutch torque is indicated with the red marker which would

be noticeable as discomfort.

0

50

100

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

0

50

100

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

0

50

100

150

200

0 0.5 1 1.5 2

C
lu

tc
h

 T
o

rq
u

e
/

N
m

Time / s

Figure 5. Clutch torque with one local minimum.

A local minimum of the clutch torque is indicated with the red marker which would
be noticeable as discomfort.

2.3. The Reward

As mentioned prior, to measure the quality of an action the reward in RL algorithms is
introduced. The reward is based on the environmental state and is strived to be maximized
by the algorithm. For this problem, the reward is defined as the sum of the objectives,
but negated. The greater the reward the better and vice versa. If the reward is zero, then
every objective is zero as well and hence the state equals the target state which indicates
a successful launch. The reward for determining the quality of a calibration within the
software in the loop environment is determined as follows:

reward = −
(

objEngSpd + objMax,Acc + objBuild,Acc + objReactionTime

)
(10)

The target state for any optimization within the software in the loop environment has
been set accordingly to Table 1 with respect to the study by He et al. [7]:

Appl. Sci. 2022, 12, 10283 11 of 29

Table 1. Target state for the software in the loop environment.

Objective Value Unit

Engine Speed Drop 0.00 rpm
Acceleration Peak 3.25 m/s2

Acceleration Build-up 6.50 m/s3

Reaction Time 0.50 s

The state has been reproducibly reachable within simulations and has been used for
testing every benchmark optimization algorithm of Section 3.

In the further progress of the study, the application of the algorithms within a test
vehicle were at first also carried out with the same target state of Table 1. It turned out
that from a practical point of view, the launches with an acceleration build-up different
from the reference value could have also felt subjectively satisfying, but also some launches
meeting the requirement felt bumpy. Therefore, instead of meeting the reference value of
the acceleration build-up, the discomfort objective of Section 2.2.2 has been introduced. It
measures if an inconsistency of the clutch torque, and hence the acceleration, is noticeable
to avoid bumpy launches. The reward function thus, changes in the test vehicle to:

reward = −
(

objEngSpd + objMax,Acc + objTorque + objReactionTime

)
(11)

Further, the reward is also used to measure the quality of the genetic algorithm by
summing up the objectives.

2.4. Software in the Loop Environment

As mentioned in Section 2.3, the different algorithms are tested within a software in
the loop environment. The benefit of testing optimization algorithms in a virtual vehicle
lies in the fact of having reproducible results without influences of ambient conditions. The
software in the loop environment is set up with the tool Silver a product of Synopsys. Silver
is a virtual ECU platform and enables the development of some tasks without the use of
hardware [52]. Within Silver, the entire powertrain model is implemented. The internal
combustion engine model thereby acts as a torque source while keeping auxiliary torques
into account. Additionally, the hardware models of the vehicle itself for determining the
driving resistances as well as the transmission model with its inertias are implemented to
closely approach as a digital twin of a real vehicle. Due to confidential reasons the models
cannot be illustrated in detail. The control software of the TCU is the same as the one in
a real vehicle and hence software functions can be tested without the use of expensive
prototypes. Since the system behavior of the powertrain model is not equal to a real vehicle,
the software in the loop environment is not well suited for calibration tasks. However, the
different calibration techniques to automize the calibration process can be tested well in the
software in the loop environment, due to its ability of providing reproducible results. The
most promising algorithms are further tested in a test vehicle the results are illustrated in
Section 5. The tests are all performed/simulated with zero slope, at sea level, and at 20 ◦C.

2.5. Optimization Parameters

During clutch slip phases the gradient of the engine speed is dependent on the dif-
ference between the engine torque and the clutch torque. If the clutch torque e.g., is zero
and the engine torque is greater than zero, the engine speed is increasing since there is
no resistance from the road applied. Generally, if the engine torque is greater than the
clutch torque the engine speed is increasing. Accordingly, if the clutch torque is equal to
the engine torque the engine speed is remains constant. The engine speed is decreasing
if the clutch torque is greater than the engine torque during clutch slip phases. Thus, the
engine speed can be controlled by the clutch. Therefore to calibrate the clutch engagement

Appl. Sci. 2022, 12, 10283 12 of 29

the engine target speed is shaped [5]. The launch itself is divided into different phases [53].
The three phases are illustrated in Figure 6.

1. The engine speed is increasing, vehicle accelerating (red).
2. The engine speed is steady until the input-shaft speed is almost equal to the engine

speed (blue).
3. The engine speed and its speed gradient are adjusted to the input-shaft speed and its

speed gradient (for a smooth clutch engagement (yellow)).

The objectives of Sections 2.1 and 2.2 are optimized with five calibration parameters.
These parameters are dependent on the driver request torque (derived from the accelerator
pedal position):

• Parameter 1—phase 1: percentage of the engine torque which should be used to
accelerate the engine speed to phase 2 (low value: quick vehicle acceleration response
but the engine speed increases slowly—sluggish vehicle acceleration, high value: fast
increase of the engine speed worsened vehicle acceleration response).

• Parameter 2—phase 1: minimum value of the engine torque which should be used to
accelerate the engine to phase 2 (active if the value of parameter 1 is to low).

• Parameter 3: P-gain control value to control the behavior of the engine speed regarding
the engine target speed.

• Parameter 4—phase 3: time for reducing the slip speed in phase 3.
• Parameter 5—phase 3: engine speed which should be reached at the end of phase 3.

As mentioned prior, these parameters are dependent on different signals (e.g., driver
request torque). An example of such a map is illustrated in Table 2:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 30

promising algorithms are further tested in a test vehicle the results are illustrated in Section 5.

The tests are all performed/simulated with zero slope, at sea level, and at 20 °C.

2.5. Optimization Parameters

During clutch slip phases the gradient of the engine speed is dependent on the dif-

ference between the engine torque and the clutch torque. If the clutch torque e.g., is zero

and the engine torque is greater than zero, the engine speed is increasing since there is no

resistance from the road applied. Generally, if the engine torque is greater than the clutch

torque the engine speed is increasing. Accordingly, if the clutch torque is equal to the

engine torque the engine speed is remains constant. The engine speed is decreasing if the

clutch torque is greater than the engine torque during clutch slip phases. Thus, the engine

speed can be controlled by the clutch. Therefore to calibrate the clutch engagement the

engine target speed is shaped [5]. The launch itself is divided into different phases [53].

The three phases are illustrated in Figure 6.

Figure 6. Three phases of the launch.

1. The engine speed is increasing, vehicle accelerating (red).

2. The engine speed is steady until the input-shaft speed is almost equal to the engine

speed (blue).

3. The engine speed and its speed gradient are adjusted to the input-shaft speed and its

speed gradient (for a smooth clutch engagement (yellow)).

The objectives of Sections 2.1 and 2.2 are optimized with five calibration parameters.

These parameters are dependent on the driver request torque (derived from the accelera-

tor pedal position):

• Parameter 1—phase 1: percentage of the engine torque which should be used to ac-

celerate the engine speed to phase 2 (low value: quick vehicle acceleration response

but the engine speed increases slowly—sluggish vehicle acceleration, high value: fast

increase of the engine speed worsened vehicle acceleration response).

• Parameter 2—phase 1: minimum value of the engine torque which should be used to

accelerate the engine to phase 2 (active if the value of parameter 1 is to low).

• Parameter 3: P-gain control value to control the behavior of the engine speed regard-

ing the engine target speed.

• Parameter 4—phase 3: time for reducing the slip speed in phase 3.

• Parameter 5—phase 3: engine speed which should be reached at the end of phase 3.

As mentioned prior, these parameters are dependent on different signals (e.g., driver

request torque). An example of such a map is illustrated in Table 2:

Table 2. Example of a calibration map—Parameter 3: P-gain.

P-gain Engine Speed Error/Rpm

 −500 −250 0 250 500

D
ri

v
er

re
-

q
u

es
t/

N

m

0 z11 z12 z13 z14 z15

150 z21 z22 z23 z24 z25

300 z31 z32 z33 z34 z35

0

1000

2000

3000

0 0.5 1 1.5 2

rp
m

Time / s

Figure 6. Three phases of the launch.

Table 2. Example of a calibration map—Parameter 3: P-gain.

P-gain Engine Speed Error/Rpm

−500 −250 0 250 500

D
ri

ve
r

re
qu

es
t/

N
m 0 z11 z12 z13 z14 z15

150 z21 z22 z23 z24 z25

300 z31 z32 z33 z34 z35

The engine speed error is the deviation of the engine target speed and the measured
engine speed. Table 2 illustrates that the value of the P-gain is varied for different engine
speed errors (between the nodes the values are interpolated).

Since not every value in the map is required to be changed to optimize the desired
driving maneuver (if the driver request is 150 Nm the nodes of 0 Nm and 300 Nm does
not affect the behavior), only the ones which affect the behavior are adjusted. This is
exemplary illustrated with the marked row of Table 2. For optimizing the desired driving

Appl. Sci. 2022, 12, 10283 13 of 29

maneuver only, the marked row needs to be adjusted. Therefore, from these five calibration
parameters, 22 values are derived which have to be adjusted during optimization.

3. Benchmark: Self-Learning Algorithms

To solve the optimization problem of Section 2, several self-learning algorithms
have been applied to the problem. For comparing these algorithms, the virtual vehi-
cle of Section 2.4 is used to ensure reproducible results. The behavior of the vehicle is
therefore only influenced by varying parameters of the TCU (Section 2.5) to calibrate the
launch behavior. These parameters are set with the following algorithms: the well-known
GA NSGA-II and the RL approaches: Deep Deterministic Policy Gradient (DDPG) [54],
Proximal Policy Optimization (PPO) [55], Advantage Actor-Critic (A2C) [56] and Soft
Actor-Critic (SAC) [57].

To validate the algorithms, vehicle launches are performed within the software in the
loop environment and evaluated regarding the optimization objectives of Sections 2.1 and 2.2.
Each algorithm is tested within five test runs to neglect the influence of having favorable
or unfavorable starting conditions. The starting conditions can vary since, usually in
optimization algorithms, the first iterations are performed with a set of randomly chosen
parameters. Zaglauer [24] introduced for this purpose a design of experiments to identify
a starting population, which gains a wide spread of results within the search space and,
therefore, gathering the most possible information out of one iteration. The benefit of having
a greater knowledge about the search space is that the evaluation time is shortened [24].
The drawbacks of the method are that domain knowledge is required to set up such a
design of experiments and the method is difficult to generalize. Therefore, for this study,
such a design of experiments is not intended, instead, the aim is to identify methods which
generalize for different optimization problems. Thus, the five test runs are introduced to
compare the algorithms while minimizing the influence of starting conditions.

A single test run contains 1000 consecutive iterations (1000 vehicle launches within
the software in the loop environment). The number of successful iterations (as explained
in Section 2.3 a launch is successful if the reward is zero) and the required iterations
until the first successful iteration occurs is determined in each test run. The optimization
usually stops if the first successful result is observed in a test vehicle. During these tests
the optimization continues until 1000 iterations are reached to ensure a sustainable quality
of the results and to eliminate the chance of having a random hit. To eliminate outliers
the results of these five test runs are averaged. The results of the five test runs are shown
in Table 3. The column xS is the average of the successful iterations, σS denotes to the
standard deviation and the columns minS and maxS indicates the least respectively the
highest number of successful iterations out of the five test runs. The corresponding average
of the first success (reward is zero for the first time) is illustrated in column xF and the
standard deviation is illustrated in column σF.

Table 3. Comparison of existing algorithms.

Algorithm ¯
xS σS minS maxS

¯
xF σF

NSGA-II 104.2 15.37 84 126 21.0 13.8
DDPG 0.0 - 0 0 - -
PPO 1.2 1.30 0 3 363.0 261.6
A2C 2.0 1.87 0 5 332.8 274.3
SAC 28.8 4.15 22 32 46.4 31.1

From the results of Table 3 it is observable that the drawbacks of Section 1 are proved
and that the GA outperforms the RL algorithms. The standard deviation indicates that the
results are reproducible. The only RL algorithm with some promising results for this single
step problem is the SAC algorithm. The fact that one test run contained 1000 iterations only
is a probable cause of the lack of performance of the RL algorithms since RL needs many
iterations until promising results are available (and 1000 might be not enough) [37,41].

Appl. Sci. 2022, 12, 10283 14 of 29

Therefore, the application of RL algorithms might be not appropriate for the implementa-
tion in non-simulated time-consuming development processes using hardware suffering
from wear.

In contrast to the RL algorithms the NSGA-II algorithm achieves promising results
shown in Figure 7:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 30

From the results of Table 3 it is observable that the drawbacks of Section 1 are proved

and that the GA outperforms the RL algorithms. The standard deviation indicates that the

results are reproducible. The only RL algorithm with some promising results for this single

step problem is the SAC algorithm. The fact that one test run contained 1000 iterations only is

a probable cause of the lack of performance of the RL algorithms since RL needs many itera-

tions until promising results are available (and 1000 might be not enough) [37,41]. Therefore,

the application of RL algorithms might be not appropriate for the implementation in non-sim-

ulated time-consuming development processes using hardware suffering from wear.

In contrast to the RL algorithms the NSGA-II algorithm achieves promising results

shown in Figure 7:

Figure 7. Results of an NSGA–II test run in the software in the loop environment.

As mentioned in Section 2.3, the reward does not influence the behavior of the NSGA-

II algorithm (or the behavior of any GA in contrast to RL algorithms) but it is used as an

indication of the quality of an action.

Due to the better performance compared to RL algorithms, the NSGA-II algorithm

will be further tested within a test vehicle (Section 5.3), although there is the possibility of

a worse performance with an increasing number of calibration parameters. Additionally,

as shown in Figure 7, the NSGA-II algorithm produces a noisy reward behavior, with

many outliers through the entire test run.

4. Target State Optimization

The illustrated drawbacks of the existing self-learning algorithms of Section 3 led to the

new TSO approach proposed in [1]. By combining the advantages of RL and supervised learn-

ing, the TSO algorithm is a hybrid solution of these to machine learning methods.

Similar to RL, the TSO algorithm interacts with an environment. The environment is

influenced by the action taken by the TSO agent and responds back with a state to the TSO

agent. To illustrate the interaction of the actions with the environment and the state as the

response of the environment, the following structure in Figure 8 represents the q-learning

scheme according to [33]:

-2.5

-2

-1.5

-1

-0.5

0

0 200 400 600 800 1000

R
ew

ar
d

Iteration

Figure 7. Results of an NSGA–II test run in the software in the loop environment.

As mentioned in Section 2.3, the reward does not influence the behavior of the NSGA-II
algorithm (or the behavior of any GA in contrast to RL algorithms) but it is used as an
indication of the quality of an action.

Due to the better performance compared to RL algorithms, the NSGA-II algorithm
will be further tested within a test vehicle (Section 5.3), although there is the possibility of a
worse performance with an increasing number of calibration parameters. Additionally, as
shown in Figure 7, the NSGA-II algorithm produces a noisy reward behavior, with many
outliers through the entire test run.

4. Target State Optimization

The illustrated drawbacks of the existing self-learning algorithms of Section 3 led to
the new TSO approach proposed in [1]. By combining the advantages of RL and supervised
learning, the TSO algorithm is a hybrid solution of these to machine learning methods.

Similar to RL, the TSO algorithm interacts with an environment. The environment is
influenced by the action taken by the TSO agent and responds back with a state to the TSO
agent. To illustrate the interaction of the actions with the environment and the state as the
response of the environment, the following structure in Figure 8 represents the q-learning
scheme according to [33]:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 30

Figure 8. Q-learning structure according to [33].

Similar to q-learning, the agent is a neural network, which is choosing the actions. It

is trained during optimization based on the dataset, which is created in parallel (in contrast a

neural network is trained and optimized based on an existing dataset in supervised learning).

Different to RL, the reward is not used to optimize the actions. The reward is only an indica-

tion for the quality of the action (like explained in Section 3 for genetic algorithms).

4.1. Generation of the Action

Optimization algorithms like GA [58] but also RL [59] algorithms suffer from the

trade-off between exploration and exploitation. For finding good solutions an optimiza-

tion algorithm tries to explore the state space. If a good solution has been found one option

is to exploit the state space and maybe find similar or better solutions. This can lead to

being stuck in a local minimum since new solutions are not being explored [58]. To ensure

a trade-off between exploration and exploitation Mnih [33,60] considered the 𝜀-Greedy

approach for Deep Q-Learning to overcome this issue [60]:

𝜀(𝑖) = max (𝜀𝑑𝑒𝑐
𝑖 , 𝜀𝑚𝑖𝑛) (12)

With this approach 𝜀 is decreased in each iteration 𝑖 with 𝜀𝑑𝑒𝑐 until 𝜀𝑚𝑖𝑛 is

reached. Figure 9 illustrates the progress of epsilon for different values:

(a) (b)

Figure 9. Progress of 𝜀 with (a) 𝜀𝑑𝑒𝑐 = 0.98 and 𝜀𝑚𝑖𝑛 = 0.1, (b) 𝜀𝑑𝑒𝑐 = 0.995 and 𝜀𝑚𝑖𝑛 = 0.01.

In parallel a number 𝑟 between 0 and 1 is generated randomly in each iteration to

determine the action type. An action is either generated randomly if the random number

is lower than 𝜀(𝑖) or otherwise by the neural network. Since 𝜀 is decreasing over time

the first actions are primarily created randomly to explore the state space while latter ac-

tions are created by the model with exploitation in focus.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ε

Iteration

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ε

Iteration

Figure 8. Q-learning structure according to [33].

Appl. Sci. 2022, 12, 10283 15 of 29

Similar to q-learning, the agent is a neural network, which is choosing the actions. It is
trained during optimization based on the dataset, which is created in parallel (in contrast
a neural network is trained and optimized based on an existing dataset in supervised
learning). Different to RL, the reward is not used to optimize the actions. The reward is only
an indication for the quality of the action (like explained in Section 3 for genetic algorithms).

4.1. Generation of the Action

Optimization algorithms like GA [58] but also RL [59] algorithms suffer from the
trade-off between exploration and exploitation. For finding good solutions an optimization
algorithm tries to explore the state space. If a good solution has been found one option
is to exploit the state space and maybe find similar or better solutions. This can lead to
being stuck in a local minimum since new solutions are not being explored [58]. To ensure
a trade-off between exploration and exploitation Mnih [33,60] considered the ε-Greedy
approach for Deep Q-Learning to overcome this issue [60]:

ε(i) = max
(

εdec
i, εmin

)
(12)

With this approach ε is decreased in each iteration i with εdec until εmin is reached.
Figure 9 illustrates the progress of epsilon for different values:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 30

Figure 8. Q-learning structure according to [33].

Similar to q-learning, the agent is a neural network, which is choosing the actions. It

is trained during optimization based on the dataset, which is created in parallel (in contrast a

neural network is trained and optimized based on an existing dataset in supervised learning).

Different to RL, the reward is not used to optimize the actions. The reward is only an indica-

tion for the quality of the action (like explained in Section 3 for genetic algorithms).

4.1. Generation of the Action

Optimization algorithms like GA [58] but also RL [59] algorithms suffer from the

trade-off between exploration and exploitation. For finding good solutions an optimiza-

tion algorithm tries to explore the state space. If a good solution has been found one option

is to exploit the state space and maybe find similar or better solutions. This can lead to

being stuck in a local minimum since new solutions are not being explored [58]. To ensure

a trade-off between exploration and exploitation Mnih [33,60] considered the 𝜀-Greedy

approach for Deep Q-Learning to overcome this issue [60]:

𝜀(𝑖) = max (𝜀𝑑𝑒𝑐
𝑖 , 𝜀𝑚𝑖𝑛) (12)

With this approach 𝜀 is decreased in each iteration 𝑖 with 𝜀𝑑𝑒𝑐 until 𝜀𝑚𝑖𝑛 is

reached. Figure 9 illustrates the progress of epsilon for different values:

(a) (b)

Figure 9. Progress of 𝜀 with (a) 𝜀𝑑𝑒𝑐 = 0.98 and 𝜀𝑚𝑖𝑛 = 0.1, (b) 𝜀𝑑𝑒𝑐 = 0.995 and 𝜀𝑚𝑖𝑛 = 0.01.

In parallel a number 𝑟 between 0 and 1 is generated randomly in each iteration to

determine the action type. An action is either generated randomly if the random number

is lower than 𝜀(𝑖) or otherwise by the neural network. Since 𝜀 is decreasing over time

the first actions are primarily created randomly to explore the state space while latter ac-

tions are created by the model with exploitation in focus.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ε

Iteration

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ε

Iteration

Figure 9. Progress of ε with (a) εdec = 0.98 and εmin = 0.1, (b) εdec = 0.995 and εmin = 0.01.

In parallel a number r between 0 and 1 is generated randomly in each iteration to
determine the action type. An action is either generated randomly if the random number is
lower than ε(i) or otherwise by the neural network. Since ε is decreasing over time the first
actions are primarily created randomly to explore the state space while latter actions are
created by the model with exploitation in focus.

If an action is requested from the neural network model the Deep Reinforcement
Learning algorithm described in Mnih [33] tries to predict an action, which maximizes the
reward depending on the current state of the environment. Since the TSO algorithm is not
designed to optimize combinatorial problems, the action is not dependent on a previous
state. Instead, one action is passed to the environment, the environment responds with
a state and the next optimization step is independent from prior states. After a certain
number of iterations (it), the neural network learns from prior state-action pairs and hence
it maps the states of the environment to the actions which led to these states. Through the
random actions in early stages the assumption is that a wide state space is explored and
therefore the system behavior of the environment is learnt by the neural network. Further,
the optimization objectives (if an action is requested from the neural network) are passed
to the neural network as a target state to predict an action. With the prior assumptions, the
expectation is that the action influences the environment to a state which should be equal
to the target state. If the state from the environment is not equal to the target state, the

Appl. Sci. 2022, 12, 10283 16 of 29

neural network needs to be optimized or more random actions are required. If the resulting
state is equal to the target state, the optimization is successful, and the reward is equal to
zero. This process is illustrated in Figure 10:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 30

If an action is requested from the neural network model the Deep Reinforcement

Learning algorithm described in Mnih [33] tries to predict an action, which maximizes the

reward depending on the current state of the environment. Since the TSO algorithm is not

designed to optimize combinatorial problems, the action is not dependent on a previous

state. Instead, one action is passed to the environment, the environment responds with a

state and the next optimization step is independent from prior states. After a certain num-

ber of iterations (𝑖𝑡), the neural network learns from prior state-action pairs and hence it

maps the states of the environment to the actions which led to these states. Through the

random actions in early stages the assumption is that a wide state space is explored and

therefore the system behavior of the environment is learnt by the neural network. Further,

the optimization objectives (if an action is requested from the neural network) are passed

to the neural network as a target state to predict an action. With the prior assumptions,

the expectation is that the action influences the environment to a state which should be

equal to the target state. If the state from the environment is not equal to the target state,

the neural network needs to be optimized or more random actions are required. If the

resulting state is equal to the target state, the optimization is successful, and the reward is

equal to zero. This process is illustrated in Figure 10:

(a) (b)

Figure 10. Flowchart of the TSO algorithm: (a) main loop, (b) Generate Action function. Figure 10. Flowchart of the TSO algorithm: (a) main loop, (b) Generate Action function.

In Figure 10a the main loop of the TSO algorithm is illustrated. It is observable that
the fail count (f) is incremented if an action is taken by the model, which have not led to a
successful result. If this fail count exceeds the threshold gT (Figure 10b) or if the model is
not existing, the model has to be created or optimized.

4.2. Model Optimization and Hyperparameter-Tuning

There are two different kind of parameters in machine learning models: model parameters
(updated during learning) and hyperparameters (which cannot be learned from the data) [61].
Before starting the training process the hyperparameters have to be defined [62], which
have a major influence on the accuracy of the machine learning model [63]. Therefore, it
is important to adapt the hyperparameters of the machine learning model to a dataset to
optimize the behavior of the model for the corresponding domain [61].

In this study, the number of layers and the number of neurons per layer (model design
hyperparameters [64]) as well as the learning rate as another important hyperparameter, are
optimized [65]. Choosing the learning rate is driven by the trade-off of having an accelerated

Appl. Sci. 2022, 12, 10283 17 of 29

learning, but the drawback of maybe not converging (with large learning rates) and more
accurate predictions but increased computation times (with small learning rates) [61].

The three hyperparameters are, as mentioned earlier, usually adapted to a dataset the
model should be trained on. Since RL algorithms as well as the TSO algorithm start its
optimization without having a dataset (the dataset in these algorithms is growing with the
optimization progress) the optimization of the hyperparameters is different to SL where
parameters are adjusted to an existing dataset. In RL algorithms the hyperparameters are
usually not adjusted to the dataset during optimization so misleading initial hyperparame-
ters can result in a lack of accuracy of the underlying neural network and therefore in an
unsatisfying performance.

As described in Section 4.1, this drawback is tackled, by collecting data with randomly
generated actions for a certain number of iterations (iT). After these iterations, and when
also the ε-greedy approach desires the first action to be generated by the model, the
hyperparameter optimization takes place to generate the neural network model (the model
does not exist so far). The collected state-action pairs are used for the hyperparameter
tuning, which is performed with the Bayesian optimization based on Gaussian Processes.
The approach is used due to its better performance compared to other hyperparameter-
tuning methods (e.g., grid-search, random-search, etc.) [66].

If the predictions of the neural network are still not correct after the hyperparameter-
tuning the neural network is optimized again.

For this purpose, the fail counter (f), the gradient threshold (gT), and the tuning
threshold (tT), are introduced. If the environmental state is not equal to the target state, f is
incremented. After a certain number of failed iterations (f > gT) the existing neural net-
work is re-trained with the new collected training data. If the model still fails (f > tT), the
hyperparameter-tuning is repeated and a new model n is created. The optimization of the
hyperparameters is only performed m times (the number of hyperparameter-optimizations
is limited due to computation reasons). Additionally, each new created model is compared
with the ones which have already been created. This optimization process is visualized
in Figure 11.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 30

Figure 11. Flowchart of the model optimization.

4.3. Brief Introduction into Neural Networks

A neural network basically is a function estimator, which computes the relationship

between the input of a neural network and its output [67]. During hyperparameter-tuning

(Section 4.2 the number of units (neurons) of each layer and the number of layers is deter-

mined. The input of a single unit 𝑎 is determined with a set of input variables 𝑑 which

is weighted and summarized [68]:

𝑎 = ∑ 𝑤𝑖 ∙ 𝑥𝑖 +

𝑑

𝑖=1

𝑤0 (13)

The output of a unit is determined by processing 𝑎 within a non-linear activation

function 𝑔:

𝑧 = 𝑔(𝑎) (14)

For multiple units with the same inputs (single layer neural network) the represen-

tation changes to:

Figure 11. Flowchart of the model optimization.

Appl. Sci. 2022, 12, 10283 18 of 29

4.3. Brief Introduction into Neural Networks

A neural network basically is a function estimator, which computes the relationship
between the input of a neural network and its output [67]. During hyperparameter-tuning
(Section 4.2 the number of units (neurons) of each layer and the number of layers is
determined. The input of a single unit a is determined with a set of input variables d which
is weighted and summarized [68]:

a =
d

∑
i=1

wi·xi + w0 (13)

The output of a unit is determined by processing a within a non-linear activation
function g:

z = g(a) (14)

For multiple units with the same inputs (single layer neural network) the representa-
tion changes to:

zj = g

(
d

∑
i=0

wji·xi

)
, (15)

for x0 = 1. For multiple layers the output of next layer (j + 1) is based on the output of the
former layer represented in:

zj+1 = g

(
m

∑
j=0

w(j+1)j·zj

)
(16)

So, for a network with two layers the notation of zj+1 is represented in:

ŷ = zj+1 = g

(
m

∑
j=0

w(j+1)j·g
(

d

∑
i=0

wji·xi

))
(17)

To correlate the input values (x) to the output values (y) the weights are determined
with existing data of input and output values. This process is called training [68].

The training is performed by comparing the predicted value of the neural network
ŷ from an input x with its true value y. Since values are passed through the network the
step is called forward propagation. To compare the predicted and the true value an error
function is introduced. A common error function is the mean squared error:

E =
1
2

n

∑
q=1

(
ŷ
(
xq, w

)
− yq

)2 (18)

The error of different values of the dataset are summed up. The error is minimized by
adapting the weights during backpropagation.

By inserting Equation (17) into Equation (18) the error becomes a function of the
weights and hence if the weights are changing the error changes as well. Additionally, the
function can be differentiated. During backpropagation the derivative of the function is
determined, and the error function is minimized by making fixed steps (learning rate) into
the direction of the negative gradients (gradient descent) [68]. The determination of the
learning rate is also part of the hyperparameter-tuning of Section 4.2.

4.4. Relevance of the Activation Function

As shown in Section 4.3, the activation function influences the determination of the
weight vector and the training effort since it is part of the error function. The activation
function is also a hyperparameter, but it is not part of the hyperparameter-tuning in TSO
of Section 4.2 to reduce the computation time. Therefore, this section is introduced to
investigate the influence of three common activation functions on the optimization effort:

Appl. Sci. 2022, 12, 10283 19 of 29

the linear identity activation function, the rectified linear activation function (ReLU), and
the logistic sigmoid activation function [69]. These activation functions are represented
in Figure 12:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 30

𝑧𝑗 = 𝑔 (∑ 𝑤𝑗𝑖 ∙ 𝑥𝑖

𝑑

𝑖=0

), (15)

for 𝑥0 = 1. For multiple layers the output of next layer (𝑗 + 1) is based on the output of

the former layer represented in:

𝑧𝑗+1 = 𝑔 (∑ 𝑤(𝑗+1)𝑗 ∙ 𝑧𝑗

𝑚

𝑗=0

) (16)

So, for a network with two layers the notation of 𝑧𝑗+1 is represented in:

𝑦̂ = 𝑧𝑗+1 = 𝑔 (∑ 𝑤(𝑗+1)𝑗 ∙ 𝑔

𝑚

𝑗=0

(∑ 𝑤𝑗𝑖 ∙ 𝑥𝑖

𝑑

𝑖=0

)) (17)

To correlate the input values (𝑥) to the output values (𝑦) the weights are determined

with existing data of input and output values. This process is called training [68].

The training is performed by comparing the predicted value of the neural network 𝑦̂

from an input 𝑥 with its true value 𝑦. Since values are passed through the network the

step is called forward propagation. To compare the predicted and the true value an error

function is introduced. A common error function is the mean squared error:

𝐸 =
1

2
∑(𝑦̂(𝑥𝑞 , 𝑤) − 𝑦𝑞)

2
𝑛

𝑞=1

 (18)

The error of different values of the dataset are summed up. The error is minimized

by adapting the weights during backpropagation.

By inserting Equation (17) into Equation (18) the error becomes a function of the

weights and hence if the weights are changing the error changes as well. Additionally, the

function can be differentiated. During backpropagation the derivative of the function is

determined, and the error function is minimized by making fixed steps (learning rate) into

the direction of the negative gradients (gradient descent) [68]. The determination of the

learning rate is also part of the hyperparameter-tuning of Section 4.2.

4.4. Relevance of the Activation Function

As shown in Section 4.3, the activation function influences the determination of the

weight vector and the training effort since it is part of the error function. The activation

function is also a hyperparameter, but it is not part of the hyperparameter-tuning in TSO

of Section 4.2 to reduce the computation time. Therefore, this section is introduced to investi-

gate the influence of three common activation functions on the optimization effort: the linear

identity activation function, the rectified linear activation function (ReLU), and the logistic sig-

moid activation function [69]. These activation functions are represented in Figure 12:

(a) (b) (c)

Figure 12. (a) linear, (b) ReLU, and (c) logistic sigmoid activation function (blue) and its derivative

(orange).

The linear activation function is represented as:

Figure 12. (a) linear, (b) ReLU, and (c) logistic sigmoid activation function (blue) and its derivative (orange).

The linear activation function is represented as:

g(x) = x (19)

According to Bishop [68] using the linear activation function has the drawback of
reducing the neural network to single-layer neural network and hence a simple matrix mul-
tiplication, which comes with limited computational capabilities. Therefore, it is mandatory
to have more than one layer (deep neural networks) for more sophisticated tasks [68]. This
requires non-linear activation functions like the ReLU function [70]:

g(x) = max(0, x) (20)

or the logistic sigmoid activation function [68]:

g(x) =
1

1 + e−x (21)

However, the growing number of layers lead to a greater amount of weights and
therefore, the weight estimation becomes more computationally expensive [70]. According
to Schmidt-Hieber [70] the rectified linear unit (ReLU) has an computational advantage
compared to sigmoidal functions like the logistic sigmoid function. The influence of the
selection of the activation function is shown in the results in Section 5.

4.5. Batch Size

The batch size is another hyperparameter, which determines the number of training
samples used to update the neural network model [71]. If the batch size is too large it can
result in bad generalization and lead to false predictions. In contrast a too small batch
size results in a better quality but an enlarged computation time [72]. The batch size is
usually kept constant but due to the fact that the dataset is increasing with the optimization
progress this approach does not seem appropriate for TSO. Until the dataset has the same
size as the batch size the entire dataset is learned by the neural network. If the batch size is
kept constant a large batch size could lead to wrong predictions over a longer time period,
and a small batch size could lead to an increased computation time with an increasing
dataset. Therefore, the batch size is in TSO dependent on the dataset size:

b =
n
4

(22)

bmin < b < bmax (23)

The batch size is determined dynamically according to the optimization progress with
n as the size of the dataset. bmin and bmax are the minimum and maximum values of the
batch size.

Appl. Sci. 2022, 12, 10283 20 of 29

5. Results
5.1. Software in the Loop

To compare the TSO algorithm with the best benchmark algorithms of Section 3, the
TSO algorithm is applied on the optimization problem of Section 2 within the software in
the loop environment.

Table 4 is introduced to illustrate the results. Again, as in Table 3, the columns illustrate
the average values (xS and xF), the standard deviation (σS and σF), and the result range
(minS and maxS) of the “successful iterations” and the “first success” over the five test runs.

Table 4. Comparison of the TSO algorithm with the benchmark algorithms.

Algorithm ¯
xS σS minS maxS

¯
xF σF

NSGA-II 104.2 15.4 84 126 21.0 13.8
SAC 28.8 4.2 22 32 46.4 31.1

TSO (sigmoidal) 7.8 5.5 2 16 221.6 332.0
TSO (ReLU) 250.0 160.4 36 442 20.6 11.3

It is observable that the activation function (Section 4.4) has a significant impact on
the results. While the TSO algorithm with the ReLU activation function outperforms
the GA and the best tested RL algorithm (with regard on successful iterations), the TSO
algorithm with the sigmoidal activation function lacks in performance which is observable
in Figure 13.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 30

Table 4. Comparison of the TSO algorithm with the benchmark algorithms.

Algorithm 𝒙̅𝑺 𝝈𝑺 𝒎𝒊𝒏𝑺 𝒎𝒂𝒙𝑺 𝒙̅𝑭 𝝈𝑭

NSGA-II 104.2 15.4 84 126 21.0 13.8

SAC 28.8 4.2 22 32 46.4 31.1

TSO (sigmoidal) 7.8 5.5 2 16 221.6 332.0

TSO (ReLU) 250.0 160.4 36 442 20.6 11.3

It is observable that the activation function (Section 4.4) has a significant impact on the

results. While the TSO algorithm with the ReLU activation function outperforms the GA and

the best tested RL algorithm (with regard on successful iterations), the TSO algorithm with the

sigmoidal activation function lacks in performance which is observable in Figure 13.

(a) (b)

Figure 13. Comparison of the influence of the activation functions of the TSO algorithm on the re–

sults: (a) sigmoidal activation function, (b) ReLU activation function.

Although the standard deviation is very high compared to the other algorithms (one out-

lier with only 36 successful iterations, which is significantly low compared to the other test

runs), the results show that for a fast and reliable success the ReLU activation function has to

be used for the TSO algorithm. It is also noticeable that the first successful iteration generated

is almost the same for the NSGA-II and the TSO algorithm with the ReLU activation function.

Different to the activation function, the hyperparameters explained in Section 4.2 are

adjusted during the optimization. The hyperparameter-tuning is carried out three times.

The progress of the hyperparameter tuning for the TSO algorithm with the ReLU activa-

tion function is illustrated in Table 5 for two different test runs.

Table 5. Hyperparameter propagation.

Test Run/Iteration Layer Neurons Learning Rate

7 1 512 0.0237

16 1 25 0.0545

23 1 512 0.0237

6 6 130 0.0247

16 1 180 0.0414

20 4 425 0.0012

Due to the success within the software in the loop environment, the algorithms

NSGA-II and TSO are further tested in different test vehicles. Within the test vehicles the

last combination of the hyperparameters (layers = 4, neurons = 425, learning rate = 0.0012)

is tested to optimize the calibration parameters.

5.2. Robustness

According to Kitano [73], robustness is the ability of a system to function under per-

turbations and hence under changing conditions. For the TSO algorithm, it is mandatory

-3

-2

-1

0

0 200 400 600 800 1000

R
ew

ar
d

Iteration

-3

-2

-1

0

0 200 400 600 800 1000

R
ew

ar
d

Iteration

Figure 13. Comparison of the influence of the activation functions of the TSO algorithm on the
re–sults: (a) sigmoidal activation function, (b) ReLU activation function.

Although the standard deviation is very high compared to the other algorithms (one
outlier with only 36 successful iterations, which is significantly low compared to the other
test runs), the results show that for a fast and reliable success the ReLU activation function
has to be used for the TSO algorithm. It is also noticeable that the first successful iteration
generated is almost the same for the NSGA-II and the TSO algorithm with the ReLU
activation function.

Different to the activation function, the hyperparameters explained in Section 4.2 are
adjusted during the optimization. The hyperparameter-tuning is carried out three times.
The progress of the hyperparameter tuning for the TSO algorithm with the ReLU activation
function is illustrated in Table 5 for two different test runs.

Due to the success within the software in the loop environment, the algorithms
NSGA-II and TSO are further tested in different test vehicles. Within the test vehicles the
last combination of the hyperparameters (layers = 4, neurons = 425, learning rate = 0.0012)
is tested to optimize the calibration parameters.

Appl. Sci. 2022, 12, 10283 21 of 29

Table 5. Hyperparameter propagation.

Test Run/Iteration Layer Neurons Learning Rate

7 1 512 0.0237
16 1 25 0.0545
23 1 512 0.0237

6 6 130 0.0247
16 1 180 0.0414
20 4 425 0.0012

5.2. Robustness

According to Kitano [73], robustness is the ability of a system to function under per-
turbations and hence under changing conditions. For the TSO algorithm, it is mandatory
to maintain quasi-stationary conditions during optimization to find optimal solutions. Im-
proving the behavior of a vehicle launch e.g., under flat conditions, shall not be performed
at test facilities with high slopes. However, it is difficult to find stationary environmental
conditions outside a simulation environment since test tracks are usually influenced by the
environment. Changing conditions can lead to changing driving resistances (e.g., small
slopes) and hence the system behaves different compared to optimal conditions. There-
fore, before testing the algorithm in a real-world vehicle, the robustness of the vehicle is
tested within the software in the loop environment by changing the slope in the simulation
spontaneously to simulate the conditions of real roads. A quasi-flat road is simulated by
varying the slope arbitrary between −1% and 1% as well as between −2% and 2%.

To test the behavior the optimizations are repeated four times in the software in the
loop environment with 100 iterations in each test run. The results are shown in Table 6.

Table 6. Successful iterations of the robustness test with the TSO algorithm.

Test Run ±1% ±2%

1 20 21
2 78 33
3 17 74
4 7 0

Average 30.5 32

It is observable that the results vary strongly in each test run. While one test run has 78
successful iterations another one does not have any successful iteration. In average 30.5 test
runs have been successful for ±1% and 32 for ±2% road gradient.

Although the results are varying between the test runs, it also indicates a potential for
the application in a test vehicle.

5.3. Test Vehicle

Within the test vehicle the NSGA-II and the TSO algorithm are validated again with
equal objective values which are illustrated in Table 7:

Table 7. Optimization targets.

Objective Value Unit

Engine Speed Drop 0.00 rpm
Acceleration Peak 3.25 m/s2

Clutch Torque Minima 0.00 -
Reaction Time 0.50 s

The test vehicle is a vehicle with a hybrid dual clutch transmission (HDT) and a three-
cylinder Otto engine. The HDT is basically a conventional dual clutch transmission with
an electric motor applied. The electric motor is able to transmit torque if the second of the

Appl. Sci. 2022, 12, 10283 22 of 29

two clutches is closed [74]. This enables the powertrain to reduce the fuel consumption by
14.5% compared to powertrains with conventional DCT [75]. Due to confidential reasons
the powertrain configuration cannot be explained in detail.

For the optimization of the driving behavior during launch the number of iterations
for optimization in a test vehicle is tried to be kept as low as possible to reduce develop-
ment costs. Therefore, two different hyperparameter configurations are applied to test the
NSGA-II algorithm. The first configuration is performed with 20 iterations containing five
generations and a population size of four (an explanation of these parameters can be found
in Section 1). The second configuration is performed with 60 iterations and also with five
generations but with a population size of 12. The results are illustrated in Figure 14:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 30

(a) (b)

Figure 14. NSGA–II results tested in a vehicle with an HDT and a three-cylinder Otto engine: (a)

generations: 5, population: 4; (b) generations: 5, population: 12.

It is observable that the reward is always lower than zero and hence the optimization

target has not been reached with neither algorithm configuration.

To compare the results of the TSO algorithm with those of the NSGA-II algorithm, a

lower number of iterations are also applied during optimization. However, the optimiza-

tion is performed in the same vehicle under equal environmental conditions. The optimal

parameters for a successful launch are tried to be found within 50 iterations. To reduce

the computation time hyperparameter-tuning is neglected in the vehicle tests. The neural

network is initialized with the last hyperparameters identified in the software in the loop

environment (number of layers = 4, neurons per layer = 425, learning rate = 0.0012). The

results are shown in Figure 15:

Figure 15. Results of the TSO algorithm tested in a test vehicle with an HDT and a three–cylinder

Otto engine.

Out of 50 iterations, 16 have been successful with the first successful result was at

iteration 11. Hence, the TSO algorithm again outperforms the NSGA-II algorithm.

The difference of a successful (reward = 0) and a failed launch is illustrated in Figure 16.

(a) (b)

Figure 16. (a) Successful launch (TSO: iteration 11 of Figure 15), (b) failed launch (NSGA-2: iteration

0 of Figure 14a); Engine Speed (red); Input-shaft speed (green).

-3

-2

-1

0

0 5 10 15 20

R
ew

ar
d

Iteration

-3

-2

-1

0

0 20 40 60

R
ew

ar
d

Iteration

-2

-1

0

0 10 20 30 40 50

R
ew

ar
d

Iteration

0

1000

2000

0 0.5 1 1.5 2

rp
m

time / s

0

1000

2000

0 1 2

rp
m

time / s

Figure 14. NSGA–II results tested in a vehicle with an HDT and a three-cylinder Otto engine:
(a) generations: 5, population: 4; (b) generations: 5, population: 12.

It is observable that the reward is always lower than zero and hence the optimization
target has not been reached with neither algorithm configuration.

To compare the results of the TSO algorithm with those of the NSGA-II algorithm, a
lower number of iterations are also applied during optimization. However, the optimization
is performed in the same vehicle under equal environmental conditions. The optimal
parameters for a successful launch are tried to be found within 50 iterations. To reduce
the computation time hyperparameter-tuning is neglected in the vehicle tests. The neural
network is initialized with the last hyperparameters identified in the software in the loop
environment (number of layers = 4, neurons per layer = 425, learning rate = 0.0012). The
results are shown in Figure 15:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 30

(a) (b)

Figure 14. NSGA–II results tested in a vehicle with an HDT and a three-cylinder Otto engine: (a)

generations: 5, population: 4; (b) generations: 5, population: 12.

It is observable that the reward is always lower than zero and hence the optimization

target has not been reached with neither algorithm configuration.

To compare the results of the TSO algorithm with those of the NSGA-II algorithm, a

lower number of iterations are also applied during optimization. However, the optimiza-

tion is performed in the same vehicle under equal environmental conditions. The optimal

parameters for a successful launch are tried to be found within 50 iterations. To reduce

the computation time hyperparameter-tuning is neglected in the vehicle tests. The neural

network is initialized with the last hyperparameters identified in the software in the loop

environment (number of layers = 4, neurons per layer = 425, learning rate = 0.0012). The

results are shown in Figure 15:

Figure 15. Results of the TSO algorithm tested in a test vehicle with an HDT and a three–cylinder

Otto engine.

Out of 50 iterations, 16 have been successful with the first successful result was at

iteration 11. Hence, the TSO algorithm again outperforms the NSGA-II algorithm.

The difference of a successful (reward = 0) and a failed launch is illustrated in Figure 16.

(a) (b)

Figure 16. (a) Successful launch (TSO: iteration 11 of Figure 15), (b) failed launch (NSGA-2: iteration

0 of Figure 14a); Engine Speed (red); Input-shaft speed (green).

-3

-2

-1

0

0 5 10 15 20

R
ew

ar
d

Iteration

-3

-2

-1

0

0 20 40 60

R
ew

ar
d

Iteration

-2

-1

0

0 10 20 30 40 50

R
ew

ar
d

Iteration

0

1000

2000

0 0.5 1 1.5 2

rp
m

time / s

0

1000

2000

0 1 2

rp
m

time / s

Figure 15. Results of the TSO algorithm tested in a test vehicle with an HDT and a three–cylinder
Otto engine.

Out of 50 iterations, 16 have been successful with the first successful result was at
iteration 11. Hence, the TSO algorithm again outperforms the NSGA-II algorithm.

The difference of a successful (reward = 0) and a failed launch is illustrated in Figure 16.

Appl. Sci. 2022, 12, 10283 23 of 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 30

(a) (b)

Figure 14. NSGA–II results tested in a vehicle with an HDT and a three-cylinder Otto engine: (a)

generations: 5, population: 4; (b) generations: 5, population: 12.

It is observable that the reward is always lower than zero and hence the optimization

target has not been reached with neither algorithm configuration.

To compare the results of the TSO algorithm with those of the NSGA-II algorithm, a

lower number of iterations are also applied during optimization. However, the optimiza-

tion is performed in the same vehicle under equal environmental conditions. The optimal

parameters for a successful launch are tried to be found within 50 iterations. To reduce

the computation time hyperparameter-tuning is neglected in the vehicle tests. The neural

network is initialized with the last hyperparameters identified in the software in the loop

environment (number of layers = 4, neurons per layer = 425, learning rate = 0.0012). The

results are shown in Figure 15:

Figure 15. Results of the TSO algorithm tested in a test vehicle with an HDT and a three–cylinder

Otto engine.

Out of 50 iterations, 16 have been successful with the first successful result was at

iteration 11. Hence, the TSO algorithm again outperforms the NSGA-II algorithm.

The difference of a successful (reward = 0) and a failed launch is illustrated in Figure 16.

(a) (b)

Figure 16. (a) Successful launch (TSO: iteration 11 of Figure 15), (b) failed launch (NSGA-2: iteration

0 of Figure 14a); Engine Speed (red); Input-shaft speed (green).

-3

-2

-1

0

0 5 10 15 20

R
ew

ar
d

Iteration

-3

-2

-1

0

0 20 40 60

R
ew

ar
d

Iteration

-2

-1

0

0 10 20 30 40 50

R
ew

ar
d

Iteration

0

1000

2000

0 0.5 1 1.5 2
rp

m
time / s

0

1000

2000

0 1 2

rp
m

time / s

Figure 16. (a) Successful launch (TSO: iteration 11 of Figure 15), (b) failed launch (NSGA-2: iteration 0 of
Figure 14a); Engine Speed (red); Input-shaft speed (green).

The clutch torques of these launches are illustrated accordingly in Figure 17.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 30

The clutch torques of these launches are illustrated accordingly in Figure 17.

(a) (b)

Figure 17. Clutch torques of the different launches accordingly to Figure 16: (a), desired clutch

torque behavior (b) clutch torque with local minima.

In Figure 16a, no drop of the engine speed, and in Figure 17a no local minima of the

clutch torque, is observable. Additionally, the measured maximum acceleration is 3.26

m/s2 and the reaction time is 0.45 s, which is within the tolerance and hence lead to a

reward of zero. In Figure 16b, an inconsistency of the engine speed is observable, but the

engine does not drop and hence it does not influence the evaluation negatively. Figure

17b illustrates two local minima of the clutch torque (marked red). The minimum at

timestamp 1.18 s is clearly observable compared to the one at timestamp 1.96 s. Addition-

ally, the measured reaction time of 0.59 s is out of the tolerance which upper threshold

would be at 0.55 s. In contrast, the maximum acceleration of 3.24 m/s2 is within the toler-

ance. The reward is −2.31 and hence the launch failed.

To illustrate the ability to generalize, the algorithm is also applied to another vehicle with

a three-cylinder Otto engine, but this time equipped with a conventional DCT. However, first

for comparison, again the NSGA-II algorithm is used to optimize the driving behavior.

In contrast to Figure 14 in Figure 18b one successful launch has been determined

which could not be reproduced in the optimization progress.

(a) (b)

Figure 18. NSGA–II results tested in a test vehicle with a conventional DCT and a three–cylinder

Otto engine: (a) generations: 5, population: 4; (b) generations: 5, population: 12.

Figure 19 illustrates that the TSO algorithm still outperforms the NSGA-II algorithm,

but it is also observable that the optimization objectives should have been adjusted to the

different powertrain configuration since a successful launch has not been achieved as of-

ten as in Figure 15.

0

50

100

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

0

20

40

60

80

100

120

0 0.5 1 1.5 2
to

rq
u

e
/

N
m

time / s

-4

-3

-2

-1

0

0 5 10 15 20

R
ew

ar
d

Iteration

-3

-2

-1

0

0 20 40 60

R
ew

ar
d

Iteration

Figure 17. Clutch torques of the different launches accordingly to Figure 16: (a), desired clutch torque
behavior (b) clutch torque with local minima.

In Figure 16a, no drop of the engine speed, and in Figure 17a no local minima of the
clutch torque, is observable. Additionally, the measured maximum acceleration is 3.26 m/s2

and the reaction time is 0.45 s, which is within the tolerance and hence lead to a reward of
zero. In Figure 16b, an inconsistency of the engine speed is observable, but the engine does
not drop and hence it does not influence the evaluation negatively. Figure 17b illustrates
two local minima of the clutch torque (marked red). The minimum at timestamp 1.18 s is
clearly observable compared to the one at timestamp 1.96 s. Additionally, the measured
reaction time of 0.59 s is out of the tolerance which upper threshold would be at 0.55 s. In
contrast, the maximum acceleration of 3.24 m/s2 is within the tolerance. The reward is
−2.31 and hence the launch failed.

To illustrate the ability to generalize, the algorithm is also applied to another vehicle
with a three-cylinder Otto engine, but this time equipped with a conventional DCT. How-
ever, first for comparison, again the NSGA-II algorithm is used to optimize the driving
behavior.

In contrast to Figure 14 in Figure 18b one successful launch has been determined
which could not be reproduced in the optimization progress.

Figure 19 illustrates that the TSO algorithm still outperforms the NSGA-II algorithm,
but it is also observable that the optimization objectives should have been adjusted to the
different powertrain configuration since a successful launch has not been achieved as often
as in Figure 15.

To verify the ability of the algorithm to solve the optimization problem in any vehicle,
the algorithm is tested in another vehicle. This time, only the TSO algorithm is tested in
a vehicle with a four-cylinder diesel engine and a 7-speed HDT. Again, the target state
of Table 7 is used with a reference acceleration of 3.25 m/s2 and a reference reaction time
of 0.5 s.

Appl. Sci. 2022, 12, 10283 24 of 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 30

The clutch torques of these launches are illustrated accordingly in Figure 17.

(a) (b)

Figure 17. Clutch torques of the different launches accordingly to Figure 16: (a), desired clutch

torque behavior (b) clutch torque with local minima.

In Figure 16a, no drop of the engine speed, and in Figure 17a no local minima of the

clutch torque, is observable. Additionally, the measured maximum acceleration is 3.26

m/s2 and the reaction time is 0.45 s, which is within the tolerance and hence lead to a

reward of zero. In Figure 16b, an inconsistency of the engine speed is observable, but the

engine does not drop and hence it does not influence the evaluation negatively. Figure

17b illustrates two local minima of the clutch torque (marked red). The minimum at

timestamp 1.18 s is clearly observable compared to the one at timestamp 1.96 s. Addition-

ally, the measured reaction time of 0.59 s is out of the tolerance which upper threshold

would be at 0.55 s. In contrast, the maximum acceleration of 3.24 m/s2 is within the toler-

ance. The reward is −2.31 and hence the launch failed.

To illustrate the ability to generalize, the algorithm is also applied to another vehicle with

a three-cylinder Otto engine, but this time equipped with a conventional DCT. However, first

for comparison, again the NSGA-II algorithm is used to optimize the driving behavior.

In contrast to Figure 14 in Figure 18b one successful launch has been determined

which could not be reproduced in the optimization progress.

(a) (b)

Figure 18. NSGA–II results tested in a test vehicle with a conventional DCT and a three–cylinder

Otto engine: (a) generations: 5, population: 4; (b) generations: 5, population: 12.

Figure 19 illustrates that the TSO algorithm still outperforms the NSGA-II algorithm,

but it is also observable that the optimization objectives should have been adjusted to the

different powertrain configuration since a successful launch has not been achieved as of-

ten as in Figure 15.

0

50

100

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

0

20

40

60

80

100

120

0 0.5 1 1.5 2

to
rq

u
e

/
N

m

time / s

-4

-3

-2

-1

0

0 5 10 15 20
R

ew
ar

d

Iteration

-3

-2

-1

0

0 20 40 60

R
ew

ar
d

Iteration

Figure 18. NSGA–II results tested in a test vehicle with a conventional DCT and a three–cylinder
Otto engine: (a) generations: 5, population: 4; (b) generations: 5, population: 12.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 25 of 30

Figure 19. Results of the TSO algorithm tested in a test vehicle with a conventional DCT and a three–

cylinder Otto engine.

To verify the ability of the algorithm to solve the optimization problem in any vehicle,

the algorithm is tested in another vehicle. This time, only the TSO algorithm is tested in a

vehicle with a four-cylinder diesel engine and a 7-speed HDT. Again, the target state of Table

7 is used with a reference acceleration of 3.25 m/s2 and a reference reaction time of 0.5 s.

Figure 20 illustrates that the optimization targets have not been reached by the algo-

rithm. Using a four-cylinder diesel engine comes with the side-effect of having a different

behavior of the engine torque compared to Otto-engines, as well as having comparably

more power by having a fourth cylinder (the accelerator pedal positions has been set to

the same value as in the other tests). The differences in the physical behavior of the other

engine configuration leads to the fact that the former targets cannot be reached with this

engine-transmission combination. Therefore, different optimization targets are tested

within vehicle with the diesel engine. The results are illustrated in Table 8:

Table 8. Comparison of the TSO algorithm with different optimization targets within the vehicle

with a four-cylinder diesel-engine and an HDT.

Acceleration Reaction Time Successful Iterations First Success

3.25 m/s2 0.5 s 0 -

3.5 m/s2 0.3 s 16 13

3.5 m/s2 0.4 s 11 4

4 m/s2 0.3 s 1 13

Figure 20. Results of the TSO algorithm tested in a test vehicle with an HDT and a four–cylinder

diesel engine (Acceleration target: 3.25 m/s2, reaction time target: 0. 5 s).

-3

-2

-1

0

0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

Iteration

-3

-2

-1

0

0 10 20 30 40 50

R
ew

ar
d

Iteration

Figure 19. Results of the TSO algorithm tested in a test vehicle with a conventional DCT and a
three–cylinder Otto engine.

Figure 20 illustrates that the optimization targets have not been reached by the algo-
rithm. Using a four-cylinder diesel engine comes with the side-effect of having a different
behavior of the engine torque compared to Otto-engines, as well as having comparably
more power by having a fourth cylinder (the accelerator pedal positions has been set
to the same value as in the other tests). The differences in the physical behavior of the
other engine configuration leads to the fact that the former targets cannot be reached with
this engine-transmission combination. Therefore, different optimization targets are tested
within vehicle with the diesel engine. The results are illustrated in Table 8:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 25 of 30

Figure 19. Results of the TSO algorithm tested in a test vehicle with a conventional DCT and a three–

cylinder Otto engine.

To verify the ability of the algorithm to solve the optimization problem in any vehicle,

the algorithm is tested in another vehicle. This time, only the TSO algorithm is tested in a

vehicle with a four-cylinder diesel engine and a 7-speed HDT. Again, the target state of Table

7 is used with a reference acceleration of 3.25 m/s2 and a reference reaction time of 0.5 s.

Figure 20 illustrates that the optimization targets have not been reached by the algo-

rithm. Using a four-cylinder diesel engine comes with the side-effect of having a different

behavior of the engine torque compared to Otto-engines, as well as having comparably

more power by having a fourth cylinder (the accelerator pedal positions has been set to

the same value as in the other tests). The differences in the physical behavior of the other

engine configuration leads to the fact that the former targets cannot be reached with this

engine-transmission combination. Therefore, different optimization targets are tested

within vehicle with the diesel engine. The results are illustrated in Table 8:

Table 8. Comparison of the TSO algorithm with different optimization targets within the vehicle

with a four-cylinder diesel-engine and an HDT.

Acceleration Reaction Time Successful Iterations First Success

3.25 m/s2 0.5 s 0 -

3.5 m/s2 0.3 s 16 13

3.5 m/s2 0.4 s 11 4

4 m/s2 0.3 s 1 13

Figure 20. Results of the TSO algorithm tested in a test vehicle with an HDT and a four–cylinder

diesel engine (Acceleration target: 3.25 m/s2, reaction time target: 0. 5 s).

-3

-2

-1

0

0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

Iteration

-3

-2

-1

0

0 10 20 30 40 50

R
ew

ar
d

Iteration

Figure 20. Results of the TSO algorithm tested in a test vehicle with an HDT and a four–cylinder
diesel engine (Acceleration target: 3.25 m/s2, reaction time target: 0. 5 s).

Appl. Sci. 2022, 12, 10283 25 of 29

Table 8. Comparison of the TSO algorithm with different optimization targets within the vehicle with
a four-cylinder diesel-engine and an HDT.

Acceleration Reaction Time Successful Iterations First Success

3.25 m/s2 0.5 s 0 -
3.5 m/s2 0.3 s 16 13
3.5 m/s2 0.4 s 11 4
4 m/s2 0.3 s 1 13

Table 8 illustrates that an acceleration target of 3.5 m/s2 and a reaction time target
of 0.3 s for this engine-transmission combination and this load come with the greatest
number of successful launches. A higher reaction time with the same acceleration can also
be reached by the system behavior, but a too high or too low chosen acceleration target lead
to poor results.

The different tests illustrate that the TSO algorithm is in general able to optimize
the behavior of a vehicle launch by avoiding discomfort (torque and engine speed in-
consistencies), but obviously only if the acceleration and reaction time targets (customer
requirements) are reachable.

6. Discussion

In the scope of the TCU parameter optimization problem, the TSO algorithm found
the desired optimum (derived from Section 2) faster and hence outperformed common
RL algorithms and the GA NSGA-II. Table 4 illustrates the better performance of the
TSO algorithm compared to the other algorithms. It is observable that the TSO algorithm
achieved almost nine times more successful results compared to the best tested RL algorithm
(SAC) and more than twice as many successful iterations compared to the GA NSGA-II.
The results of the TSO algorithm were even better in the test vehicle. The parameter
optimization of the vehicle with the conventional DCT and a three-cylinder Otto engine
with the NSGA-II algorithm (Figure 18b) only had one successful result. The other tests
with the NSGA-II algorithm have not been successful. In contrast, the TSO algorithm
achieved more successful results in the tests with the 3-cylinder Otto engines with the HDT
(Figure 15) and in the vehicle with the conventional DCT (Figure 19).

However, the performance of the TSO algorithms is varying between these two tests,
which indicates that some domain knowledge is still mandatory to choose the right opti-
mization targets. Therefore, the optimization with the third test vehicle (4-cylinder diesel
engine with an HDT applied) has been carried out with different combinations of the opti-
mization objectives to identify the system boundaries. It is observable that some objectives
cannot be reached in every tested vehicle. This problem is obviously also existing for the
other algorithms but a workaround to shorten the optimization time would be beneficial
for further studies.

An approach for further studies could be the adjustment of the reference acceleration
(Section 2.1.1) and the reaction time (Section 2.1.2) dynamically depending on the system
behavior (e.g., striving for the minimization of the reaction time while meeting the other
conditions would be beneficial for the driving behavior).

Furthermore, the robustness tests of Section 5.2 illustrated that further investigations
need to be carried out although the promising results in the different test vehicles (illustrated
in Section 5.3) indicated a good generalization. The application of the TSO algorithm for
other optimization problems is pending.

7. Conclusions

The time-consuming calibration process of vehicle control units has so far tried to be
automized with different methods. Despite the proposed methods the calibration process
is usually still driven by calibration engineers. A new promising approach is illustrated
in this study with the TSO algorithm as a hybrid of RL and SL. The advantage of the TSO

Appl. Sci. 2022, 12, 10283 26 of 29

algorithm is that it, unlike RL approaches, does not try to maximize a reward, instead a
target state is approached. Besides the actual optimization, the algorithm also optimizes
the hyperparameters of the underlying neural network (compared to RL approaches)
with Bayesian optimization based on Gaussian Processes, and hence fits the network to
the optimization problem (Section 4.2). Additionally, the activation function of the TSO
algorithm has to be chosen carefully since it strongly influences the performance of the
algorithm. The investigations shown in Section 4.4 illustrate that the ReLU function turned
out to be beneficial for this problem.

To automize the optimization it is further necessary to transfer subjective feelings into
objective measurements. Therefore, the TSO algorithm is tested regarding prior subject
studies aiming at the improvement of the drivability. Hence, the influence of the objectives is
investigated, and their EDTs are identified with test subject studies. The launch behavior can
be evaluated empirically with these outcomes in relation to sportiness, comfort, jerkiness,
and agility. In order to ensure a comfortable launch, the maximum acceleration and the
jerk caused by clutch torque should be controlled at an acceptable level.

In the scope of the parameter optimization problem for TCUs, the TSO algorithm
constitutes a new benchmark compared to the other tested algorithms with its promising
results. The study proves that the fast converging (not only in simulations but also in
real world applications) enables the algorithm to be implemented into the existing de-
velopment process and simplifies the work of calibration engineers. Therefore, the TSO
algorithm increases the efficiency of the calibration process and possibly decreases costs of
vehicle manufacturers and suppliers by applying computer science methods in ongoing
development processes in the automotive industry.

Author Contributions: Conceptualization, M.S. and P.H.; methodology, M.S. and P.H; software,
M.S.; validation, M.S. and P.H.; formal analysis, M.S.; investigation, M.S.; resources, M.S.; data
curation, M.S.; writing—original draft preparation, M.S. and P.H; writing—review and editing, S.R.;
visualization, M.S. and P.H; supervision, S.R.; project administration, S.R. All authors have read and
agreed to the published version of the manuscript.

Funding: We acknowledge support by the Deutsche Forschungs- gemeinschaft (DFG—German
Research Foundation) and the Open Access Publishing Fund of Technical University of Darmstadt.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of Technical University of Darmstadt
(protocol code: EK 51/2021, date of approval: 23 November 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schmiedt, M.; Pawlenka, A.; Rinderknecht, S. AI-based parameter optimization method-applied for vehicles with dual clutch trans-

missions. In Proceedings of the 22 Internationales Stuttgarter Symposium, Stuttgart, Germany, 15–16 March 2022; Bargende, M.,
Reuss, H.-C., Wagner, A., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2022; Volume 2, pp. 337–353.

2. Wehbi, K.; Bestle, D.; Beilharz, J. Automatic calibration process for optimal control of clutch engagement during launch. Mech.
Based Des. Struct. Mach. 2017, 45, 507–522. [CrossRef]

3. Dutta, A.; Zhong, Y.; Depraetere, B.; Van Vaerenbergh, K.; Ionescu, C.; Wyns, B.; Pinte, G.; Nowe, A.; Swevers, J.; De Keyser, R.
Model-based and model-free learning strategies for wet clutch control. Mechatronics 2014, 24, 1008–1020. [CrossRef]

4. Sun, Z.; Hebbale, K. Challenges and opportunities in automotive transmission control. In Proceedings of the 2005 American
Control Conference, Portland, OR, USA, 8–10 June 2005; IEEE: Evanston, IL, USA; Piscataway, NJ, USA, 2005; pp. 3284–3289.

5. Fischer, R.; Kücükay, F.; Jürgens, G.; Pollak, B. Das Getriebebuch, 2nd ed.; Der Fahrzeugantrieb; Springer Vieweg: Wiesbaden,
Germany, 2016; ISBN 978-3-658-13104-3.

6. Simon, D. Entwicklung Eines Effizienten Verfahrens zur Bewertung des Anfahrverhaltens von Fahrzeugen. 2010. Available
online: http://rosdok.uni-rostock.de/file/rosdok_disshab_0000000705/rosdok_derivate_0000004687/Dissertation__Simon_
2011.pdf (accessed on 5 March 2021).

http://doi.org/10.1080/15397734.2016.1250221
http://doi.org/10.1016/j.mechatronics.2014.03.006
http://rosdok.uni-rostock.de/file/rosdok_disshab_0000000705/rosdok_derivate_0000004687/Dissertation__Simon_2011.pdf
http://rosdok.uni-rostock.de/file/rosdok_disshab_0000000705/rosdok_derivate_0000004687/Dissertation__Simon_2011.pdf

Appl. Sci. 2022, 12, 10283 27 of 29

7. He, P.; Kraft, E.; Rinderknecht, S. Objektivierung subjektiver Kriterien für die Bewertung von Anfahrvorgängen. In Proceedings
of the Digital-Fachtagung VDI-MECHATRONIK, Darmstad Germany, 23–24 March 2022; Bertram, T., Corves, B., Janschek, K.,
Rinderknecht, S., Eds.; Universitäts- und Landesbibliothek Darmstadt: Darmstadt, Germany, 2022.

8. Skoda, S.; Steffens, J.; Becker-Schweitzer, J. Einfluss von Fahrzeuggeräuschen auf die Subjektive Bewertung von Beschleunigung;
Fortschritte der Akustik—DAGA 2012: Darmstadt, Germany, 2012.

9. Kingma, H. Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function. BMC Ear
Nose Throat Disord. 2005, 5, 5. [CrossRef] [PubMed]

10. De Winkel, K.N.; Soyka, F.; Bülthoff, H.H. The role of acceleration and jerk in perception of above-threshold surge motion. Exp.
Brain Res. 2020, 238, 699–711. [CrossRef]

11. Spering, M.; Schmidt, T. Wahrnehmung, Aufmerksamkeit, Denken, Sprache, 3rd ed.; Allgemeine Psychologie kompakt; Beltz:
Weinheim, Germany; Basel, Switzerland, 2017; ISBN 978-3-621-27937-6.

12. Haycock, B.; Grant, P.R. The influence of jerk on perceived simulator motion strength. In Proceedings of the Driving Simulation
Conference, Iowa City, IA, USA, 12–14 September 2007; p. 11.

13. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

14. Darwin, C.; Bynum, W.F. The Origin of Species by Means of Natural Selection: Or the Preservation of Favored Races in the Struggle for
Life; AL Burt New York: New York, NY, USA, 1894.

15. Knippers, R. Molekulare Genetik; Georg Thieme Verlag: Stuttgart, Germany, 2006; ISBN 978-3-13-477009-4.
16. Janning, W.; Knust, E. Genetik: Allgemeine Genetik-Molekulare Genetik-Entwicklungsgenetik, 2nd ed.; Thieme: Stuttgart, Germany;

New York, NY, USA, 2008; ISBN 978-3-13-128772-4.
17. Bäck, T.; Schwefel, H. An Overview of Evolutionary Algorithms for Parameter Optimization. Evol. Comput. 1993, 1, 1–23.

[CrossRef]
18. Gadhvi, B.; Savsani, V.; Patel, V. Multi-Objective Optimization of Vehicle Passive Suspension System Using NSGA-II, SPEA2 and

PESA-II. Procedia Technol. 2016, 23, 361–368. [CrossRef]
19. Koziolek, A.; Koziolek, H.; Becker, S.; Reussner, R.H. Automatically improve software architecture models for performance, reliability,

and cost using evolutionary algorithms. In Proceedings of the First Joint WOSP/SIPEW International Conference on Performance
Engineering, New York, NY, USA, 28–30 January 2010; Association for Computing Machinery: New York, NY, USA, 2010.

20. Kahlbau, S. Mehrkriterielle Optimierung des Schaltablaufs von Automatikgetrieben. 2013. Available online: https://opus4.kobv.
de/opus4-btu/frontdoor/index/index/year/2013/docId/2751 (accessed on 1 February 2021).

21. Kahlbau, S.; Bestle, D. Optimal Shift Control for Automatic Transmission#. Mech. Based Des. Struct. Mach. 2013, 41, 259–273.
[CrossRef]

22. Desai, C. Design and Optimization of Hybrid Electric Vehicle Drivetrain and Control Strategy Parameters Using Evolutionary
Algorithms. 2010. Available online: https://spectrum.library.concordia.ca/id/eprint/7496/ (accessed on 7 December 2021).

23. Bachinger, M.; Knauder, B.J.; Stolz, M. Automotive vehicle launch optimization based on differential evolution (DE) approach
for increased driveability. In Proceedings of the International Conference on Engineering Optimization, Rio de Janeiro, Brazil,
1–5 July 2012; pp. 1–12.

24. Zaglauer, S. Methode zur Multikriteriellen Optimierung des Motorverhaltens Anhand Physikalisch Motivierter Modelle. 2014.
Available online: https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/5248 (accessed on 1 February 2021).

25. Huang, H. Model-Based Calibration of Automated Transmissions. 2016. Available online: https://pdfs.semanticscholar.org/7b9
f/7ca311a304de065e05121958e3ade249c1a0.pdf (accessed on 1 February 2021).

26. Zhong, Y.; Wyns, B.; De Keyser, R.; Pinte, G.; Stoev, J. An implementation of genetic-based learning classifier system on a wet
clutch system. In Proceedings of the Applied Stochastic Models and Data Analysis Conference, 14th, Rome, Italy, 7–10 June 2011;
pp. 1431–1439.

27. Hwang, S.-F.; He, R. A hybrid real-parameter genetic algorithm for function optimization. Adv. Eng. Inform. 2006, 20, 7–21.
[CrossRef]

28. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021,
80, 8091–8126. [CrossRef]

29. Piszcz, A.; Soule, T. Genetic programming: Optimal population sizes for varying complexity problems. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 8–12 July 2006; Association for Computing
Machinery: New York, NY, USA, 2006; pp. 953–954.

30. Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V.B.S. Choosing Mutation and Crossover
Ratios for Genetic Algorithms—A Review with a New Dynamic Approach. Information 2019, 10, 390. [CrossRef]

31. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
32. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning Series; A

Bradford Book: Cambridge, MA, USA, 2018; ISBN 978-0-262-03924-6.
33. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
34. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural Combinatorial Optimization with Reinforcement Learning. arXiv 2017,

arXiv:1611.09940.

http://doi.org/10.1186/1472-6815-5-5
http://www.ncbi.nlm.nih.gov/pubmed/15972096
http://doi.org/10.1007/s00221-020-05745-7
http://doi.org/10.1109/4235.996017
http://doi.org/10.1162/evco.1993.1.1.1
http://doi.org/10.1016/j.protcy.2016.03.038
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/year/2013/docId/2751
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/year/2013/docId/2751
http://doi.org/10.1080/15397734.2012.756719
https://spectrum.library.concordia.ca/id/eprint/7496/
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/5248
https://pdfs.semanticscholar.org/7b9f/7ca311a304de065e05121958e3ade249c1a0.pdf
https://pdfs.semanticscholar.org/7b9f/7ca311a304de065e05121958e3ade249c1a0.pdf
http://doi.org/10.1016/j.aei.2005.09.001
http://doi.org/10.1007/s11042-020-10139-6
http://doi.org/10.3390/info10120390
http://doi.org/10.1038/nature14539

Appl. Sci. 2022, 12, 10283 28 of 29

35. Gambardella, L.M.; Dorigo, M. Ant-Q: A Reinforcement Learning approach to the traveling salesman problem. In Pro-
ceedings of the Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; Prieditis, A., Russell, S., Eds.; Morgan Kaufmann:
San Francisco, CA, USA, 1995; pp. 252–260, ISBN 978-1-55860-377-6.

36. Xiaohui, L.; Bingzhao, G.; Hong, C. Q-learning based adaptive PID controller design for AMT clutch engagement during start-up
process. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 3131–3136.

37. Gagliolo, M.; Van Vaerenbergh, K.; Rodríguez, A.; Nowé, A.; Goossens, S.; Pinte, G.; Symens, W. Policy search reinforcement
learning for automatic wet clutch engagement. In Proceedings of the 15th International Conference on System Theory, Control
and Computing, Sinaia, Romania, 14–16 October 2011; pp. 1–6.

38. Van Vaerenbergh, K.; Rodríguez, A.; Gagliolo, M.; Vrancx, P.; Nowé, A.; Stoev, J.; Goossens, S.; Pinte, G.; Symens, W. Improving
wet clutch engagement with reinforcement learning. In Proceedings of the 2012 International Joint Conference on Neural
Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–8.

39. Brys, T.; Moffaert, K.V.; Vaerenbergh, K.V.; Nowé, A. On the Behaviour of Scalarization Methods for the Engagement of a Wet
Clutch. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA,
4–7 December 2013; Volume 1, pp. 258–263.

40. Lampe, A.; Gühmann, C.; Serway, R.; Siestrup, L.G. Artificial Intelligence in Transmission Control Clutch Engagement with
Reinforcement Learning. VDI-Berichte 2019, 2354, 899–918.

41. Genders, W.; Razavi, S. Using a Deep Reinforcement Learning Agent for Traffic Signal Control. arXiv 2016, arXiv:1611.01142.
42. Kraft, E.; Viehmann, A.; Erler, P.; Rinderknecht, S. Virtuelle Fahrerprobungen von Antriebssystemen im Fahrsimulator.

ATZ-Automob. Z. 2021, 123, 42–47. [CrossRef]
43. Erler, P. Untersuchung von Vorausschauenden Motion-Cueing-Algorithmen in Einem Neuartigen Längsdynamischen Fahrsimulator;

Shaker: Darmstadt, Germany, 2020; ISBN 978-3-8440-6918-1.
44. Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. Multivariate Analysemethoden: Eine anwendungsorientierte Einführung, 14th ed.;

Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-46076-4.
45. Bellem, H.; Schönenberg, T.; Krems, J.F.; Schrauf, M. Objective metrics of comfort: Developing a driving style for highly automated

vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 45–54. [CrossRef]
46. Elbanhawi, M.; Simic, M.; Jazar, R. In the passenger seat: Investigating ride comfort measures in autonomous cars. IEEE Intell.

Transp. Syst. Mag. 2015, 7, 4–17. [CrossRef]
47. Nowatschin, K.; Fleischmann, H.-P.; Gleich, T.; Franzen, P.; Hommes, G.; Faust, H.; Friedmann, O.; Wild, H. Multitronic—Das

neue Automatikgetriebe von Audi. ATZ-Automob. Z. 2000, 102, 746–753. [CrossRef]
48. Hirzel, C. Ein Beitrag zur Synthese und Analyse Elektrifizierter Fahrzeuggetriebestrukturen aus Einer Kombination von Stirnrad-

Und Planetengetrieben Mit Fokus auf die Systematische Realisierung Einer Hinreichenden Gangverteilung. 2018. Available
online: https://opendata.uni-halle.de/bitstream/1981185920/13503/1/Hirzel_Cathleen_Dissertation_2018.pdf (accessed on
2 March 2021).

49. Hoberock, L.L. A Survey of Longitudinal Acceleration Comfort Studies in Ground Transportation Vehicles; Council for Advanced
Transportation Studied; University of Texas at Austin: Austin, TX, USA, 1976.

50. Müller, T.; Hajek, H.; Radić-Weißenfeld, L.; Bengler, K. Can you feel the difference? The just noticeable difference of longitudinal
acceleration. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, USA; SAGE
Publications Sage CA: Los Angeles, CA, USA, 2013; Volume 57, pp. 1219–1223.

51. Deng, G.; Cahill, L.W. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE
Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 March 1993; IEEE:
San Francisco, CA, USA, 1993; p. 5.

52. Junghanns, A.; Mauss, J.; Seibt, M. Faster Development of AUTOSAR Compliant ECUs through Simulation; Embedded Real Time
Software and Systems (ERTS2014): Toulouse, France, 2014; p. 5.

53. Van Berkel, K.; Hofman, T.; Serrarens, A.; Steinbuch, M. Fast and smooth clutch engagement control for dual-clutch transmissions.
Control Eng. Pract. 2014, 22, 57–68. [CrossRef]

54. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971. [CrossRef]

55. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347. [CrossRef]

56. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783. [CrossRef]

57. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. arXiv 2018, arXiv:1801.01290. [CrossRef]

58. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
59. Ishii, S.; Yoshida, W.; Yoshimoto, J. Control of exploitation–exploration meta-parameter in reinforcement learning. Neural Netw.

2002, 15, 665–687. [CrossRef]
60. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

http://doi.org/10.1007/s35148-020-0652-4
http://doi.org/10.1016/j.trf.2016.05.005
http://doi.org/10.1109/MITS.2015.2405571
http://doi.org/10.1007/BF03224308
https://opendata.uni-halle.de/bitstream/1981185920/13503/1/Hirzel_Cathleen_Dissertation_2018.pdf
http://doi.org/10.1016/j.conengprac.2013.09.010
http://doi.org/10.48550/arXiv.1509.02971
http://doi.org/10.48550/arXiv.1707.06347
http://doi.org/10.48550/arXiv.1602.01783
http://doi.org/10.48550/arXiv.1801.01290
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1016/S0893-6080(02)00056-4
http://doi.org/10.1038/nature14236

Appl. Sci. 2022, 12, 10283 29 of 29

61. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

62. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT press: Cambridge, MA, USA, 2016; ISBN 978-0-262-03561-3.
63. Pedregosa, F. Hyperparameter optimization with approximate gradient. In Proceedings of the 33rd International Conference on

Machine Learning PMLR, New York, NY, USA, 20–22 June 2016; pp. 737–746.
64. Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-learning: Investigating deep neural networks hyper-parameters and

comparison of performance to shallow methods for modeling bioactivity data. J. Cheminformatics 2017, 9, 42. [CrossRef]
65. Ozaki, Y.; Yano, M.; Onishi, M. Effective hyperparameter optimization using Nelder-Mead method in deep learning. IPSJ Trans.

Comput. Vis. Appl. 2017, 9, 20. [CrossRef]
66. Rasmussen, C.E. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning: ML Summer Schools 2003,

Canberra, Australia, February 2–14, 2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures; Bousquet, O., von Luxburg, U.,
Rätsch, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 63–71. ISBN 978-3-540-28650-9.

67. Sibi, P.; Jones, S.; Siddarth, P. Analysis of different activation functions using back propagation neural networks. J. Theor. Appl. Inf.
Technol. 2005, 47, 1264–1268.

68. Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [CrossRef]
69. Wang, Y.; Li, Y.; Song, Y.; Rong, X. The Influence of the Activation Function in a Convolution Neural Network Model of Facial

Expression Recognition. Appl. Sci. 2020, 10, 1897. [CrossRef]
70. Schmidt-Hieber, J. Nonparametric regression using deep neural networks with ReLU activation function. Ann. Stat. 2020,

48, 1875–1897. [CrossRef]
71. Radiuk, P.M. Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets. Inf.

Technol. Manag. Sci. 2017, 20. [CrossRef]
72. Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P.T.P. On Large-Batch Training for Deep Learning: Generalization

Gap and Sharp Minima. arXiv 2017, arXiv:1609.04836.
73. Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [CrossRef]
74. Jing, J.; Liu, Y.; Wu, J.; Huang, W.; Zuo, B.; Yang, G. Research on drivability control in P2.5 hybrid system. Energy Rep. 2021,

7, 1582–1593. [CrossRef]
75. Gindele, J.; Diehl, M. Systemansatz für einen dedizierten Hybridantrieb. ATZ-Automob. Z. 2019, 121, 44–51. [CrossRef]

http://doi.org/10.1016/j.neucom.2020.07.061
http://doi.org/10.1186/s13321-017-0226-y
http://doi.org/10.1186/s41074-017-0030-7
http://doi.org/10.1063/1.1144830
http://doi.org/10.3390/app10051897
http://doi.org/10.1214/19-AOS1875
http://doi.org/10.1515/itms-2017-0003
http://doi.org/10.1038/nrg1471
http://doi.org/10.1016/j.egyr.2021.09.065
http://doi.org/10.1007/s35148-019-0038-7

	Introduction
	Optimization Problem and Objective Functions
	Customer Objectives
	Acceleration Peak and Acceleration Build-Up Objective
	Reaction Time Objective

	Discomfort Objectives
	Engine Speed Objective
	Clutch Torque/Jerk Objective

	The Reward
	Software in the Loop Environment
	Optimization Parameters

	Benchmark: Self-Learning Algorithms
	Target State Optimization
	Generation of the Action
	Model Optimization and Hyperparameter-Tuning
	Brief Introduction into Neural Networks
	Relevance of the Activation Function
	Batch Size

	Results
	Software in the Loop
	Robustness
	Test Vehicle

	Discussion
	Conclusions
	References

