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Abstract: This paper proposes a target classification method using radar frontal imaging measured
by millimeter-wave multiple-input multiple-output (MW-MIMO) radar through deep convolutional
neural networks. Autonomous vehicles must classify targets in front of the vehicle to attain better
situational awareness. We use 2D sparse array radar to capture the frontal images of objects on the
road, such as sedans, vans, trucks, humans, poles, and trees. The frontal image includes information
regarding not only the shape of a target but also the reflection characteristics of each part of the
target. The measured frontal images are classified by deep convolutional neural networks, and the
classification rate yielded 87.1% for six classes and 92.6% for three classes.

Keywords: MW-MIMO radar; target classification; radar frontal image; deep convolutional neural
network

1. Introduction

Radar has been extensively used in anti-collision driving safety systems because it can
detect a target and estimate its range. In the future, advanced radar technology is expected
to become an indispensable component of self-driving vehicles [1,2]. Even though many
sensors such as camera lidar and ultrasound are available for automotive applications, radar
presents great potential, as it can detect and track a target and provide range information
regardless of lighting and weather conditions. In addition, target classification is possible
by capturing radar target features.

For target classification, the radar features were investigated in diverse domains.
In [3], the range profile was studied to identify target kinds. One of the most commonly
used domains for the classification was the range-Doppler domain [4–6]. In those studies,
the signatures in the range-Doppler were captured and classified by deep learning algo-
rithms. In [7], time-varying features were considered through recurrent neural networks.
Spectrogram has been extensively investigated for the classification of non-rigid body
motions [8–10]. Conversely, the development of a large array enabled the use of the point
cloud model on a target for classification purposes [11,12]. Point clouds can provide a 3D
shape of a target. However, the frontal image is based on reflection from parts of a target
and has not been fully exploited.

In this paper, we investigate the feasibility of classifying targets through frontal images
measured by multiple-input multiple-output (MIMO) radar. In [13], the radar frontal image
was constructed through Doppler radar by visualizing the parts of a target that are moving.
This study employed MIMO radar to emulate a large array using the concept of a virtual
array [14,15]. The constructed array has a narrow beam width, so the reflection from
each part of a target can produce a frontal image by scanning the beam. Therefore, we
propose using the frontal image for target classification purposes. The frontal image can
include critical information such as the physical shape of a target as well as its reflection
characteristics, which can serve as a feature for target classification. The originality of
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this approach is that the target classification is performed using 2D frontal images rather
than other radar images that have been used before such as range-Doppler diagrams
and spectrograms. As the frontal image is information in a new domain that provides
the continuous reflection information of all parts of the target, the reflection distribution
depending on the target part becomes target features for classification. On the other hand,
the point cloud model was based on 3D spatial information in locations of the strong
scattering points of a target, which is discrete information. We employ deep convolutional
neural networks (DCNN) to classify the radar frontal images. The general diagram of
processing is shown in Figure 1. In this paper, the concept of radar frontal image, radar
signal processing, measurement campaign, DCNN structure, and results are presented.
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2. Radar Frontal Image

When a 2D array is available, the direction of arrival (DOA) of the scatterer can be
found in terms of the azimuth and elevation. The analytical form of the received signal of a
phase array is an exponential function, of which the frequency represents the DOA. From
the matched filter concept, the pseudo spectrum used to find DOA is, in general, produced
by the Fourier transformation of the received signal from the array. When the pseudo
spectrum is generated in 2D, it becomes the frontal image. When the received signals from
an array are available, the weighted sum of the received signals reaches its maximum,
which is also when the weight has the best correlation with the measure, according to the
matched filter theory [16]. The weighted sum of the received signals, y(k), becomes,

y(k) = wH · x(k) (1)

where k is the sample number. Then the power of y(k) can be calculated as

Pb f = E[|y(k)|2] = E[
∣∣∣wH · x(k)

∣∣∣2] = wH · E[x(k)Hx(k)] · w= wH · Rxx · w (2)

where Rxx is the autocorrelation matrix. When the incident wave is from θ, φ direction, the
power becomes

Pb f = E[
∣∣∣wH · x(k)

∣∣∣2] = E[
∣∣∣wH · a(θ, φ)s(k) + n(k)

∣∣∣2]= ∣∣∣wH · a(θ, φ)
∣∣∣2 · (σs

2 + σn
2) (3)

where σs
2 is received power and σn

2 is noise power. The above equation reaches its
maximum when the weight factors match the steering vector. Under that condition, the
received power is

Pb f = E[|y(k)|2] =a(θ, φ)H · Rxx · a(θ, φ) (4)

A pseudo spectrum can be constructed by changing theta and phi. In other words,
the 2D Fourier transform constructs the frontal imagery that reflects the received powers
from each part of a target depending on the azimuth and elevation angle. Frontal imagery
pertains to the information about the physical characteristics of a target, which is critical in
target classification.

To construct the data set, we use a millimeter-wave FMCW radar system developed
by Smart Radar Systems. The radar system comprises four AWR1243 chips (from TI Co.
Ltd., Gumi-si, Korea) operating at 77 GHz with 12 dBm of transmitting power. Each
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AWR1243 has three TXs and four RXs, thus allowing the construction of a 16 virtual Rx
array for each chip. Cascading four chips makes 192 channels available through 12 TXs
and 16 RXs. The radar employs a sparse antenna array for DOA estimation with improved
angular resolution [14]. Using a non-linear MIMO antenna configuration, the radar antenna
produced a 2D virtual array of 31 × 33, resulting in an angular resolution of approximately
3.5 degrees for the azimuth and elevation.

3. Target Measurements

We installed the MIMO radar system in front of a car and measured five targets.
The radar was located in the middle of the bumper at a height of 75 cm, as shown in
Figure 2. The physical shape of the MIMO radar is also shown in the figure. The target
types include sedans, SUVs, trucks, trees, poles, and humans. For each class, we measured
50 different objects.
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Figure 2. The millimeter-wave MIMO FMCW radar installed in a vehicle.

The measurement campaigns are presented in Figure 3. During the measurement, the
platform vehicle was slowly moving at under 5 m/h. The target was measured in the range
between 1 m and 12 m because the target can be well visualized when it is close to the
radar. The target vehicles were measured in the street and in parking lots. For clutter such
as trees and poles, we measured them while the platform vehicle moved slowly. Human
subjects were measured while both the subject and the platform were moving.
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4. Radar Signal Processing

The parameters of the FMCW radar were set as follows. The number of chirps per
frame was 64, the frame period was 200 msec, and the total measurement duration was
5 s, resulting in total chirps recorded of 64 × 25 = 1600 for each target measurement. Each
chirp produced a target frontal image. However, we extracted only 2 chirps randomly
per frame because the images are very similar within the frame, as the time duration is
only a couple of microseconds. Therefore, the total extracted images per target kind were
2 × 25 × 50 = 2500.

The received FMCW signals were processed to construct the radar frontal images. The
physical 192 channels are distributed to have a nonlinear array as shown in Figure 2. As
channels exist in 31 × 33 dimensions, a total of 1023 (31 × 33) virtual receiving channels
were regarded to have their own down-converted signals in the time domain. The time-
domain signal was transformed to the frequency domain through Fourier transformation,
which serves as a range profile as presented in Figure 4 as an example. In the range profile,
a target is detected based on the simple threshold method. However, as the target occupies
several bins in the range profile, the determination of the threshold is critical as it affects
the quality of the radar frontal image. The complex value (phasor) of the individual point
detected in the range profile from each channel was extracted and 2-dimensional Fourier-
transformed was executed to construct the frontal image. Accordingly, when there are
multiple points detected in the range profile, the total image should be synthesized by
overlapping several frontal images. This process is demonstrated in Figure 4.
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Figure 4. The process of the frontal image synthesizing from multiple target points in the range profile.

When the threshold is too high, very few points will contribute to producing the
image, as in Figure 5a. In this case, the threshold was 3/5 of the peak. As the threshold
decreases, many points in the range profile contribute to a single frontal image, which can
cause noise issues. The impact on the low threshold is presented in Figure 5b. The figure
indicates that several points should be involved in the construction of a target’s detailed
characteristics. We heuristically set the threshold at a 1/3 of the peak because it provides
reasonable characteristics for frontal images. The measured frontal images for each target
are presented in Figure 6.
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5. Deep Convolutional Neural Networks

We have two scenarios for target classification based on radar frontal images. First, we
classified six classes using a DCNN. The six classes were sedan, van, truck, pole, tree, and
human. In the second scenario, we classified 3 classes, vehicles (sedan, van, truck), humans,
and clutter (pole and tree). To classify targets, we used deep neural networks that surpass
previous classifiers, as they are proven to be excellent at abstraction and generalization
for radar target classification [17–20]. The DCNN extracts images feature through the
convolution of those images which leads to high performance in target recognition. In
this paper, road target detection and classification method based on DCNN is suggested.
A DCNN is mainly consisting of multiple convolution layers, pooling layers, and fully
connected layers, and finally uses SoftMax to classify and output. This architecture on
the types and numbers of layers is varied depending on the size and characteristics of the
dataset. Convolutional layers are the first layers of the DCNN architecture, which extract
features of images through convolutional filters. The layers located between each of the
two convolutions layers are pooling layers that are responsible for simplifying the data by
reducing its dimensionality. This minimizes the time required for training and helps to
restrain the problem of overfitting. The last layers of the deep learning network are the fully
connected layers. In these layers, every neuron in the first is connected to every neuron in
the next. The process during this network training looks at what features most accurately
describe the specific classes, and the output generates the probabilities that are organized
according to each class. For each objective, a DCNN structure was optimized heuristically.
The structure of DCNN is divided into three main parts. The first part passes the input into
a set of convolution layers with a filter size of 2 × 2 and then into the max-pooling layer.
The second part is the same as the first except for the increased number of filters in the
convolution layers with the max-pooling layer at the end. The last part is fully connected
layers with dropout layers. In the fully connected layer, each neuron is connected to all
neurons in the previous layer. The ReLu layer is applied after every convolutional and fully
connected layer to not activate all the neurons at the same time. Since only a certain number
of neurons are activated, the ReLu function is computationally efficient. The dropout layer
is applied before the first and the second are fully connected to reduce overfitting and
improve the generalization of deep neural networks. The designed network is presented in
Figure 7.
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Although the measurements are conducted in a controlled environment, some data
are quite noisy due to the low SNR. For example, measured data from targets such as
poles, trees, and humans could not be fully used for training when images become very
noisy. Thus, the class with the smallest data samples becomes the reference. Finally, each
class has 2047 data points; a total of 10,235 radar images are available for training. For the
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construction of the data set, we cropped the frontal image to a size of 40 × 40 pixels, with
the peak power in the center. We also normalized the image values from 0 to 255.

The data are divided into a training set (80%), a testing set (10%), and a validation
set (10%). For the training, the stochastic gradient descent with momentum optimizer
was used with an initial learning rate of 0.0004 and a momentum of 0.9. To improve the
training, the training loss is dropped every ten epochs using exponential decay with a
decay rate of 0.96. The mini-batch size was set to 32, and the max epoch was set at 1000. To
prevent overfitting, an early stop was set to monitor the validation loss and stop after five
epochs if the losses were not dropping, at which point training stops. We used a five-fold
validation method by shuffling the dataset. As seen in Table 1, the classification accuracy
for 6 classes yielded 87.1%. The confusion matrix is shown in Table 2. If we want to classify
only 3 classes such as vehicles, humans, and clutter, then the accuracy is 92.6%.

Table 1. Results of 5-fold validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Ave

87.17% 88.64% 82.60% 88.28% 88.83% 87.10%

Table 2. Confusion matrix.

True/Est Sedan SUV Truck Tree Pole Human

Sedan 365 14 30 20 14 12
SUV 24 387 15 14 15 0
Truck 6 3 441 4 1 0
Tree 7 2 0 416 27 3
Pole 16 1 0 32 396 10

Human 8 14 0 16 44 373

6. Conclusions

In this study, we investigated the feasibility of classifying targets through frontal imag-
ing. Rather than exploring signatures in the range profile, range-Doppler or spectrogram
domain, the frontal images constructed along with azimuth and elevation served as key a
feature in the classification process. In the synthesis of the frontal image, several frontal im-
ages corresponding to each bin in the range profile are overlapped. DCNN was exploited as
a classifier and was trained by the stochastic gradient descent with a momentum optimizer.
The confusion matrix revealed that the classification accuracy for sedans, SUVs, trucks,
trees, poles, and humans yielded up to 87.1%. If the classifier was designed to classify
vehicles, humans, and clutter, the classification rate increases to 92.6%. However, it should
be noted that the classification accuracy using the proposed method is not higher than that
of other methods such as the use of the range-Doppler domain. The results showed that
the frontal image can potentially serve as one of the modalities in the target classification
scheme, yet high spatial-resolution radar should be developed, or other features can also
be incorporated together to maximize performance.
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