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Featured Application: This study offers fundamental insight for developing a model platform
of artificial intelligence applicable for species distribution modeling, which has been currently
emphasized for effective monitoring and control of invasive species.

Abstract: Recent advances in species distribution models (SDMs) associated with artificial intelligence
(AI) and increased volumes of available data for model variables have allowed reliable evaluation
of the potential distribution of any species. A reliable SDM requires suitable occurrence records
and variables with optimal model structures. In this study, we developed three different machine
learning-based SDMs [MaxEnt, random forest (RF), and multi-layer perceptron (MLP)] to predict the
global potential distribution of two invasive ants under current and future climates. These SDMs
showed that the potential distribution of Solenopsis invicta would be expanded by climatic change,
whereas it would not significantly change for Anoplolepis gracilipes. The models were compared using
model performance metrics, and the optimal model structure and spatial projection were selected.
The MaxEnt exhibited high performance, while the MLP model exhibited low performance, with
the largest variation by climate change. Random forest showed the smallest potential distribution
area, but it was robust considering the number of occurrence records and changes in model variables.
All the models showed reliable performance, but the difference in performance and projection size
suggested that optimal model selection based on data availability, model variables, study objectives,
or an ensemble approach was necessary to develop a comprehensive SDM to minimize modeling
uncertainty. We expect that this study will help with the use of AI-based SDMs for the evaluation
and risk assessment of invasive ant species.

Keywords: Anoplolepis gracilipes; artificial intelligence; climate change; Solenopsis invicta; species
distribution modeling

1. Introduction

Global and local environmental variability has led to changes in the behavior and
distribution of invasive pests and has necessitated early intervention, monitoring, and
pest control. Species distribution models (SDMs) are a widely used tool for evaluating the
potential distribution of a species; they utilize advanced artificial intelligence based on a
machine learning algorithm for determining the environmental characteristics of potential
habitats [1]. MaxEnt is a classical SDM in ecological niche modeling that employs maximum
entropy theory to evaluate the probability of occurrence of a species as a function of model
variables that code environmental characteristics [2]. Random forest (RF), a machine
learning-based classifier, is another popular tool with a high classification performance
used in computational ecology for identifying areas for the survival of target species [3].
Meanwhile, deep learning implemented with neural networks structured by a multi-layer
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perceptron (MLP) is the most recent approach that attempts to classify the potential or
predicted presence and absence of a species. The application of MLP is relatively limited
because of the challenges in determining the model structure and insufficient data to
perform deep learning [4]. Nevertheless, advances in computing large data volumes and
global concerns about invasive pests are accelerating the use of machine learning-based
SDMs [5]. Therefore, there is an ongoing need for research to improve the performance
of these models and optimize the selection of suitable models based on the target species,
model variables, and data availability [6].

Ants are an intelligent species with high environmental adaptability and dispersion
speed based on sociality through swarming; some invasive species have caused severe
ecosystem damage [7]. Solenopsis invicta (Hymenoptera: Formicidae) and Anoplolepis
gracilipes (Hymenoptera: Formicidae) are the most aggressive invasive ant species, and
a global conservation campaign is underway to track and manage their invasions [8,9].
Solenopsis invicta, originating from South America and widely distributed throughout the
US, has migrated to Asia and Australia [9–11]. Anoplolepis gracilipes is a tropical species
that mostly inhabits southern Asia and a few areas in Central America and Oceania [8,10].
Their habitats are likely to expand; therefore, they have been selected as the target species
for SDM because of the severe damage induced by them in the invaded regions [12–17].

Recently, enhancing the performance of an SDM has been issued, emphasizing high-
quality data for model variables, advanced spatial processing, and a model using multiple
machine learning algorithms. While there are a few sources to secure datasets for model
variables, and spatial analysis tools for processing them, studies comparing machine
learning-based models at the same time are limited. The high invasive risk of these
ant species suggests a need to compare the model performance of the different types of
machine learning-based SDMs to select the most appropriate model to identify the potential
colonization areas of the ant species. The SDM characteristics can be analyzed in terms of
data availability, model structures, and performance. In this study, three different machine
learning-based models, including MaxEnt, RF, and MLP, were used to predict the spatial
distribution of two invasive ant species, S. invicta and A. gracilipes, based on climate change.
Thereafter, global projections from the three different models were compared in terms of
area size, mean probability of occurrence, and optimal model structure.

2. Materials and Methods
2.1. Data Acquisition and Spatial Processing

The regions of occurrence of these species were obtained from the Centre for Agri-
culture and Bioscience International (CABI) and Global Biodiversity Information Facility
(GBIF) public databases [18–21] and from the reports of previous studies [8,9]. The obtained
records were cross-checked to minimize the uncertainty by screening for unreliable records,
resulting in 6163 and 1297 points for S. invicta and A. gracilipes, respectively. Spatial filtering
with a 20 km buffer was performed to adjust the uneven sampling points, which was
essential to minimize the effect of sampling bias [22]. Thereafter, the coordinates that could
not be georeferenced were removed. We confirmed the final georeferenced locations of
953 and 374 for S. invicta and A. gracilipes, respectively (Figure 1).
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Figure 1. Global coordinating of occurrence data of (a) Solenopsis invicta (red dots) and (b) Ano-
plolepis gracilipes (yellow dots). 
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with a 10-min resolution were obtained from “www.worldclim.org (accessed on 13 July 
2021)” to evaluate the current and future possibilities of the ant species occurring at these 
locations [23]. Future climate data was projected from the Shared Socio-economic Path-
way (SSP) 585 and processed by the MIROC6 global climate model, which assumes rapid 
changes to simulate extreme cases for predictions [24,25]. 

2.3. Bioclimatic Variable Selection 
The biological and ecological characteristics of the ant species were investigated to 
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pal component analysis of the extracted bioclimatic variables were filtered. To screen 

Figure 1. Global coordinating of occurrence data of (a) Solenopsis invicta (red dots) and
(b) Anoplolepis gracilipes (yellow dots).

2.2. Climate Data

Historical (1970–2000) and future climate (2050) data coded by bioclimatic vari-
ables with a 10-min resolution were obtained from “www.worldclim.org (accessed on
13 July 2021)” to evaluate the current and future possibilities of the ant species occurring at
these locations [23]. Future climate data was projected from the Shared Socio-economic
Pathway (SSP) 585 and processed by the MIROC6 global climate model, which assumes
rapid changes to simulate extreme cases for predictions [24,25].

2.3. Bioclimatic Variable Selection

The biological and ecological characteristics of the ant species were investigated
to provide model variables, and correlations among bioclimatic variables at occurrence
coordinates were identified to select model variables without model overfitting caused
by multicollinearity [26]. Initially, bioclimatic variables were extracted at the sampling
coordinates, and outliers that showed abnormal principal component scores in the prin-
cipal component analysis of the extracted bioclimatic variables were filtered. To screen
model variables, a correlation was examined for the whole set of variables, i.e., bioclimatic

www.worldclim.org
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variables and elevation, with the threshold value of the correlation coefficient 0.7 to the
reference variable that was biologically driven.

For S. invicta, we first investigated the biological and ecological characteristics to relate
them to the selection of model variables. Relatively high temperatures and precipitation
were defined as characteristic environmental conditions based on the general habitat
distribution in tropical and subtropical regions. Low temperatures and low precipitation
may limit the occurrence of S. invicta, suggesting that climatic characteristics are suitable
candidates for model variables. Moreover, Byeon et al. [27] reported that low temperature
and soil moisture limited population growth and development, as well as foraging activity,
which supports the confining effect of climatic conditions on the habitat of S. invicta. We
derived bio- 1, 5, 6, 10, and 11, which were the variables coded with annual, high, and low
temperatures, and bio- 12, 13, 14, 16, and 17, which were related to annual, high, and low
precipitation conditions. We then statistically investigated the variations in the coefficient
for each bioclimatic variable because its low variation could indicate the most suitable
climatic characteristics for the habitat depending on the species’ biology and ecology. It
was relatively small in bio- 1, 5, and 10, which suggests its robustness and confirms the
effect of climatic conditions on limiting or accelerating habitat expansion. For precipitation,
bio12 showed the lowest coefficient of variation; thus, it was selected as a model variable.
We removed variables that were correlated with the biologically driven variables larger
than 0.7; bio- 4, 6, 7, and 11—which were correlated with bio1—were removed, while bio-
2, 3, 8, and 9 were included as their correlation values were less than the selected threshold.
Moreover, because of the high correlation between bio- 5 and 10, only bio5 was retained
because extreme temperatures limit the biological activity of S. invicta [28]. Bio- 12, 13,
16, 17, 18, and 19 were removed, while bio- 14 and 15 were included because of their low
correlation with the other variables. Therefore, we determined nine bioclimatic variables in
addition to elevation (Table 1).

Table 1. Selected model variables for each species.

Species Variables Description

S. invicta

Bio1 Annual Mean Temperature
Bio2 Mean Diurnal Range
Bio3 Isothermality
Bio5 Max Temperature of Warmest Month
Bio8 Mean Temperature of Wettest Quarter
Bio9 Mean Temperature of Driest Quarter

Bio12 Annual Precipitation
Bio14 Precipitation Seasonality
Bio15 Precipitation of Warmest Quarter

Elevation

A. gracilipes

Bio1 Annual Mean Temperature
Bio2 Mean Diurnal Range
Bio3 Isothermality
Bio5 Max Temperature of Warmest Month
Bio7 Temperature Annual Range

Bio15 Precipitation Seasonality
Bio16 Precipitation of Wettest Quarter
Bio18 Precipitation of Warmest Quarter
Bio19 Precipitation of Coldest Quarter

Elevation

A similar procedure was performed for A. gracilipes; however, the available research is
relatively limited compared with that for S. invicta. Therefore, bioclimatic variables were
screened by considering the climatic properties of the geographic areas [29]. The initial
bioclimatic variables for S. invicta were used as the starting point because A. gracilipes
mainly inhabits tropical regions; this resulted in the selection of bio- 1, 5, 6, 10, 11, 12, 13, 14,
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16, and 17. Due to the low coefficient variations, we first selected bio- 1 and 5. Subsequently,
bio- 6, 8, 9, 10, and 11 were removed because of their high correlation (r > 0.7), and bio- 2 and
7 were included because they were not correlated with the other variables. Bio- 3 and 4 were
correlated with each other; however, bio3 was selected because its correlation coefficients
with other variables were lower than those of bio4. For precipitation, a previous study
showed that seasonality was evident for nests, which mainly occurred during the wet
season [30]. For this reason, we selected bio- 15 and 16, representing the seasonality of the
precipitation and the precipitation during the wettest quarter, respectively. Due to their
high correlations with bio- 15, and 16, bio- 12, 13, 14, and 17 were removed. Bio- 18 and 19
were included as they were not correlated with the other bioclimatic variables. Finally, nine
bioclimatic variables and elevations were selected for use in the models (Table 1).

2.4. MaxEnt Operation

MaxEnt is an algorithm in species distribution modeling that estimates the occurrence
probability of a target species based on the maximum entropy theory (Phillips and Dudík,
2008). MaxEnt requires optimal conditions for model features and regularization multi-
plier, which are related to structural complexity [31]. In this study, MaxEnt was operated
with optimal features and a regularization multiplier determined by ENMeval [31]. For
both ant species, the optimal model features were linear, quadratic, product, threshold,
and hinge features, while the regularization multipliers were 0.5 and 1.0 for S. invicta
and A. gracilipes, respectively. We used 10-fold cross-validation to run the model with
10,000 random background points and did not use a biased background because spatial
filtering had already been performed for sufficient occurrence records [32]. The output
was stored in an ASCII file in a logistic-type format, which presented the possibility of
occurrence under the given bioclimatic conditions. Then, potential distribution regions
were built in binary and gradient format, which were finally saved in the form of an shp
file to present it as an image. Model performance was evaluated by calculating true skill
statistics (TSS) using R software [33] in addition to areas under the receiver operating char-
acteristic (ROC) curve (AUC) because TSS is a more practical and realistic measure of the
performance of machine learning-based SDMs [34]. In addition, we also calculated partial
AUC (pAUC) by considering the region of ROC space having less omission error than the
variable [35]. In general, AUC larger than 0.8 or TSS larger than 0.6 indicates a good model
performance, while pAUC larger than 1 indicates a good model performance. The average
threshold values for the 10-fold calculation of TSS were 0.142 and 0.196 for S. invicta and
A. gracilipes, respectively, which maximized the sum of sensitivity and specificity [36]. The
output of occurrence possibility was projected as a binary map with a threshold value
criterion determined for TSS using ArcMap version10.4.1 (ESRI, Redlands, CA, USA).

2.5. Random Forest Operation

Random forest is a machine learning algorithm that develops many classification trees
for bootstrap samples randomly selected from the original data [37]. In this study, we used
RF in the R package to classify the presence and absence of the two ant species [38]. The
dataset for RF was developed by integrating the geographic records and background data
that were randomly selected on the world map to have a 50:50 split of presence and absence
data for each ant species. The dataset was separated into 80% for model training and 20%
for testing the RF model. The number of variables in the random subset at each node (mtry)
was determined by the square root of the number of variables [39], resulting in 3 out of
10 selected bioclimatic variables for each ant species. Another parameter, the number of
trees (ntree, the number of bootstrap samples), was estimated to be 500, which showed
the lowest out-of-bag estimate of error rate (OOB error) under fixed mtry of 3 for both
ant species. The confusion matrix was calculated to evaluate TSS as a model performance
metric in addition to AUC, and variable importance was assessed using mean decrease
accuracy (MDA), which estimates the increase in OBB error by generating permutations
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of one variable while maintaining constant values for other values [38]. The classification
result was georeferenced and projected onto a world map using ArcMap.

2.6. Artificial Neural Network Construction

Artificial neural networks (ANN) are basic deep-learning algorithms that imitate the
functionality of human brains by interconnected layers and neurons and have been used
to predict the potential presence of insect species [40]. This study employed MLP models
with the same model variables and presence data used for MaxEnt and RF using Keras in
Python [41,42]. Among occurrence records and background points, 20% of them were used
to test the model, while 80% was further split into 80% for training and 20% for validating
the model. We developed a simple MLP structure because of the relatively small amount of
data in deep learning. To determine the optimal model structure, the number of neurons
was varied from 4 to 30, with 10 running trials for each number of neurons. The batch
size was determined to be equal to the number of training data, whereas the epoch and
learning rate were set to show a stable loss function and accuracy [43]. The loss function
was observed for each model to avoid under or overfitting. In addition to the loss function,
the average TSS values for 10 trials in each model structure were calculated by selecting
the threshold value that resulted in the highest TSS [36]. The optimal model structure was
determined based on the loss function and the average TSS value. Thereafter, a three-layer
MLP model composed of two hidden layers was employed, in addition to an output layer
of two neurons representing the presence and absence probabilities. The number of hidden
layers was 11-11 and 9-9 for S. invicta and A. gracilipes, respectively, which were applied to
predict the occurrence possibility of the two ant species at global georeferenced points, and
were finally projected onto the world map using ArcMap.

3. Results
3.1. Performance Comparison by Models

All model performances exceeded 0.8, except for TSS values of 0.783 in the MLP model
of A. gracilipes, suggesting that the developed model is reliable for predicting the potential
distribution of the two ant species (Table 2). In particular, the AUC exceeded 0.89 for all
models in both species with high accuracy and sensitivity, which indicated an accurate
assessment of the actual occurrence.

Table 2. Model performance metrics for both ant species.

Species S. invicta A. gracilipes

Model MaxEnt RF MLP MaxEnt RF MLP

AUC 0.949 0.939 0.911 0.967 0.940 0.894
pAUC 1.960 1.970 1.930 1.930 1.930 1.800

TSS 0.923 0.879 0.815 0.906 0.882 0.783
Accuracy 0.951 0.941 0.907 0.930 0.940 0.890
Sensitivity 0.973 0.941 0.906 0.977 0.910 0.944
Specificity 0.949 0.938 0.909 0.929 0.972 0.839

RF: Random Forest, and MLP: multi-layer perceptron.

In terms of model type, the MaxEnt model exhibited the highest performance, whereas
the MLP model showed the lowest value for both species, possibly due to low specificity.
When comparing the performance metrics, the AUC showed a relatively higher value
than the TSS values, regardless of model and species. The MLP model showed the largest
difference between the AUC and TSS, suggesting its relatively high dependency on the
sampling size compared to others. All the models showed pAUC larger than 1, consistent
with other metrics showing a good model performance. In this metric, the MLP showed the
lowest value, while the MaxEnt and RF showed similarly high values. When considering
the number of occurrence data that differed by species in the same model, the AUC of the
MaxEnt model for A. gracilipes was larger than that for S. invicta, whereas MLP exhibited a
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higher AUC in the S. invicta model than in A. gracilipes. Thus, AUC may be affected by the
type of model rather than the sample size, whereas the MPL model had a relatively high
dependency on the sample size. Both MaxEnt and MLP models exhibited higher TSS in the
S. invicta model than in the A. gracilipes, suggesting that TSS was more sensitive to sample
size compared with AUC and pAUC. Random forest exhibited consistent values for AUC
and TSS for each species; thus, the difference between AUC and TSS was almost constant.
A similar consistency was also shown in the pAUC and accuracy, indicating relatively
higher robustness for the sample size of the RF model compared with other models.

Overall, MaxEnt showed the best performance for both species, whereas RF resulted in
consistent results even with a small sample size. In addition, larger datasets for MLP model
training may lead to improved model performance, but at present, lower performance
compared to the other models was demonstrated.

3.2. Spatial Projection Comparison by Models

The overall global potential distributions of the two ant species were predicted using
the occurrence data. Solenopsis invicta was predicted to be densely distributed in North and
South America, where most of the occurrence data were concentrated, and showed some
potential presence in Africa, Asia, and Australia (Figure 2). Europe was predicted to be an
at-risk area for S. invicta distribution in MaxEnt and MLP models, whereas RF expected only
a rare chance of its occurrence under the current climate conditions in Europe. The potential
distribution areas—the ratio of predicted occurrence area to the whole world calculated
by counting the cell numbers in the map—of S. invicta under the current climate for the
MaxEnt, RF, and MLP models were estimated to be 5.2%, 4.0%, and 6.5%, respectively
(Table 3). When applying the climate change scenario, all the models predicted that the
potential occurrence area of S. invicta would expand. The MaxEnt, RF, and MLP models
predicted 5.6%, 4.3%, and 16.5% of the ratio of potential occurrence area to the whole
world, respectively, and high variation was observed in the MLP model compared to the
MaxEnt and RF models. In addition, European regions were vulnerable to significant
S. invicta invasions.

Similarly, the potential distribution of A. gracilipes was mainly predicted in Southeast
Asia, in addition to Central America (Figure 3). Notably, large areas in South America were
predicted to be at risk of A. gracilipes, although there was no current occurrence data. For
A. gracilipes, the ratios of potential distribution areas to the whole world were 7.3%, 8.4%,
and 21.8%, estimated by MaxEnt, RF, and MLP models, respectively, revealing significantly
larger projections in the MLP model. In contrast to S. invicta, it was predicted that areas of
A. gracilipes’ potential distribution would not be significantly affected by climate change
but rather would be reduced slightly without further habitat expansion. Quantitatively,
the potential areas predicted by MaxEnt, RF, and MLP models were 6.1%, 7.8%, and 17.8%,
respectively, reducing by 0.5–4% for each model. In general, the MLP model produced
the largest area of potential distribution for both species and the highest variations due to
climate change, whereas RF exhibited the lowest variations in potential distribution (<1%)
for both species due to climate change.

The average probability projected by regression differed according to the model,
showing similar results for RF and MLP in contrast to MaxEnt (Figures 4 and 5). The
average current possibility predicted by MaxEnt was the lowest, at 0.307 and 0.317 for
S. invicta and A. gracilipes, respectively. The highest average probability was predicted
by RF for S. invicta, whereas MLP showed the highest possibility for A. gracilipes under
the current climate. It is expected that the occurrence possibility of S. invicta will remain
relatively unchanged in 2050, with the largest variation in the RF model (1.5%). In contrast,
relatively large variations in the occurrence possibility of A. gracilipes were predicted
in 2050 compared to the current climate, showing 2–4% variations depending on the
model used. In general, MLP predicted a relatively higher occurrence probability, whereas
MaxEnt predicted the lowest worldwide occurrence probability, regardless of species and
climate change.
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Figure 2. Classification of potential presence and absence areas for S. invicta by each model and climate change scenario. Figure 2. Classification of potential presence and absence areas for S. invicta by each model and climate change scenario.

Table 3. Areal ratio and average probability of potential distribution by models and climates.

Species
Model MaxEnt RF MLP

Climate Current 2050 Current 2050 Current 2050

S. invicta
% presence 5.19% 5.63% 4.04% 4.31% 6.41% 16.54%
Mean prob. 0.307 0.319 0.771 0.756 0.763 0.766

A. gracilipes % presence 7.28% 6.17% 8.35% 7.80% 21.76% 17.79%
Mean prob. 0.317 0.349 0.719 0.739 0.748 0.784

RF: Random Forest, and MLP: multi-layer perceptron. % presence: ratio of the number of cells counted in the area classified to presence to the whole number of worldwide cells. Mean
prob.: average probability calculated in the area classified to presence.
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4. Discussion

In this study, three different SDMs were developed to implement machine learning
algorithms. The AUC exhibited a value near or above 0.9, regardless of the model, which
suggests excellent performance of the developed models [44]. Compared to AUC, a rela-
tively lower TSS value was obtained for all models, with the highest result in the MaxEnt
model. In contrast, the MLP model showed lower TSS compared to the other models, which
is consistent with a previous modeling study for S. invicta and may be due to the amount
of data used for model training [15]. This could be observed in the MLP models for both
ant species, as ~2.5 times more data were used to develop the model for S. invicta than for
A. gracilipes. In addition, the relatively small amount of data used in the A. gracilipes MLP
model exhibited significantly less specificity compared to the sensitivity in the same model,
as well as compared to other models. This suggests that insufficient data points may be a
source of uncertainty [45,46]. Compared to the MLP model, the RF algorithm showed only
a 0.3% and 0.1% difference in the TSS and accuracy, respectively, between S. invicta and
A. gracilipes, suggesting robustness even with small sample sizes [15,47]. This advantage
of RF in SDM is consistent with similar performance and spatial projection of S. invicta in
a previous study, where a boosted regression tree was used [17]. Finally, there still exists
controversy on model performance metrics due to dependency on prevalence, suggesting
the necessity of using multiple metrics to confirm the model performance [48–50].

MaxEnt and RF had similar spatial projection sizes. MaxEnt is a specialized SDM
tool [2]; thus, it has an algorithm suitable for data generally used in SDM. The RF algorithm
has also been used for ecological modeling to define areas of species occurrence because
it can overcome limited data points [46,51]. However, the MLP model predicted larger
presence areas than MaxEnt and RF, suggesting the necessity of sufficient data to train deep
learning models [52]. This can be shown by the areal sizes of S. invicta and A. gracilipes
predicted by the MLP model. For S. invicta, which used 2.5 times more coordinates than
A. gracilipes, the MLP model projection under the current climate was ~1–2% larger than
those by MaxEnt and RF. For A. gracilipes, the MLP model projection was 14–15% times
larger compared to the other models. This suggests that more data points might be
necessary to develop an MLP model that is comparable with MaxEnt and RF. Areal variation
due to climate change was the least in RF, suggesting that RF was relatively insensitive
to model variables, which is consistent with the observation of a previous study showing
the least projection areas of S. invicta by RF [15,53]. In contrast, the MLP model produced
the largest variation in projection areas for both species due to climate change, showing a
sensitive response to changes in model variables that might be due to a dependency on
initial model variable weight [54]. Therefore, a developed MLP model can be an option to
record changes in species distribution due to climate change, but cautious interpretation is
necessary when considering other comparable models.

The CLIMEX model is a mechanistic SDM tool for evaluating the habitats of a species
that is climatically suitable for species biology [12,14]. This model predicted areas for
both species that were much larger than those of this study because CLIMEX finds an
area where species biology can endure a regional climate [55]. Only MLP showed areal
projections similar to the CLIMEX results for A. gracilipes, but this might be due to the
limited training data. The current results were similar to the projections by the genetic
algorithm for rule-set prediction (GARP) and BioClim [13]. This suggests that statistics-
based models, including machine learning algorithms, commonly predict core habitats
around occurrence coordinates, but the areal size can differ according to the specific model.
Therefore, appropriate model selection for the purpose of a study is crucial, as is highlight-
ing the current application of ensemble models to project occurrence areas conservatively
by extracting consensus areas from each model [27]. In contrast to the areal size by classi-
fication, the occurrence possibility by regression was similar between RF and MLP, and
they were ~2.5 times higher than the occurrence possibility evaluated by MaxEnt. MaxEnt
uses the maximum entropy model to calculate the occurrence possibility [2], whereas RF
and MLP are universal classifiers that calculate probability based on the weight of model
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variables [3,4]. Different thresholds for classification are necessary for each model to project
similar distribution patterns. Recently, a value that maximizes the TSS has been proposed as
the threshold value, which is the value used in this study [34]. In addition, MaxEnt requires
the determination of optimal model features, and delta Akaike Information Criterion (AIC)
has been mostly used for selecting the best model settings. However, threshold-dependent
evaluation metrics could be a better option because AIC-based selection can result in low
predictive performance due to oversimplification of the model [56]. This suggests the
necessity of defining the best model in ecological niche modeling when using the MaxEnt.
Therefore, we believe that either classification works better with the simultaneous use of
different machine learning-based models than a regression method to evaluate a specific
probability. A specific method that can adjust different occurrence probabilities needs to be
considered to calculate the occurrence probability [57].

Although the MLP model exhibited the lowest model performance owing to the small
number of data points available for model training, its performance for both species was
reliable, suggesting its potential for SDM applications [4,58]. When developing an MLP
model, one of the most challenging tasks is to determine the hyperparameters necessary
for determining the optimal model structure related to the number of hidden layers and
neurons. This process mostly depends on the intuition of the researcher based on variations
in the loss function; thus, a formalized method that is applicable to SDM is necessary [58].
In this study, the model performance metrics evaluated by the test dataset were used to
determine the optimal model structure. All model metrics, including TSS and accuracy,
were almost saturated as the number of neurons increased, indicating that there was a
minimum threshold value that guaranteed model performance. Therefore, we believe that
TSS can be used as an index to objectively determine the structure of the MLP model in the
SDM, in addition to the loss function.

One of the main purposes of SDM is to derive ecological insights into species dis-
tributions. This is generally conducted by analyzing the contribution or importance of
model variables, which reflect the environmental characteristics of species’ habitat and
biology. Variable contribution and mean decrease in accuracy are widely used measures
of variable importance in MaxEnt and RF, respectively. In both models, the important
variables showed similar trends for both the ant species. Bio1 (annual mean temperature)
and bio14 (precipitation seasonality) were the two most important variables suggested
by both MaxEnt and RF for S. invicta, which is consistent with a previous study that re-
ported bio14 to be the most important variable in RF because variations in soil humidity
related to precipitation seasonality affect the survival of S. invicta [15,59]. In addition,
low and extremely high temperatures are unfavorable for S. invicta [16,60], justifying the
importance of monitoring annual average temperature in predicting S. invicta occurrence
areas. For A. gracilipes, bio7 (annual temperature range) was the most important variable
in MaxEnt, whereas it was the second most important variable in RF after bio2 (mean
diurnal range). Anoplolepis gracilipes is distributed year-round in tropical areas with high
temperatures near the equator [8]; thus, its habitat can be confined by temperature range,
represented by bio- 7 and 2. Bio16 (the precipitation of the wettest quarter) showed the
second highest contribution in MaxEnt, while it was fifth in order in MDA in RF by a
small margin, consistent with its preference for wet regions, even though it could adapt to
very low precipitation [61,62]. For both models, elevation was not a significant variable,
suggesting that the aggressive mobility of the two invasive ant species can survive at any
altitude as long as the environment is suitable [8,17]. In contrast to MaxEnt and RF, it is
difficult to measure variable importance in the MLP model, as weights among neurons are
inside the black box. For this reason, the MLP model is better for use in conjunction with
other machine learning algorithms in SDM, which analyzes the ecological aspects from the
modeling results.
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5. Conclusions

Owing to the large emphasis on artificial intelligence, machine learning algorithms
have been actively applied to ecological niche modeling. This study compared the model
performance and spatial projection of three different SDMs, which employed a machine
learning-based algorithm to evaluate the potential distribution of two invasive ant species.
Our findings revealed a crucial point in the selection of machine learning-based SDM. The
model performance differed according to the type of model and the amount of available
data. Hence, the model needs to be selected based on data availability along with the
study purpose, including the target species, areal size, and model variables. Moreover,
an ensemble model that simultaneously uses more than one model can provide a conserva-
tive evaluation by compensating for the discrepancy among models. In addition, a practical
metric for evaluating the model performance should be considered to select an optimal
model algorithm and its structure, as shown in the MLP model in this study. Even though
this study used bioclimatic variables and elevation as model variables, one of the biggest
advantages of the machine learning algorithm in SDM is the flexibility of variable addition,
suggesting that a model with high reliability can be developed with additional variables,
such as soil temperature for ant species that live underground [63].
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