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Abstract: Nowadays, the facial expression recognition (FER) task has transitioned from a laboratory-
controlled scenario to in-the-wild conditions. However, recognizing facial expressions in the wild
is challenging due to factors such as variant backgrounds, low-quality facial images, and the sub-
jectiveness of annotators. Therefore, deep neural networks have increasingly been leveraged to
learn discriminative representations for FER. In this work, we propose the Multi-cues Fusion Net
(MCF-Net), a novel deep learning model with a two-stream structure for FER. Our model first pro-
poses a two-stream coding network to extract face and scene representations. Then, an adaptive
fusion module is employed to fuse the two different representations for final recognition. In the
face coding stream, a Sparse Mask Attention Learning (SMAL) module is utilized to adaptively
generate the corresponding sparse face mask according to the input image. Meanwhile, we employ a
Multi-scale Attention (MSA) module for extracting fine-grained feature subsets, which can obtain
richer multi-scale interaction information. In the scene coding stream, a Relational Attention (RA)
module is applied to construct the hidden relationship between the face and contextual features
of non-facial regions by capturing the pairwise similarity. In order to verify the effectiveness and
accuracy of our model, a large number of experiments are carried out on two public large-scale
static facial expression image datasets, CAER-S and NCAER-S. By comparing the performance of our
MCEF-Net with other methods, the proposed model achieves superior results on two in-the-wild FER
benchmarks: CAER-S with an accuracy of 81.82% and NCAER-S with an accuracy of 45.59%.

Keywords: expression recognition; sparse mask attention learning; multi-scale attention; Relation
Attention; feature fusion

1. Introduction

Normal communication between humans involves both verbal and non-verbal commu-
nication. As one of the most powerful, natural, and universal non-verbal ways for human
beings to convey their emotional states and intentions [1,2], human facial expressions
are extremely essential in social communication. As a result, automatic facial expression
recognition is important for many human—-computer interaction applications, and various
computer vision-based studies have been proposed to deal with this problem. However,
many facial expression recognition (FER) methods in the early studies were trained and
tested with a small amount of data in a controlled environment. Thus, although they
achieved good results on some specific datasets, the generalization performance of these
methods is not ideal. Recently, the focus of FER has shifted from laboratory-controlled
scenarios to in-the-wild conditions after some related datasets have been collected. Never-
theless, the complex factors in the wild such as occlusion, posture variance, low-quality
facial images, and the interference of the background will deteriorate the recognition
accuracy, which brings great challenges to FER.
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In traditional FER methods, facial expression features are usually captured by some
manually designed feature extractors [3,4], and then classified by classical techniques [5,6].
Ref. [7] proposed an efficient human expression recognition method in the transformed
domain using Discrete Contourlet Transform (DCT). Ref. [8] introduced an approach that
combined specialized pairwise classifiers trained with different feature subsets for facial
expression classification. Ref. [9] focused on extracting features from fused holistic and
geometrical facial expression feature vectors. Ref. [10] presented an approach for facial
expression recognition from images using the principle of sparse representation with a
learned dictionary. Ref. [11] put forward an efficient and fast facial expression recognition
system with a well-designed tree-based multi-class Support Vector Machine (SVM) classifier.
In traditional methods, the dimensionality of extracted facial expression features is high.
Therefore, various dimensionality reduction algorithms are usually utilized for refining the
features. However, the shallow dimensionality reduction may lead to poor robustness and
deteriorate the generalization ability of the methods.

Compared with traditional methods, the deep network can be trained in an end-to-end
manner, so that feature learning and classification can be accomplished simultaneously.
Thus, some deep learning-based FER methods have been proposed and achieved superior
performance compared to traditional methods. Among these methods, the deep Convolu-
tion Neural Network (CNN) [12-17] is the most used technique for feature extraction of
facial expression. Ref. [18] combined a Decision Tree (DT), Multi-Layer Perceptron (MLP),
and CNN to recognize facial expressions using different imbalanced datasets. Ref. [19]
employed a deep CNN to construct a facial expression recognition system, which was
capable of discovering deeper feature representations of facial expressions to achieve auto-
matic recognition. Ref. [20] represented an Identity-aware Convolutional Neural Network
(IACNN) to alleviate variations introduced by personal attributes. Ref. [21] proposed a
human-centric CNN architecture by using regional images for emotion recognition in static
images. The aforementioned works showed that replacing the hand-crafted feature extrac-
tors with a deep CNN can effectively improve the performance of FER. Thus, FER methods
based on deep learning are an important development trend. However, most research on
facial expression recognition is conducted on relatively small datasets acquired in a highly
controlled environment. Thus, although they work well in these well-controlled databases,
their performances on real-world expression recognition tasks are usually unsatisfactory.

In order to extract more fine-grained facial expression features, current methods
generally use manual and mechanical segmentation to crop the face image into a number
of regions for extracting local features of facial regions [22,23]. These methods need a lot of
experiments to determine the number of blocks, which are inefficient and lead to a large
increase in the number of parameters. Furthermore, typical convolutional networks apply
all convolutional filters on the entire image. However, the expression we want to classify or
detect is surrounded by background pixels, and the necessary features can be extracted
using only a few operations. This spatially sparse characteristic in the images will also
impair the effectiveness of existing methods.

To deal with the above problems, we propose a novel deep learning model with
the two-stream structure named Multi-cues Fusion Net for FER. Inspired by the fact
that both facial and scene information is important for FER in the wild [24], our model
constructs two networks for the extraction of multi-cue features. In the face coding stream,
the facial images are first convoluted and max-pooled. To further study the effect of
different encoding network architectures, ResNet-18 [15] is adopted to replace the shallow
convolution and pooling layers of the face coding stream. Then, the Sparse Mask Attention
Learning (SMAL) module [25] is introduced to extract facial expression features. SMAL
can adaptively learn the corresponding key mask region, which defines the vital spatial
positions to be processed by convolutions. Due to the fact that the occlusion and pose
variation problems lead to a significant change in facial appearance at the spatial level, the
Multi-scale Attention module [26] is applied to extract features with different receptive
fields for increasing the robustness of our method to deal with the diversity of global
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features. In addition, channel attention [27] is introduced to make the network pay attention
to more discriminative and significant features under the channel dimension. The face
coding network can extract more comprehensive and key features of facial expression and
eliminate the interference of useless information, so as to enhance the feature extraction
ability of the network. Although the facial region is the most informative representation of
human emotion, scene information also plays an important role in the understanding of
the perceived emotion, especially when the emotions on the face are expressed weakly or
indistinguishable. Consequently, in the scene coding stream, the scene images without the
facial region are input into the context coding module for collecting contextual cues other
than facial expressions. Here, the Relational Attention module [28] is utilized to capture
the similarity between the facial features and contextual features of non-facial regions to
model the hidden relationship. Finally, the facial expression features and context features
are combined by the adaptive fusion network for classification.
The contributions of this paper can be summarized as follows:

1. A novel deep learning model with a two-stream structure, named MCF-Net, is pro-
posed for facial expression recognition.

2. In the face coding stream, the Sparse Mask Attention Learning module can adap-
tively generate the key sparse mask, which avoids manual and mechanical segmen-
tation to extract facial features. Furthermore, the Multi-scale Attention module is
employed to extract multi-scale global features at a fine-grained level and richer
channel information.

3. Inthe scene coding stream, the Relational Attention module captures more important
contextual information about non-facial regions and establishes the connection be-
tween the facial and contextual features, so as to guide the network to focus on more
meaningful regions in the real-world scene.

4. A large number of experiments are carried out on two standard FER datasets to
evaluate the effectiveness and feasibility of our proposed model. By comparing the
performance of our MCF-Net with some existing FER methods, the advantage of the
proposed method can be demonstrated.

2. Related Work

In the field of computer vision and machine learning, various facial expression recog-
nition systems have been explored to encode expression information from facial representa-
tions. The complexity of head posture, occlusion, and illumination will affect the results of
FER. Therefore, some scholars are committed to utilizing deep learning methods for FER.
FER methods based on deep learning can be divided into two main categories according to
the image acquisition forms: FER methods in the controlled environment and FER methods
in the wild.

2.1. FER Methods in the Controlled Environment

Many researchers have created many effective ways to improve the FER results in
a controlled environment, while largely relying on well-defined databases. Ref. [29] pro-
posed a deep learning approach based on an attentional convolutional network to focus
on important parts of the face and achieved improvement on FER. Ref. [30] presented an
end-to-end network architecture with a Gaussian space representation for expression recog-
nition. Ref. [31] introduced a simple yet efficient Self-Cure Network (SCN) that suppressed
uncertainties efficiently and prevented deep networks from over-fitting. Ref. [32] used a
landmark-guided attention branch to find and discard corrupted features from occluded
regions so that they were not used for recognition. Ref. [33] developed a convolution neural
network with an attention mechanism that could perceive the occlusion regions of the face
and focus on the most discriminative un-occluded regions. Ref. [34] proposed an occluded
expression recognition model based on the generated countermeasure network with two
modules, namely occluded face image restoration and face recognition. Some other recent
works on facial expression recognition included multiple networks for facial expression



Appl. Sci. 2022,12, 10251

40f18

recognition [35,36] and a deep self-attention network for facial emotion recognition [37].
Although these works performed reasonably well in a controlled condition, their perfor-
mance may be influenced by many factors, such as illumination, partial faces, and image
variation in a real scene. Therefore, the methods designed for the controlled environment
will fail to perform well on more challenging datasets. Moreover, the small size of datasets
constructed in controlled conditions for expression recognition research will also make the
training of deep networks very challenging.

2.2. FER Methods in the Wild

Due to various restrictions and problems in the controlled environment, some deep
learning-based works have been presented for facial expression recognition in the wild.
Besides, techniques such as pretraining, multi-modal data, and GAN have also been
applied to solve the problem of overfitting in the training process. Ref. [38] presented
FaceNet2ExpNet to train an expression recognition network based on static images. Ref. [39]
proposed recognizing video emotions in an end-to-end manner based on a deep Visual-
Audio Attention Network. Ref. [40] introduced a learning-based algorithm for context-
aware perceived human emotion recognition by combining three interpretations of context.
Ref. [41] designed an Expression Generative Adversarial Network (ExprGAN) for photo-
realistic facial expression editing with controllable expression intensity. Ref. [42] proposed a
feature separation model exchange-GAN for the FER task, which can realize the separation
of expression-related features and expression-independent features. Although fine-tuning
and GAN can partially alleviate the issue of small datasets, the performance is still relatively
low as the deep features likely contain redundant information.

More recently, some FER models based on CNN leveraged auxiliary modules or the
combination of multiple networks to further enhance the feature extraction ability of the net-
work. Ref. [43] represented a fusion framework for static facial expression recognition in the
wild by varying multiple network architectures, input normalization, weight initialization,
and several learning strategies. Ref. [44] introduced a Meta Auxiliary Learning method
(MAL) that automatically selected highly related facial expression samples by learning
adaptive weights for the training facial expression samples in a meta learning manner.
Ref. [45] designed a local-feature extractor and a channel-spatial modulator to improve
the robustness of a lightweight network for FER, in which the depthwise convolution was
employed for local and global-salient facial features. Ref. [46] used a transformer-based
cross-fusion paradigm that enabled effective collaboration of facial landmarks and direct
image features to maximize proper attention to salient facial regions. Ref. [47] adopted Fa-
cial Landmark Detection (FLD) as the auxiliary task and explored new multi-task learning
strategies for FER. Ref. [48] proposed an Adaptive Correlation Loss to guide the network
towards generating embedded feature vectors with high correlation for within-class sam-
ples and less correlation for between-class samples. The above methods usually improve
the performance of the models by increasing the network width or deepening the network
depth, which leads to a large number of parameters and high computational complexity.
Furthermore, the above methods only take the facial regions into consideration, which may
weaken their performances once the human facial regions in images are partly occluded
or blurred. Unfortunately, occlusion caused by pose variations or other objects and blur
induced by human movement are common problems for the FER task in the wild. Hence,
in order to extract more comprehensive and compensatory features, various kinds of cues,
such as hands, body posture, and interaction with others, should be exploited.

3. Materials and Methods

FER has received increasing interest in the computer vision community. Although
existing facial expression classifiers achieve satisfying results in analyzing constrained
frontal faces, they fail to perform well in the wild. FER in the wild is challenging due to
various unconstrained conditions. The architecture of our method is shown in Figure 1. The
proposed model takes static images of large-scale natural scenes as input. To take both facial
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expressions and contextual cues into account, the backbone of our MCF-Net is divided into
two streams. The two-stream network architecture is composed of a face coding stream
and a scene coding stream, which are used to extract facial expression information and
context information, respectively.
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Figure 1. The architecture of our proposed method.

The images of facial expressions detected by the Dlib algorithm [49] are used as the
input of the face coding stream. The face coding stream consists of 3 x 3 convolutions
with batch Normalization (BN) and the ReLU activation function, max-pooling with the
stride of 2, the SMAL module, and the MSA module. Here, we also attempt to substitute
the shallow convolution and pooling layers of the face coding stream with ResNet-18.
The input of the scene coding stream is the images without the facial regions. The scene
coding stream includes the context coding module and the relational attention module.
The context coding module is composed of a 5-layer 3 x 3 convolution with the BN and
ReLU activation function, and 4-layer max-pooling with the stride of 2. In the adaptive
fusion network, the full-connection and softmax layers are utilized to fuse facial expression
features and contextual features by automatically learning their corresponding weights for
facial expression classification.

3.1. Sparse Mask Attention Learning

According to facial action units, some regions of the face, such as the eyebrows and
mouth, are more important for determining the expression category. Therefore, SMAL is
used to obtain more comprehensive and richer key features, so that the interference of use-
less information can be eliminated to enhance the feature extraction ability of our network.
This module is composed of sparse mask learning and channel attention. Sparse mask
learning can learn sparse face regions and dynamically apply convolution to achieve spatial
adaptation, which increases few parameters but improves performance. The introduced
channel attention can enhance the cross-dimension features and the global features. Thus,
SMAL can extract more effective spatio-channel interaction information. Furthermore, the
SMAL module is connected to residual functions [15] to solve the problem of gradient
disappearance during network training without adding extra parameters. The specific
process is shown in Figure 2.
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Figure 2. The structure of Sparse Mask Attention Learning.

The input of SMAL is the features processed by a 3 x 3 convolution and max-pooling
with the stride of 2. Then, the mask is obtained through the mask unit according to the
input feature, and sparse convolution is performed on the mask to gain sparse features.
Next, the obtained sparse features are sent to the channel attention sub-module, which uses
three-dimensional permutation to retain information across three dimensions. It magnifies
cross-dimension channel dependencies with a two-layer Multi-Layer Perceptron (MLP)
to output more effective channel information of facial expression. Furthermore, SMAL is
connected with residual functions, and the operation of the residual block is described by
Equation (1). The residual block consists of 2 convolutions with the BN and ReLU functions
sequentially. The residual learning result is added to the mapped result, and then the ReLU
activation function is used to obtain the final output.

Xpp1 = 0(Xp + F(Xp)) 1

where X}, represents the input, F(-) denotes the residual mapping function, and ¢ is the
activation function. In addition, mask M), of the input image is generated according to the
input X, through Mask Unit M, for defining the spatial position where the convolution
operation should be performed. Mask Unit M performs the squeeze operation and the
3 x 3 convolution on the spatial dimension to generate the corresponding mask from the
input image. Through a global Ave-Pooling and FC layer, the squeeze operation creates
the weight matrix with a 1 x 1 spatial dimension over all channels. Moreover, the weight
matrix extracted by the squeeze operation and the 3 x 3 convolution is added to obtain the
corresponding masks M, € R%b+1 %M1,

Since the pixel values in the mask M, generated by the Mask Unit M cannot be
optimized by backpropagation, the Gumbel-Softmax trick [50] is used for each pixel of
mask M, to obtain a continuous differentiable mask G in an end-to-end manner, as shown
in Equation (2). After performing residual learning on mask Gy, the calculation of the
sparse mask sub-module is as shown in Equation (3).

Gp = ¢(M(Xp)) 2)
Xpy1 = 0(Xp + F(Xp) 0 Gyp) 3)

where ¢(-) indicates the Gumbel-Softmax trick and o represents element-wise multipli-
cation in the spatial dimension (w1 X hp,1). In order to change the pixel values from
m € (—oo,+00) to (0,1), the calculation is shown in Equation (4).

__ exp((log(pi) +8i)/7) @
Ly exp((log(p)) + &) /7)

i

where g; is the noise sample extracted from the Gumbel distribution to enhance the anti-
interference ability of the network training. Each pixel of the generated mask represents
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the probability p; of performing the convolution operation, as shown in Equation (5). On
the contrary, the probability p; of not performing the convolution operation is as shown in
Equation (6). They are carried into Equation (4) to obtain the result of the binary sample as
k =2,i =1, which is shown in Equation (7).

p1 = o(m) ©)
p2=1—0(m) (6)
yr = o( M8, )

where T denotes the fixed hyper-parameter with size as 1. Therefore, the final calculation of
discrete samples z for forward propagation (upper) and back propagation (lower) is shown
in Equation (8).
= Mt&1t+g
Z:{y1>0.5y = >0 8)
1

In order to extract more effective information, we introduce channel attention after
sparse mask learning. The previous channel attention network ignored the importance of
cross-dimensional interaction, while the channel attention that we adopted can capture
important features in three dimensions. The information of three dimensions is first
arranged and combined by 3D permutation. Then, a two-layer MLP with an encoder—
decoder structure is applied to enhance the channel dependence, which is composed of
two FC layers and ReLU activation function. The calculation of channel attention is shown
in Equation (9).

Fout :MC(Fin)®Fin )

where F;,, represents the feature map obtained by sparse mask learning and M, (-) indicates
the operation of channel attention. The weights obtained by channel attention are multiplied
with the feature matrix of the sparse mask to obtain the final output.

Finally, the sparse loss [25] is applied to conduct joint training with the cross-entropy
loss of the whole network for learning the effective sparse mask during the training process.
By setting a computational budget 6 € [0,1] to define the relative amount of desired
convolution operations performed on the generated mask, the process of calculating sparse
loss is shown in Equations (10)—(14). Among them, Equation (10) is the final loss function.
Equation (11) minimizes the difference between the given computational budget 6 and
the budget used by a network consisting of B residual blocks. The ratio of the number of
convolution operations between the SMAL module and the original mask learning module
is shown in Equation (12). In order to obtain better initialization values, there is an upper
bound and a lower bound in the sparse loss function. Equations (13) and (14) are the
definitions of the upper and lower bounds, respectively.

L= Lclussify + D‘(Lsp,net + Lsp,lower + Lsp,upper) (10)
2
ZE Fb sp
L = = —0 11
sp,net ( ZE Fb ) ( )
Py = Fh,sp /Fh (12)
18 2
Lsp,lower = Ezmax(of p-0— Pb) (13)
b

18 2

Lsp,upper = EZmaX(O, pp —(1—p(1-10))) (14)
b

where L4, is the cross-entropy loss function of this paper, &(Lsp,net + Lsp tower + Lsp,upper)
is the sparse loss function, F, s, denotes the number of floating point operations for con-
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volutions in the SMAL module, F, indicates the number of floating point operations for
convolutions in the original mask learning module, py, is the ratio between F, 5, and F, and
p is a fixed cosine annealing hyper-parameter. In this paper, B is set to 1 and p is set to 0.33.
When 6 = 0.7, this module can achieve good results based on actual experiments.

3.2. Multi-Scale Attention

Inspired by the literature [26], MSA is utilized to extract richer global features of
facial expressions. This module can extract more abundant multi-scale features at a more
fine-grained level. The structure of MSA is shown in Figure 3.

left | ‘ | | rieht
3x3 Conv 3%3 Conv

3x3 Conv mConv |
A A4 l i v A4

o
[ Attention network ]

%

Figure 3. The structure of Multi-Scale Attention module.

f

The feature maps obtained by the previous processing are put into a 3 x 3 convolution
and max-pooling to obtain the feature map X. Then X will be divided along the channel
dimension into n subsets of the feature map, thatis, Xj,i € {1,2,--- ,n}. Each subset X;
has % channel and its spatial size is the same as the original feature map X. Next, each X;
is processed with a 3 x 3 convolution Pl-’ () operation from the left and right directions to
receive more abundant multi-scale features. A symmetrical structure is introduced to learn
multi-scale features, which can ensure that the feature subsets at the front and back both
can contain richer scale information. The attention network is the same as that in the SMAL
module. The specific procedure of MSA is shown in Equations (15) and (16). The subsets
X; are sorted from left to rightas 1,2,--- ,n.

left .
left _ pi’ (Xi) i=n
R P o

right _ P (X)) i=n

Yi - rz'ghtl righty 1 < j < (16)
P (Xi+ Y5 )t s

where P!(-) represents the 3 x 3 convolution operation, I € {left, right} of P!(-) represents

the location, Yilgf " indicates the output of the left, and Yiright indicates the output of the right.
gft(')

From Equation (15), we can notice that each operation of pi- can capture features from
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all subsets {X;,j < i}. From Equation (16), we can notice that each operation of p;ight(-)
can capture features from all subsets {X n > j> i}. Each Yil contains a different number
and scale of subset features. In order to obtain diversified multi-scale features, all Yll are
combined along the channel dimension. The calculation of final output Y; is shown in
Equation (17).

Y, = Yy (17)

Considering the number of parameters, the number of subsets in this paper is set
to 4. After obtaining the final output, channel attention is introduced to further enhance
the interaction of cross-dimensional features for making the network focus on the more
discriminative and significant regions of facial expression images.

3.3. Relational Attention

The scene coding stream is mainly used to extract the contextual cue features except
for facial regions. The context coding module adopts the same backbone network as used
in the literature [24], which is composed of a 5-layer 3 x 3 convolution with BN and ReLU
and 4-layer max-pooling in a stride of 2. In order to construct the relationship between the
face and the context, the attention mechanism is utilized in the RA module to capture the
similarity between them for building the hidden relationship [28]. Specifically, the facial
expression features extracted from the face coding stream and the context features extracted
from the scene coding module are taken as inputs of RA. Then, the final output of the scene
coding stream is obtained by multiplying the normalized attention map with the extracted
context features. The attention map represents the priority of each position in the feature
map. The structure of the RA module is shown in Figure 4.

|

vafl
Zaa
|

!
W
V4
=
N124+Ng+TAUOD

N134+Ng+cAuo)

X

N Ve ,

Figure 4. The structure of Relational Attention module.

First, the feature maps Fy of faces extracted from the face coding stream are trans-
formed into the feature vectors V¢ by the global ave-pooling operation. The contextual fea-
ture map F. € RHexWexDe jg a 3D tensor, while He, W,, and D, represent the height, width,
and channel dimension of the feature map, respectively. F. is divided into a set of H, x W,
vectors with D, dimensions, and each vector in each cell (i, j) represents the embedded
features at that location. At each location (i, j) of F., we have vectors PC(Z’] ) = 0ij0ij € RD:
and1 <i < H,, 1 <j< W,.. The representation of F; is shown in Equation (18).

F. = {Ui,j S RD':

1<i < Ho 1</ < Wl (18)

where v; ; represents the feature vector of contextual feature map F: at the (i, j);, position.
A feature matrix containing both the features of the face and context is obtained by con-
catenating Vy and v; ; along the channel dimension. Then the concatenated vectors are
input into a two-layer 3 x 3 convolution to calculate the raw score values Si j related to the
region. The Softmax function is then used to generate the attention graphs, as shown in
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Equation (19). Finally, the attention maps «; ; are weighted into the corresponding v; ; to
acquire the final representation vectors Vs, as shown in Equation (20).

o — exp(si;)
YY) exp(Syp)

Vs = ZZ (a;; ©v;f) (20)
i

(19)

where © represents the element-wise multiplication operation. Through the above process,
the RA module can guide the network to pay attention to those v;; that represent more
important and discriminative regions. As a result, the other irrelevant areas in the image
are ignored.

3.4. Adaptive Fusion Module

In order to carry out the final classification, it is necessary to fuse facial features and
context features. Therefore, an adaptive fusion module is designed, as shown in Figure 1.
Our fusion model can adaptively learn and infer an optimal fusion weight according
to extracted multi-cues features. The learned weights are applied to the corresponding
features for concatenating, fusion, and classification.

The facial features vector V; and contextual features vector Vs obtained by the two-
stream network are used as the inputs of the adaptive fusion network. The two feature
vectors are first input into two FC layers and the Softmax layer to obtain the facial feature
weight Ar and the contextual feature weight As. Then, the learned weights are normalized
by a Softmax function. Next, Ar and As are respectively applied to corresponding feature
vectors to enhance important features and suppress redundant features. At last, the two
parts of features are concatenated and input into the two FC layers followed by a Softmax
layer to obtain the final recognition results, as shown in Equation (21).

Xa =TI(Vy © AR, Vs © As) (21)
where I represents the concatenate operation.

4. Results

In this section, we conduct a series of experiments to validate the effectiveness of our
MCF-Net for facial expression recognition. Furthermore, the proposed method is compared
with other FER methods on two standard datasets, CAER-S and NCAERS.

4.1. Experimental Dataset
4.1.1. CAER-S Dataset

The CAER-S dataset [24] is a static dataset of large-scale natural scenes, which contains
human faces and background information. The dataset was collected from 79 TV shows and
each video clip was manually annotated with six emotion categories, including “anger”,
“disgust”, “fear”, “happy”, “sad”, “surprise”, as well as “neutral”. In total, 13,201 clips
and approximately 1.1M frames were available. Then, approximately 70K static images
are extracted to create a static image subset, wherein the size of each image is 712 x 400.
The dataset is randomly split into training (70%), validation (10%), and testing (20%) sets.
Sample frames of the CAER-S dataset are illustrated in Figure 5. The number of training,
validation, and testing sets in this paper are similar to the CAER-S database.
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(a) “disgust”

Disgust

Surprise

Fear

Sad

e) uhappyu (f) uangeru

—~ ki

(b) “fear” (c) “surprise” (d) “sad”
Figure 5. Sample frames of the CAER-S dataset.

4.1.2. NCAER-S Dataset

In CAER-S dataset, many images in the training and the testing sets are extracted
from the same video, which makes them very similar to each other. In order to improve
the robustness of the model, the NCAER-S dataset [28] was extracted from the CAER
video clips to deal with the above issue. Each video in the original CAER dataset is split
into multiple parts, and each part is approximately 2 s long. This dataset assures that the
training frames and testing frames are never from one original input video. The statistics
of the original CAER and the NCAER-S training sets are shown in Figure 6.

Neutral

Neutral

Happy
Disgust
20.66% 15.64% Anger
Anger Surprise
Happy Fear
(a) CAER (b) NCAER-S

Figure 6. Percentage of each emotion category in CAER and NCAER-S training sets.

4.2. Experiments and Result Analysis
4.2.1. Experiments and Result Analysis of MCF-Net on CAER-S Dataset

In order to verify the effectiveness of MCE-Net, our model is tested and validated on
the CAER-S dataset. The accuracy curve of MCF-Net is shown in Figure 7, in which the red
line indicates the training accuracy, and the blue line represents the validation accuracy. It
can be seen from Figure 7 that both training accuracy and verification accuracy of MCF-Net
gradually improved. The accuracy begins to converge around the epoch of 30 and tends to
be stable around the epoch of 45, which shows that the proposed MCF-Net is reasonable
and effective.



Appl. Sci. 2022,12, 10251

12 0f 18

0.7 1

0.6

0.5 1

acc

044

0.3 A

—— Validation Accuracy
—=—- Accuracy

024

0 10 20 30 40 50 60
epochs

Figure 7. The accuracy curve of MCF-Net on CAER-S dataset.

The loss function curve of the MCF-Net obtained during the training process is shown
in Figure 8, where the red line represents the training loss, and the blue line means the
validation loss. It can be concluded that both training loss and validation loss of our model
gradually decrease and begin to converge around the epoch of 30. At the epoch of 45, the
curve tends to be stable, and the loss value no longer changes, finally stabilizing at 0.71.
The results prove that MCF-Net can better fit the distribution of samples in the training set
and the validation set, which verify the rationality of the joint loss at the same time.

250 4 —— Validation Loss
— loss

2251
2.00 4

1751

loss

1.50

1251

1.00

0.75 4

0 10 20 30 40 50 60
epochs

Figure 8. The loss curve of MCF-Net on CAER-S dataset.

Our model is compared with some classical and SOTA methods on the CAER-S dataset,
as shown in Table 1. It can be seen that the accuracy of MCF-Net is higher than that of
baseline CAER-Net-S by 2.17% and much higher than those of classical methods, with
only a small increase in parameters. In order to improve the performance of recognition,
ResNet-18 is adopted to replace the shallow convolution and pooling layers of the face
coding stream. When compared with other recent state-of-the-art methods, we obtained
state-of-the-art performance on the CAER-S dataset with 81.82% classification accuracy.
Although the parameters of MCF-Net(ResNet18) have been increased, it achieves a great
improvement in recognition accuracy. These results confirm that adding three modules
can effectively encode both facial information and context information to improve the
facial expression classification results. Furthermore, the parameters prove that the training
time consumption of our model is short, and the computational cost is less. To specify,
the calculation cost is reported in Multiply-Accumulates (MAC), averaged over all test
images. From Table 1, it can be seen that the calculation costs of our MCE-Net and the
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original CAER-Net-S are 369MMAC and 385MMAC, respectively. Besides, the calculation
cost decreases as the accuracy of our model improved.

Table 1. Comparison results on CAER-S dataset.

Methods Params (M) MAC (M/G) Accuracy (%)
ImageNet-AlexNet [13] ~89.92 102G 47.36
ImageNet-VGGNet [14] ~102.34 198G 49.89

ImageNet-ResNet [15] ~132.54 247G 57.33
Fine-tuned AlexNet [13] ~89.92 102G 61.73
Fine-tuned VGGNet [14] ~102.34 198G 64.85

Fine-tuned ResNet [15] ~132.54 247G 68.46

CAER-Net-S [24] ~2.39 385M 73.51
Kosti et al. [51] ~27.86 78G 74.48
Gao et al. [52] - - 81.31
Zeng et al. [53] ~68.24 115G 81.31
Zhao et al. [45] - - 81.48
MCEF-Net ~4.25 369M 75.68
MCF-Net(ResNet18) ~14.2 756M 81.82

In order to prove the recognition effect of the improved model on each category
of samples, the confusion matrix of CAER-Net-S and MCF-Net (ResNet18) on CAER-S
datasets is shown in Figures 9 and 10, respectively. In the confusion matrix, the horizontal
represents the predicted label while the vertical indicates the real label. The values of the
diagonal show the classification accuracy of the network for each category, and darker
colors represent higher accuracy.
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Feard  0.00 0.00 0.01
v
Q
=2 Happy 0.04 0.10 0.06
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Figure 9. The confusion matrix of CAER-Net-S on CAER-S dataset.
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Figure 10. The confusion matrix of MCF-Net(ResNet18) on CAER-S dataset.

It can be seen from Figures 9 and 10 that MCF-Net(ResNet18) has the highest accuracy
for the fear category, reaching 0.97, and the lowest accuracy for the neutral category, with
only 0.51. It is because neutral expressions are easily confused with other categories of
expressions. Compared with the confusion matrix of CAER-Net-S, our model significantly
improved the classification accuracy of each category. Among them, the accuracy of

“anger”, “neutral”, “sad”, and “surprise” increased by 0.09, 0.06, 0.05, and 0.02, respectively.
Therefore, the confusion matrix further tests the validity of MCF-Net(ResNet18).

4.2.2. Ablation Experiment and Result Analysis of MCF-Net on CAER-S Dataset

Ablation experiments are carried out on the CAER-S dataset. In this experiment, the
effectiveness of the sparse mask attention learning module, multi-scale attention module,
relational attention module, and channel attention in our network architecture are proven,
respectively. The comparison results are shown in Table 2, where the baseline method is
the two-stream network of the 5-layer 3 x 3 convolution with BN and ReLU and 4-layer
max-pooling in the stride of 2. Compared with the baseline method, the three modules have
0.7%, 1.3%, and 2.17% improvement, respectively. In addition, the effectiveness of channel
attention is also checked. SMAL is higher than that of SML by 0.24%, and MSA is higher
than that of MS by 0.09%. The results of ablation experiments identify the availability of
each module for improving the performance of facial expression recognition.

Table 2. The comparison results of ablation experiments on the CAER-S dataset.

Methods Params (M) Accuracy (%)
Baseline ~2.39 73.51
Baseline+SML ~2.44 73.97
Baseline+SMAL ~2.45 74.21
Baseline+SMAL+MS ~3.92 74.72
Baseline+SMAL+MSA ~3.96 74.81
Baseline+SMAL+MS+RA ~4.22 75.21

Baseline+SMAL+MSA+RA ~4.25 75.68
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According to the key feature information of the context captured in the scene coding
stream, visual attention heat maps can be obtained, as shown in Figure 11. It can be seen
that our model can capture more significant contextual regions related to facial expression
recognition, such as the face of other people and hands et al., which further testifies to the
effectiveness of the RA module. At the same time, it also proves that the performance of
the model can be improved effectively by utilizing the multi-cue feature information.

Figure 11. Visual attention heat maps on the CAER-S dataset. The first row shows the heat maps of
CAER-Net-S. The second row illustrates the heat maps of our model.

4.2.3. Multi-Cue Feature Weights of Adaptive Fusion Network

The face weights Ar and context weights A¢ of some samples learned by the adaptive
fusion network on the CAER-S dataset are shown in Figure 12. It can be seen that our model
can adaptively learn more important cues according to the input image. In Figure 11b f,
most of the face regions have been occluded, which provide less feature information.
Besides, the feature information in the context, such as the gesture or interaction with others,
has a great impact on expression recognition. Therefore, in view of this situation, our fusion
network makes the context weights greater. The learned weights Ar and A¢ are multiplied
with the face features and context features extracted from the two-stream network, so as to
strengthen the corresponding key features and suppress redundant features.

S —

Figure 12. The weights of some samples on the CAER-S dataset.

4.2.4. Experiments and Result Analysis of MCF-Net on NCAERS Dataset

The NCAERS dataset belongs to a subset of the CAER-S dataset. Since some images
of the training set and the testing set in the CAER-S dataset are extracted from the same
video sequence, there is a certain data similarity, which may reduce the robustness of the
model. In order to further verify the significance and robustness of MCF-Net, comparative
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experiments are conducted with other methods on the NCAERS dataset. The experimental
results are shown in Table 3. From Table 3, it can be seen that our model is superior to other
classical methods and the baseline method, which shows the effectiveness and robustness
of the proposed MCF-Net.

Table 3. Comparison results using NCAER-S dataset.

Methods Accuracy (%)
VGG16 [14] 42.85
ResNet50 [15] 41.41
CAER-Net-S [24] 4414
MCEF-Net 45.59

5. Conclusions

In this work, we presented a novel model to exploit FER more efficiently by using the
proposed Multi-cues Fusion Net (MCF-Net) with the two-stream structure. Experiments
have shown that our model can improve the accuracy of facial expression recognition in
the wild compared with the current state-of-the-art results. We report the results of our
MCEF-Net with two different backbones: The original encoding structure and ResNet-18
of the face coding stream. A large number of experimental results on the CAER-S and
NCAER-S datasets consistently demonstrate the effectiveness and robustness of our model.
However, illumination and contrast can vary in different images even from the same person
with the same expression, especially in unconstrained environments, which can result
in large intra-class variances. In future work, we will try to solve the problems related
to large intra-class variances and blurred images by means of intra-class and inter-class
similarity processing, so as to further enhance the robustness of the model and improve
the generalization ability of the model. In addition, we will try more SOTA backbones to
further improve the performance of our model, such as a transformer. The recognition
accuracy of replacing Resnet-18 with other backbones will be tested.
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