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Abstract: Improper design of the geometric elements and facilities of bikeway systems could endan-
ger cyclists’ safety and comfort, resulting in an increased risk of bicycle accidents; such accidents
sometimes have severe consequences, namely casualties. The method of expression for cyclists’ safety
and comfort and the question of how the correlation of these factors with bikeway characteristics—
such as the design of geometry and facilities—can be quantitatively described are the key problems
facing a reduction in accident risk. Cycling workload can be employed to assess cyclists’ safety and
comfort. However, there has been little quantitative expression research on this topic, with no clear
definition of cycling workload. The quantitative expression of cycling workload is important for
developing guidance for the safe design and operational management of bikeways; this is necessary
for controlling conditions that might induce overworking and discomfort among users. In this paper,
the concept of cycling workload is clearly defined based on cyclists’ comfort and safety formation
mechanisms. Through a literature review and a comparative analysis, it is inferred that heart rate
variability (HRV) can be used as a quantitative measure and the low-frequency–high-frequency
ratio (LF/HF) can be used as a physiological signal to quantify cycling workload. A subjective
scale was found to effectively express cyclists’ feelings of safety and comfort, with the performance
assessed according to a human factor engineering research paradigm that classified cycling status
into three qualitative levels—comfortable; a little stressful; and stressful. In order to form various
cycling workload states and to obtain the relationship between LF/HF data and various bikeway
characteristics, we designed a field cycling experiment. This was conducted by 24 participants who
wore a physiological measuring apparatus under three different bikeway characteristic scenario
types including variations in cycling width, direction, and bikeway edges at four cycling speeds in
the 10–25 km/h range. Statistical analysis was used to address the collected LF/HF values and the
subjective scale results, and a quantitative model for assessing cycling workload was established.
By adopting a classification and regression tree (CART) algorithm as a data-mining method, the
classification threshold values (∆HRV) of three cycling workload levels were obtained: 19 indicated
a level between comfortable and a little stressful; and 79 indicated a level between a little stressful
and stressful.

Keywords: bikeway; heart rate variability; classification and regression tree; bikeway characteristics;
human factor

1. Introduction

Bicycles as a mode of transportation are popular in countries that have committed to
carbon neutrality thanks to their benefits for cyclists’ health and environment protection [1]
and their capacity to resolve the “last mile problem”, which is encountered after transit
stops. However, cyclists are among the vulnerable road users (VRUs) for whom traffic
accidents have severe consequences [2,3]. Early research reported that in the event of a
bicycle accident, the fatality rate can be as high as 30% and most survivors have serious
injuries [4].
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As an important factor contributing to bicycle accidents, inappropriate design of the
geometric elements and facilities for bikeway systems could jeopardize cyclists’ feelings
of safety and comfort, increasing the likelihood of bicycle accidents. For instance, if the
cycling width of a bikeway segment is too narrow to fulfill the requirement of cyclists’
safety and comfort, then cycling in that specific segment will not be in accordance with
cyclists’ expectations. Cyclists could not rely on their past experience to pass this segment
and would tend to occupy other road users’ space, which means they will suffer from more
mental stress in processing unexpected information and more physical stress in keeping
balance during operating. This process increases the risk of accidents. There is evidence
to suggest that cyclists’ perception of safety and comfort provides a key link with actual
accident risk, which can be improved by addressing human factors and roadway design [5].
Furthermore, roadway facilities and geometric conditions contribute to road users’ feeling
of stress, which are closely associated with road users’ reactions and information-processing
abilities and estimation of road conditions [4]. In addition, as reported, among the influ-
encing factors, roadway characteristics (such as the design of road geometry and facilities
for bikeways) are considered to be one of the top two factors that contribute to bicycle
accidents [6,7]. Hence, to decrease the incidence of bicycle accidents, we must ensure the
appropriate design of the geometry and facilities of bikeways to fulfill the requirements of
cyclists’ safety and comfort.

To bridge the gap between cyclists’ safety/comfort and bikeway design and assess-
ment, proper quantified measurement of cyclists’ safety and comfort is essential; this will
permit the careful examination and evaluation of the design of bikeway geometric elements
and facilities. Such an assessment will be improved compared with an evaluation approach
based only on standards and specifications. The goal of this approach is to decrease the
risk of bicycle accidents during design stages and the operational management phase by
considering cyclists’ feelings of safety and comfort. In practice, the design of bikeway
characteristics—such as cycling width, curve radius, and longitudinal gradient—generally
adopts the values specified in the relevant bicycle facility guidance and standards [8–14]
across the world. However, the fact that bikeway characteristics (designed based on the cur-
rent bikeway design and assessment criteria) and road user factors have become the top two
causes of bicycle accidents [7] indicates that the specification design values are not so valid
from a safety perspective; we propose that this is probably due to their lack of consideration
for cyclists’ safety and comfort. Most of the indicator design values were determined on
the basis of typical bicycle dimensions, geometric features, and force equilibrium, etc.,
and from experience gained from motorized vehicles(e.g., vehicle kinetics). For example,
the minimum specified horizontal curve radius for bikeways is usually determined by
the design speed, the super elevation/cross slope, and the coefficient of friction, which
is inferred by force equilibrium based on a bicycle traveling on a bend; the coefficient of
friction is usually determined by extrapolating from values used in highway design [9,15].
It seems that little consideration has been given to cyclists’ feelings of safety and comfort in
evaluating the effectiveness of the design of geometric elements and facilities of bikeways,
which should be improved to ensure a comfortable and safe design and to facilitate future
evaluation. However, a lack of quantitative values for expressing cyclists’ safety and com-
fort makes it difficult to carry out and evaluate bikeway geometry and facility design from
a perspective of cyclist safety.

Cycling workload can be employed as a reflection of cycling safety and comfort [16–18].
The quantitative expression of cycling workload, similarly to the quantification of cycling
safety and comfort, can contribute to detailed guidance in the design of bikeway charac-
teristics’ indicator-limiting values in design standards; additionally, it can act as the basis
for establishing a valid evaluation theory and method for assessing utilized operational
management conditions during the operation phase. Such advantages have theoretical and
practical implications for reducing the risk of bicycle accidents.

Nevertheless, presently, the existing quantitative research on cycling workload cannot
fully reflect the real workload status of traditional bikeways that require cyclists’ mental
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effort to interact with the bikeways’ characteristics and environment and their physical
effort to maintain balance and keep their bicycle moving. Instead, research has mainly
focused on the physical aspect based on static cycling through combinations of subjective
scale methods such as the rate of perceived exertion (RPE) and physiological measurements
such as surface electromyography (sEMG) [19,20]. Furthermore, there is no clear definition
of cycling workload for conventional bicycling on bikeways for everyday travel. In the
sparse studies, cycling workload was regarded as a mental workload for assessing cyclists’
feelings of safety when using electric-powered bicycles (e-bikes) [16] or was addressed
physically in terms of the power output preset on an indoor cycle ergometer in cycling
race field [17,18]. Without appropriate definitions and quantification research on cycling
workload, it is difficult to identify a safe and comfortable range for cycling workload or to
evaluate the safety effects of bikeway characteristics.

The objective of this study was to define a universal cycling workload concept based on
everyday conventional cycling; to obtain reliable and proper quantitative expression tech-
niques; and to classify cycling workload by combining a subjective scale and an objective
quantification method to determine an acceptable level of safety and comfort. This will pro-
vide a practical reference for design guidance when determining the limit values of bikeway
characteristics and the assessment of operational management among practitioners.

This article is arranged as follows: Section 2 introduces a cycling safety and comfort-
formation mechanism; based on this, a universal cycling workload concept is proposed.
The workload measurement methods are reviewed and analyzed to obtain the proper
quantification indicators. Section 3 describes the materials and methods used in this study
to prepare and collect the cycling workload data. Section 4 describes our data analysis
process and our results. The final section presents our conclusions with some points
for discussion.

2. Cycling Safety and Comfort-Formation Mechanism and Measurement Methods
2.1. Cycling Workload Definition Based on Safety and Comfort Formation

Bicycle operation involves a process of the interaction among a human, a bicycle, and
a road environment—a human–bicycle–road environment system—in which the human is
the dominant factor. External information from the road environment is the input to the hu-
man’s brain through their sense organs, such as their eyes, ears, etc. Then, the information
is further processed by the central nervous system. Once analyses and judgments are made,
the corresponding locomotor organs (hands and feet) receive instructions and take actions
to brake, accelerate, turn, or yield to other road users. The whole process reflects a human
mental process of sensation, decision making, and response, and simultaneously involves
physical effort for continuous pedaling in every phase to maintain balance and provide
power to move. Furthermore, for various traffic environments and bikeway characteristics
with different safety and comfort statuses, changes in cycling behavior will occur when
cyclists adjust themselves; afterwards, feedback occurs and cyclists return to the sensa-
tion process (as shown in Figure 1). Along with a behavior change, a change in cyclists’
psychophysiological status also occurs, which can be reflected in the physiological signal.

When the environment and bikeway information is complex or confusing or the
supplied information does not fulfill cyclists’ expectation for a given cycling task, cyclists’
mental workload increases, leading to delayed reactions. When cyclists make a decision
to change their cycling behaviors, their physical workload could increase in attempts to
maintain balance and the necessary cycling speed. The increments in physical and mental
workload will be reflected in cyclists’ reduced feelings of safety and comfort.

The mental workload and physical workload shown in Figure 1 comprise cyclists’
workload in dynamic cycling tasks using traditional bikeways in everyday life (dynamic
cycling); it is in this context that the safe and comfortable status of cycling is formed. Given
the abovementioned mechanism, we put forward a universal concept of cycling workload
that is multidimensional in nature and can be interpreted as the demands of cycling tasks
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or the mental and physical stress experienced by cyclists under the road, traffic volume,
and environmental conditions when they cycle on a bikeway.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 
Figure 1. Cycling safety and comfort during cycling task. 

The mental workload and physical workload shown in Figure 1 comprise cyclists’ 
workload in dynamic cycling tasks using traditional bikeways in everyday life (dynamic 
cycling); it is in this context that the safe and comfortable status of cycling is formed. Given 
the abovementioned mechanism, we put forward a universal concept of cycling workload 
that is multidimensional in nature and can be interpreted as the demands of cycling tasks 
or the mental and physical stress experienced by cyclists under the road, traffic volume, 
and environmental conditions when they cycle on a bikeway.  

In order to determine a safe and comfortable cycling workload level for cyclists, it is 
important to choose suitable measurement techniques to measure cyclists’ safe and com-
fortable cycling experiences; these measurement techniques must be sensitive to both the 
mental and physical workload while aiming to measure the total workload.  

2.2. Measurement for Cycling Workload 
In this study, a subjective scale and a physiological measure were utilized to quanti-

tatively express cycling workload. We chose these measures because the study involved 
human factor engineering; accordingly, the subjective scale should be adopted in order to 
exclude the performance factors that were irrelevant to the research subject. As per the 
manifestation of the pattern of cycling workload shown in Figure 1, cycling workload can 
be reflected in the changes in behavior and performance. By formulating a subjective scale 
and connecting subjective feeling with performance description, we were able to form a 
preliminary assessment of workload. More specifically, as a direct measurement of change 
in psychophysiological status, the measure of physiological signals was assumed to di-
rectly reflect and measure the cycling workload. 

According to the literature on workload measurement, there are three main meas-
urement types: performance-based, subjective, and physiological measures [21]; their ap-
plication and final arrangement in this research were analyzed and summarized as fol-
lows.  
(1) Performance Measures for Cycling Workload 

The two approaches to measuring performance for workload are based on primary 
and secondary tasks, respectively, and the theoretical background is the assumption that 
humans have limited attention resources. For example, in driving workload, the primary 
tasks used include steering wheel movements, lane-keeping, and speed control [21]. 
Speed choice [16] and lateral distance [22] are the measures of primary tasks that are used 
to evaluate safety status during the cycling task. For secondary task measurements, the 
peripheral detection task (PDT) [16] is the measure used in e-bike cycling tasks. Secondary 
task measurements may disrupt the primary task, which is a major problem [21]. Cycling 

Figure 1. Cycling safety and comfort during cycling task.

In order to determine a safe and comfortable cycling workload level for cyclists, it
is important to choose suitable measurement techniques to measure cyclists’ safe and
comfortable cycling experiences; these measurement techniques must be sensitive to both
the mental and physical workload while aiming to measure the total workload.

2.2. Measurement for Cycling Workload

In this study, a subjective scale and a physiological measure were utilized to quanti-
tatively express cycling workload. We chose these measures because the study involved
human factor engineering; accordingly, the subjective scale should be adopted in order to
exclude the performance factors that were irrelevant to the research subject. As per the
manifestation of the pattern of cycling workload shown in Figure 1, cycling workload can
be reflected in the changes in behavior and performance. By formulating a subjective scale
and connecting subjective feeling with performance description, we were able to form a
preliminary assessment of workload. More specifically, as a direct measurement of change
in psychophysiological status, the measure of physiological signals was assumed to directly
reflect and measure the cycling workload.

According to the literature on workload measurement, there are three main measure-
ment types: performance-based, subjective, and physiological measures [21]; their application
and final arrangement in this research were analyzed and summarized as follows.

(1) Performance Measures for Cycling Workload

The two approaches to measuring performance for workload are based on primary
and secondary tasks, respectively, and the theoretical background is the assumption that
humans have limited attention resources. For example, in driving workload, the primary
tasks used include steering wheel movements, lane-keeping, and speed control [21]. Speed
choice [16] and lateral distance [22] are the measures of primary tasks that are used to
evaluate safety status during the cycling task. For secondary task measurements, the
peripheral detection task (PDT) [16] is the measure used in e-bike cycling tasks. Secondary
task measurements may disrupt the primary task, which is a major problem [21]. Cycling
speed performance for traditional bicycles can be impacted by the performance of the
selected bicycle. So, lateral distance is a promising measure for performance measurement.
However, it was not chosen here due to the current technical limitation of our experimental
conditions, which required a high degree of accuracy. Hence, these performance measures
were not applied in this study.
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(2) Subjective Scale for Cycling Workload

There are four commonly used subjective scales for workload classification: the NASA
task load index (TLX), the Cooper–Harper scale, and the Subjective Workload Assessment
Technique (SWAT) are mainly used to assess mental workload; while Borg’s Perceived
Exertion and Pain Scales (RPE) is typically used for assessing physical workload. RPE is the
most popular subjective scale for assessing stationary ergometer cycling [19,23]. However,
as mentioned in the previous section, dynamic cycling involves both physical and mental
workloads; if there are too many classification levels for cyclists to identify the exact level
during a given cycling task, then there is potential for additional mental workload, which
would affect the results. Additionally, the unidimensional rating scale is also a good choice
for practical experiments because it is fast, easy, and not distracting [21].

Given the principle of practical and easy operation, by combining cognitive psychology,
information processing, and cycling risks, this study classified cycling status into a three-
level system. This system had the capacity to qualitatively describe cycling workload
surrounding feelings of safety and comfort and the corresponding performances, which
were formulated based on interviews and surveys with cyclists who just completed their
cycling task. The cycling workload increased from Level 1 to Level 3 in turn, as shown in
Table 1.

Table 1. Subjective scale for the cycling workload level.

Cycling Workload Level Subjective Scale Description Cycling Performance

Safe, comfort
In the best condition; feeling

energetic, awake, calm, free to
ride, and quick to react

Plenty of riding space, the
bicycle is safe and easy to

handle, and it is easy to stay
riding at a certain width

Safe, a little stressful
Sober; can respond; a little

more alert; able to deal with
emergencies

Riding space is small and the
handlebars of the bicycle
wobble more but are still

controllable

Stressful
Cannot fully adapt to the road

conditions; riding control is
hectic, nervous, worried

Lack of riding space; large
swing of the bicycle; difficult
to control handlebars; need to

use brake or stop

Additionally, one subject matter expert—whose expertise was traffic safe engineering—
was invited to validate this subjective scale; the results of this validation are shown in
Table 2.

Table 2. Results of Subject-Matter-Expert Validation.

No. Indicator Items Percentage (%)

1 Content Feasibility 2 aspects 83
2 Evaluation 3 aspects 86
3 Efficiency and Effectiveness 4 aspects 90

Total 9 aspects 87

Based on the results of the assessment, the application was within the “very good”
category (so could be used without revision), scoring 86–100%.

A subjective scale method has advantages in that it is easy to collect the data and saves
time and the method can account for differences in ability, state, and attitude [24]. However,
subjective results alone are not satisfactory or realistic and it is difficult to accurately
quantify the cycling workload using these results in isolation. The addition of objective
physiological measures can compensate for the weaknesses of the subjective scale and
make the results more reliable.



Appl. Sci. 2022, 12, 10209 6 of 17

(3) Physiological Indicator of Cycling Workload

Although there is little specific research on objective physiological quantification
measurements for dynamic cycling workload, the relevant research on driving workload
can be referred, analyzed, and screened to choose a suitable indicator; regardless of whether
one is assessing cyclists or drivers, the research subject for measurement is the same—
human factors. The difference is that the chosen indicator for cycling workload must be
applicable to both the mental and physical workload of cycling.

Many physiological techniques such as electroencephalogram (EEG), electromyogra-
phy (EMG), electrocardiogram (ECG), respiratory rate and electrodermal activity (EDA),
have been adopted as measuring methods to quantify workload in different research
fields [25,26]. EEG has been commonly used in the aircraft field due to its sensitivity;
however, the data are hard to interpret and EEGs are so sensitive that the results can be
affected by several potential factors not related to workload [27]; EEG is not a fit measure
for the driving field experiment due to operational problems [21]. EMG is an objective
measurement tool that is mainly used in ergonomic and occupational fields to study muscle
strain during work and make recommendations for work design [28]; it has been recom-
mended for use in static cycling as mentioned in Section 1, but there is no evidence for its
validity in assessing mental workload. EDA has been found to be sensitive to secondary
tasks and therefore was recommended for workload measurement and prediction [29].
However, it has been proven to be sensitive only in sudden workload changes rather than
in gradual ones [30] and EDA results are impacted by environmental temperature, which
means it is unsuitable for field tests. ECG is the most widely used workload-measurement
techniques in driving tasks [26]. Among all the ECG indicators, heart rate (HR) and heart
rate variability (HRV) are the most commonly used ECG indicators to measure drivers’
workload during a driving or tracking task [31]. Although HR is a common measure
for cardiac monitoring, it has been reported that HR cannot measure absolute levels of
workload, only relative levels [32,33].

In addition, some researchers have classified workload using physiological data,
mainly in the driving and aviation domains, where ECG [34–37] and EEG [38–41] are the
most commonly adopted physiological techniques. Although most of the research studies
clearly presented the workloads of driver and pilot as mental workload (MWL), ECG has
been used to evaluate static cycling workload and promising results have been derived,
particularly for HRV [42,43]. Based on the literature analysis for the pros and cons of
the available physiologic metrics, we inferred that HRV can objectively express cycling
workload and effectively accounts for both the mental and physical aspects.

According to theory surrounding HRV [44], there are two methods for the analysis of
HRV; i.e., time-domain methods and frequency-domain methods (sometimes called time
analysis and spectral analysis, respectively). Frequency-domain methods have two types
of records—short-term records (2–5 min) and long-term records (24 h period). Due to time
considerations, HRV data in studies usually choose the fluctuations between consecutive
instantaneous heart rates for short-term records. There are three main components in the
HRV power spectrum—very low frequency (VLF), low frequency (LF), and high frequency
(HF). Researchers have shown that an increase in LF is associated with sympathetic ac-
tivity and a reduction in HF is linked to parasympathetic activity, so an increase in the
LF to HF ratio (LF/HF) reflects increases in sympathetic nerve excitability. Among the
various frequency-domain HRV measures, LF/HF is the most widely used measure [26].
Additionally, LF/HF is a simple and effective detection index; an increase in the LF/HF
is an indicator of an increment in mental workload [45]. There is also evidence [46] that
the LF/HF value has the largest correlation coefficient factor with HRV; this finding is
significant in the evaluation of physical workload [47,48].

On the basis of theoretical analysis and the applicability to cycling workload, this
study selected LF/HF for HRV as the physiological measurement indicator and combined
the proposed subjective scale to explore the cycling workload quantification method. In
order to obtain the limit value of the physiological signal (LF/HF) under various cycling
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workload statuses, a field cycling experiment—using different bikeway characteristics
impacting cycling workload—was designed and executed.

3. Methods and Materials

According to the literature review and analysis of the measurement of cycling work-
load, we designed a field experiment to test our hypothesis that, combined with subjective
scales for workload level, the LF/HF physiological signal could quantitatively express
cycling workload.

3.1. Field Cycling Experiment Scheme Design

As stated in previous sections, there are many variable bikeway characteristics that
can be categorized as geometric elements (cycling width, curve radius, and longitudinal
gradient, etc.) and facility design (e.g., separation type—barrier, pavement marking, and
curb); these impact cyclists’ safety and comfort and reflect cycling workload. In addition,
cycling speed has a specific influence due to the necessary physical effort. Hence, in order
to measure cycling workload and to obtain threshold values, it is important to control
different stress and comfort conditions for cyclists, which can be realized by arranging
different combinations of typical bikeway characteristics such as narrow and wide cycling
widths with different speeds.

So, we designed a field cycling experiment to be carried out in a variety of conditions
on a straight section of a bike path—such as varying the roadway edge, cycling speeds,
directions, and widths (see Figures 2–4, respectively)—to simulate scenarios that led to
changes in cycling workload. It was decided that the test road should be free of motor
vehicles and e-bikes in order to accurately reflect the circumstances of a true exclusive
bicycle path where a cyclist’s behavior was the only variable; here, their own requirements
were the only consideration for the road users while ensuring the safety of the participants.
Therefore, the site for the test road was selected on a university campus with asphalt
concrete and flat pavement—these were selected to avoid any unpleasant feelings that
might be caused by pavement materials or surface. The test road segment was 280 m long,
with an additional 70 m long pretest road for cyclists’ adaptability. Moreover, various
widths of the test road were established and organized as shown in Figure 2, in accordance
with the minimum width specifications of various international standards (Table 3). Figure 3
illustrates a variety of road edge scenarios, including curb + barrier and curb + marking
scenarios. Figure 4 depicts the cycling direction conditions, including single-file, one-
way abreast cycling, and two-way cycling. The tested cycling speeds for all these road
scenarios were in the range of 10–25 km per hour. The final settings of test road scenarios
are presented in Table 4.
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Table 3. Basic cycling widths in the guidelines of various countries or regions.

Country/Region Minimum
Width (m) Scenarios

Netherlands (CROW, 2017) [8] 1.0 Consider clearance between cyclists
U.S.A (AASHTO, 2012) [9] 1.2 Minimum operating for single cyclist

UK (TSO, 2020) [10] 1.0 Bicycle width and wobble width
Australia (Austroads, 2017) [11] 1.0 Minimum path width

China, mainland (MOHURD, 2016) [12] 1.0 Bicycle width and wobble width
China, Taiwan (PD, 2017) [13] 0.80 Minimum path width

Ireland (NTA, 2011) [14] 0.75 Minimum single-file regime
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Table 4. Different scenarios and width arrangements of the test road (m).

Road Edge
Condition

Direction Scenario
Speed (km/h)

10 15 20 25

Curb + Marking Single-file 0.75, 0.8, 0.9 0.75, 0.8, 0.9 0.8, 0.9, 1.0 0.8, 0.9, 1.0
One-way abreast cycling 1.4,1.5,1.6 1.5,1.6,1.7 1.6,1.7,1.8 1.6,1.7,1.8

Curb + Barriers

Two-way cycling
0.75 + 0.75 0.8 + 0.8 0.8 + 0.8 0.8 + 1.0

0.8 + 0.8 0.8 + 1.0 0.8 + 1.0 1.0 + 1.0
0.8 + 1.0 1.0 + 1.0 1.0 + 1.0 1.0 + 1.2

3.2. Tested Cyclists and Typical Bicycle

Tested cyclists: All cyclists who participated in the field experiment were in excellent
health and were able to respond to a typical riding reaction (i.e., they had normal or
corrected eyesight and cycling experience, and they had no history of waist or leg injuries
or cardiovascular diseases). According to a site survey on a Beijing bicycle path where only
human-powered bicycles were allowed, a 74:26 (male: female) gender ratio was found in
the survey results. Accordingly, we randomly recruited 24 cyclists (18 males and 6 females)
to fulfill the above requirements; their mean age was 26.5 years (SD = 1.90). Since our
experiment involved human factor engineering, the sample size (24 participants) was
chosen in accordance with the typical experiments that consider human factors [49,50],
which indicated that 24 participants should be sufficient to obtain a power above 0.95 for
statistical analysis.

Typical bicycle: According to the site survey in Beijing, the bicycle-type ratio of rental
bikes to sports bikes to ordinary bikes was 56:38:6. Therefore, the most commonly used
bike—the rental bike—was chosen as the typical bicycle for this study. In accordance
with the requirements of the critical state principle, the rental bicycle of the largest size
used in the city was selected. This bicycle had the following measurements: handlebar
width—620 mm; outer wheel diameter—700 mm; total length—1700 mm; height of the
handlebars from the ground—990 mm (Figure 5). The observation data indicated that
healthy and non-athletically trained individuals with excellent physical condition could
ride at a speed of 10–25 km/h. Consequently, the study adopted 10, 15, 20, and 25 km/h
for the test speeds with 5 km/h as the interval.
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3.3. Apparatus for Field Cycling Test

Data analysis software was used to obtain the representative HRV indicator—LF/HF—
from a wearable, wireless, dynamic multi-parameter physiological detector (BodyMon
KF-2), as illustrated in Figure 6a. Figure 6b presents a speedometer that was adopted to
monitor the cycling speed of cyclists during the preparatory cycling period and to ensure
the required speeds for the test were attained—the tested cyclists were required to note
and maintain the status of the riding pedals to maintain the corresponding cycling speed.



Appl. Sci. 2022, 12, 10209 10 of 17

Furthermore, to ensure the required lane width setting, other accessories such as bicycle
lane marking strips, barriers, and measuring tapes were used to complete the tests.
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Figure 6. Main apparatus used in the field experiment. (a) BodyMon KF-2; (b) speedometer.

3.4. Test Procedure

Test preparation: All tested cyclists were informed on the procedure of the study and
signed an informed consent form. They were labeled as No.1–No.24 for easy identification
as soon as they arrived. They were required to understand subjective scales for qualitative
assessment, as per Table 1, which combined the cycling performance of all workload levels
(as shown in Table 5). Thereafter, they were equipped with the KF-2 and a researcher was
arranged to record the KF-2 data—(LF/HF)i—of all the tested cyclists in calm status as
the baseline LF/HF data, where i stands for 1–24. Then, the participants carried out a
familiarization ride to adapt to the test apparatus; this ensured that all the measurement
and recording processes would not impose an extra workload for them during the formal
test riding. During the familiarization ride, a researcher rode behind the participant ready
to help in case problems arose with the apparatus or the bicycle.

Table 5. Subjective scale for qualitative evaluation the cycling workload.

Tested Cyclist No. Marking + Curb �
Barrier + Curb �

Road Width:
Speed:

Single-file � Two cyclists side by side � Two-way cycling �

Start time End time
Specific description Tick Specific description Tick

Handlebar swing serious � Front wheel swing �
Hard to hold handlebar by hands � Handlebar wobble more but controllable �

Hard to keep riding at specific width � Easy to keep riding at this width �
Need to break down or stop � Free cycling and easy handle �

The specific test steps of the field cycling experiment were arranged as follows:

(1) The required lane width of 0.75 m from the curb face to the inner edge was set as per
the test arrangement shown in Table 4 with measuring tapes (the lowest count was
in mm).

(2) Tested cyclist No.1 cycled on the pretest road until their speed reached 10 km/h.
(3) Tested cyclist No.1 entered the test road by maintaining the pedaling frequency and

riding status to maintain the designated speed.
(4) The recorder took note of tested cyclist No.1’s start time, end time, test lane width, test

scenario, and test speed.
(5) The KF-2 data (LF/HF)11 of tested cyclist No.1 were assessed and documented prop-

erly in detail after they completed test 1 (width—0.75 m; speed—10 km/h; direction—
single-file; road edge—marking + curb) to ensure validity of experimental data.
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(6) Test 1 was repeated for the remaining 23 tested cyclists with same test protocol that
was used for tested cyclist No.1.

(7) For test 2, the test speed was changed to 15 km/h (width—0.75 m; speed—15 km/h;
direction—single-file; road edge—marking + curb) and the same procedure as for
test 1 was used (with 10 km/h speed). Tested cyclists No.1–No.24 completed test 2 in
accordance with steps 1–6.

(8) The test lane width was increased from 0.75 m to 0.8 m for tests 3, 4, 5, and 6
(width—0.8 m; speed—10, 15, 20, and 25 km/h; direction—single-file; road edge—
marking + curb). For each test, steps 1–6 were repeated by tested cyclists No.1–No.24
with the amended characteristics.

(9) Then, the test lane width was increased to 0.9 m for tests 7, 8, 9, and 10 at speeds
of 10, 15, 20, and 25 km/h. For each test, steps 1–6 were repeated by tested cyclists
No.1–No.24 with the amended width.

(10) The test width was then changed to 1.0 m for tests 11 and 12 (width—1.0 m, speed—20,
15 km/h, direction—single-file, road edge—marking + curb). For each test, steps 1–6
were repeated by tested cyclists No.1–No.24 with the amended characteristics.

(11) The test direction scenario was changed to two cyclists (side by side and two-way
cycling) one after another. The test procedure steps 1–10 were repeated with the
cyclists in pairs from tested cyclists 1 and 2 to cyclists 23 and 24. The differences here
were the required test widths and speeds, which—for both one-way abreast cycling
and two-way cycling—were set according to Table 4.

(12) All the tests were repeated by replacing the markings with a barrier and the corre-
sponding scenarios were set as per Table 4. The test processes for this step were similar
to those with markings as outlined in step 1.

4. Results and Analysis
4.1. Individual Difference Removal for LF/HF Data

After the cycling experiment, physiological data reflecting cycling workload were
obtained under various scenarios. A one-way analysis of variance (ANOVA) was performed
to determine the effect of the individual on the real-time (LF/HF)ij. We used 72 different
scenarios (two edge types × four speeds × three widths × three direction routes, as per
Table 4) that were experienced by all 24 participants. In the data of 24 participants for each
specific scenario, we found significant differences among the tested participants (p < 0.05),
which may have been due to differences in gender, age, riding frequency, and proficiency.
In order to overcome the large variance values among individual cyclists, the calculation
formula shown in Equation (1) was used: real-time physiological data (LF/HF)ij with
(LF/HF)i, which stands for physiological data (LF/HF) when the cyclist No. i was in a calm
condition, was deducted. This calculation was used to modify the HRV measurements.

∆HRV =

(
LF
HF

)
ij
−

(
LF
HF

)
i

(1)

where
∆HRV: correction of HRV;(

LF
HF

)
ij

: the LF to HF ratio of the i-th cyclist at time j in cycling condition;(
LF
HF

)
i
: the median of LF to HF ratio of the i-th cyclist in a calm condition.

4.2. Correlation between ∆HRV and Subjective Scale Level

Since the subjective scale levels were the ordinal dependent variables, ordinal re-
gression (PLUM) could predict whether the ∆HRV values had a statistically significant
effect on the subjective scale levels. The PLUM analysis carried out using SPSS Statistics
25 demonstrated that the ∆HRV values had a significant effect on the cycling workload
subjective scale levels (p < 0.001). An increase in ∆HRV per unit was associated with an
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increase in the odds of subjective stressful level, with an odds ratio of 1.060 (95% CI, 1.037 to
1.084), Wald χ2(1) = 26.494, p < 0.001. Additionally, for the different subjective levels, since
the ∆HRV values of each level did not satisfy the normal distribution, the nonparametric
test method with unknown overall distribution (the Kruskal–Wallis test—used for more
than two independent groups) was carried out to test the significance of ∆HRV values
among different subjective levels. The results suggested that H(2) = 85.77 and p < 0.001,
which meant the difference between subjective levels was statistically significant.

The relationship of ∆HRV values between different subjective levels is shown in
Figure 7, which clearly indicates that when the subjective scale level increased and the
∆HRV values were increased, the ∆HRV in Equation (1) could be used to express the cycling
workload model (where the ∆HRV value represents cycling workload). This proved that
cycling workload could effectively express and quantify the safe and comfortable status of
a cyclist.
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4.3. Classification of Cycling Workload Level

The effective sample size of the test results for ∆HRV and qualitative cycling workload
level was found to be 9485 of the total 13,824 samples collected during the field cycling
tests. In the pre-processing of the cycling workload data using ANOVA, we found that
in most cases, there was no significant difference between genders for the ∆HRV value.
After cleaning the data to remove unrealistic or extreme data—possibly caused by extreme
conditions of human error or poor contact of electrode buttons due to sweat—we used the
85th percentile of the 24 cyclists’ ∆HRV data to analyze the final results, which meant the
data reflected the value below which 85% of the cyclists’ data could be found.

Since the classification and regression tree (CART) algorithm can be used to predict
outcomes based on certain predictor variables [51] and has been successfully adopted
in driving workload classification research based on the variable of the physiological
signal [36], we employed a CART algorithm to classify the valid test data based on a
machine learning process. Of the sample size, 80% was randomly selected as the training
sample to obtain a CART model while the remaining 20% was adopted as a verification
sample for the classification results.

The process started from one root node and eventually traversed all the training data
to finally find the split point that minimized the classification error. After the split point
was generated, the root node was correspondingly divided into two sub-nodes and the
same division is continued until the division error of a leaf node was reduced to less than a
certain value. According to the process—and because cycling workload is a continuous
process—we combined the corresponding subjective scales and the stopping criteria was
defined a minimum change in impurity equal to 0.3. The data-mining processes were
conducted via SPSS modeler 18.0. After the CART process, the classification tree diagram
was obtained as shown in Figure 8 with four leaf nodes.
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Finally, the cycling workload classification thresholds were obtained as shown in
Table 6.

Table 6. CART classification thresholds.

Cycling Workload Classification Threshold

Normal workload (safe, comfort) ∆HRV ≤ 19
Higher workload (safe, a little stressful) 19 < ∆HRV ≤ 79

Highest workload (stressful) ∆HRV > 79

5. Discussion and Conclusions

Cycling is an increasingly popular mode of transportation thanks to its healthy and
environmentally friendly effects. However, a high cycling workload caused by an inap-
propriate design of the geometric elements and facilities of bikeways contributes to the
rates and severities of bicycle accidents. Without a quantitative expression method and
safe threshold values to determine cycling workload, it is hard to control the workload
effectively; furthermore, it is difficult to reduce the concerning social and economic losses
caused by bicycle accidents.

In this paper, a cycling workload definition for dynamic cycling was proposed to
reflect cyclists’ feelings of safety and comfort while considering their formation mechanism.
Based on the concept proposed here for cycling workload, a cycling experience interview
survey, and interdisciplinary integration, a corresponding subjective scale was put forward;
this scale categorized cycling workload into three levels—comfortable, a little stressful,
and stressful. Furthermore, in accordance with the existing literature, the measurement
techniques used for workload conditions causing physiological reactions were analyzed;
HRV measurements and indicator LF/HF values were finalized to objectively quantify
the cycling workload. In addition, a field cycling experiment was arranged to obtain a
variety of cycling workload statuses by establishing various cycling widths, speeds, and
bikeway edges to reflect typical bikeway characteristic scenarios. A quantification model
was built to quantify cycling workload. Finally, the classification thresholds of three cycling
workload levels were obtained using a CART algorithm, with the ∆HRV threshold between
“a little stressful” and “comfortable” being 19 and that between “a little stressful” and
“stressful” being 79.

Our research results, which provide support for the method of measuring cycling
workload, comprised a physiological metric of ∆HRV combined with a subjective scale.
This method of quantitatively expressing cycling workload can be used for measurement
and evaluation of the effects of bikeway characteristics such as lane width and separation
facilities. This can contribute to the design of safe and comfortable bikeways and their
operational management to reduce the risk of bicycle accidents and provide theoretical
and practical support for determining the reasonable technical parameters for bikeway
characteristics. Additionally, it can be conducive to the formulation of policies that aim for
carbon neutrality; such policies will promote the use of healthy and sustainable bicycle
transportation, particularly in areas where bicycle transportation is in great demand for
commuting purposes. Moreover, if cycling workload is kept within a comfortable range,
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then accident risk will be more easily controlled, since high cycling workload—i.e., with
∆HRV values over 79—can result in a higher risk of bicycle accidents, which cause severe
life, social, and economic losses.

By utilizing the quantitation method and classification levels for assessing cycling
workload that were obtained in this research, the indicator threshold limit values of bikeway
characteristics—which ensure cyclists’ safety and comfort (meaning the conditions ensure
that cyclists’ ∆HRV values are within a level of safety and comfort)—can be inferred to
guide future safety design standards for bikeways. For already-built bikeways, these limit
values can be used to assess the safety operation conditions for further improvement. If
the characteristics of existing bikeways cannot be improved due to economical or technical
difficulties, then safety facilities and signage in the corresponding segment should be
adapted to remind cyclists to cycle with caution to mitigate the potential safety risk.

As mentioned in Section 2, the mutual research subject that was used in assessing both
driving workload and cycling workload—the human factor—meant that the physiological
measurement indicators used in these studies was similar. Direct evidence for this point
is that HRV—a physiological assessment technique—can be adopted as a valid safety
measurement to evaluate highway geometric design for motor vehicles [36] with the
same physiological indicator (LF/HF) representing a driver’s physiological reactions and
their safe and comfortable driving status. Nevertheless, due to the different workload
types—i.e., driving workloads mainly focus on mental aspects while cycling workloads
depend on both mental and physical aspects—the results of classification levels (five for
driving workload versus three for cycling workload) and the corresponding thresholds
have been proved to be different [36]. We think this is because the relationship curve
between driving workload and performance is an inverted ”U” shape [52], whereas cyclists’
performances decrease with workload increase due to their additional and continuous
physical pedaling activity. In addition, the comfort and safety evaluation models are also
different: the model of driving workload involves speed due to its linear relationship with
∆HRV under driving conditions (as shown in the mentioned study [36]), while there is no
specific linear relationship between the cycling speed chosen by cyclists and ∆HRV (as per
our experiment results).

This study was conducted using human-powered bicycles because our prior trial
experiment showed that there was no specific rule for the physiological signals of e-
bike cyclists. We supposed that this was because the workload for e-bike use mainly
involves mental workload, making it distinct from human-powered cycling workload;
this assumption was in accordance with the premise of existing research that adopted
secondary task measurements for e-bike workloads [22]—this provides further proof that
the cycling workload should not be regarded as only a mental workload. Hence, for e-bike
and human-powered bicycle mixed-traffic conditions—the major traffic type in urban non-
motorized vehicle lanes—our quantitative measurement method requires further study
and verification before application.

In this study, several bikeway characteristics—such as lane width, bikeway edge,
cycling direction—comprised the variety of cycling workload scenarios used to test cyclists.
There are many other bikeway characteristics that are relevant to this discussion such as
the horizontal curve radius and longitudinal slope and length; the indicator values of these
characteristics could be directly connected with workload quantification measurements.
The potential for significant correlations between these elements and physiological effects
and how they relate to cycling workload can be explored further; such further research will
be helpful in directing dedicated bikeway design standards.

In addition, we chose the physiological indicator ∆HRV as the objective cyclist mea-
surement technique. Other objective measures could be used to reflect cyclists’ perfor-
mance (performance-based measures), such as the lateral position of a cyclist on the cross-
section [21,53]. Consequently, the application of other effective measurement approaches
and their relationship with cycling workload should also be explored further.
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