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Abstract: Landslide susceptibility assessment is an effective non-engineering landslide prevention at
the regional scale. This study aims to improve the accuracy of landslide susceptibility assessment
by using an optimized statistical index (SI) method. A landslide inventory containing 493 historical
landslides was established, and 20 initial influencing factors were selected for modeling. First, a
combination of GeoDetector and recursive feature elimination was used to eliminate the redundant
factors. Then, an optimization method for weights of SI was adopted based on Gaussian process
regression (GPR). Finally, the predictive abilities of the original SI model, the SI model with optimized
factors (GD-SI), and the SI model with optimized factors and weights (GD-GPR-SI) were compared
and evaluated by the area under the receiver operating characteristic curve (AUC) on the testing
datasets. The GD-GPR-SI model has the highest AUC value (0.943), and the GD-SI model (0.936) also
has a higher value than the SI model (0.931). The results highlight the necessity of factor screening
and weight optimization. The factor screening method used in this study can effectively eliminate
factors that negatively affect the SI model. Furthermore, by optimizing the SI weights through GPR,
more reasonable weights can be obtained for model performance improvement.

Keywords: landslide susceptibility; statistical index; Gaussian process regression; GeoDetector;
recursive feature elimination

1. Introduction

Landslide is a natural disaster that can be defined as the movement of rock, dirt,
or debris down a slope [1]. Landslides are common around the world and commonly
occur in mountainous areas, posing varying degrees of threat to people’s life and property
safety [2]. Froude and Petley [3] conducted a temporal and spatial analysis of the global
data set of fatal non-seismic landslides from January 2004 to December 2016. Their data
showed that 55,997 people were killed in 4862 different landslide events, with Asia being
the major region suffering from landslide disasters. In addition, the number of landslides
caused by human activities is increasing. Landslide susceptibility mapping (LSM) is an
effective risk assessment method used for landslide prevention and control. In recent
years, various models have been applied to landslide susceptibility mapping. Improving or
innovating these models to obtain more accurate mapping is a major difficulty in landslide
susceptibility assessment studies [4].

At present, quantitative models applied to landslide susceptibility assessment can
be divided into four categories: physical-based models, opinion-driven models, bivariate
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statistical models, and machine learning-based models [5]. Physical-based models are
suitable for local-area scale mapping and analysis and have a strong landslide warning abil-
ity [6]. However, because of the large amount of required field survey data, the evaluation
process is complicated and expensive, making it unsuitable for landslide risk evaluation in
large-scale areas [7]. Opinion-driven models such as the analytical hierarchy process [8],
step-wise assessment ratio analysis [9], and analytical network process [10] have also been
applied in numerous landslide susceptibility studies. In these models, evaluation is based
on existing expert knowledge, and the evaluation process does not follow a consistent
standard, making quantifying the results difficult. Bivariate statistical models are infor-
mation mining methods based on statistics, such as frequency ratio (FR) [11,12], statistical
index (SI) [13], certainty factor (CF) [14], and evidence weight [15]. This type of model is
straightforward to implement, easy to understand, and has satisfactory prediction perfor-
mance. More recently, due to the growing development and maturity of big data mining
techniques, machine learning has become a hotspot in the field of landslide susceptibility
research owing to its powerful data analysis and prediction abilities. In essence, machine
learning and multivariate statistical analysis intersect. Further examples including logistic
regression (LR) [16,17], random forest [18–20], support vector machine [21,22], artificial
neural network [23,24], and other algorithms, have been applied in landslide susceptibility
assessment with advanced prediction performance. In addition to the above models, hybrid
methods utilizing multiple model types also achieved excellent performance [25,26].

Statistical models and machine learning-based models are the most widely used quan-
titative analysis models. However, both types of models have specific disadvantages.
Although machine learning-based algorithms have high predictive accuracy, their underly-
ing rules are complicated and difficult to express intuitively. Hence, they are not conducive
to analyzing the relationship between landslides and factors [27,28]. Bivariate statistical
models overcome this problem [29,30], but they employ a certain irrationality in the distri-
bution of weights, which decreases their predictive accuracy. According to Tobler’s first law
of geography, objects that are close to each other in geographical space are also more closely
related [31]. For models such as SI and FR, each class has the same weight. For continuous
factors such as altitude, this leads to sudden changes in the weights at the boundary of
different classes, and similar factor values have completely different weights. In the same
class, different factor values have the same weight, which is unreasonable [9,32,33].

Model quality is directly related to the accuracy of its evaluation, but the selection of
influencing factors also affects landslide susceptibility evaluation results [34]. At present,
popular factor screening methods include the information gain ratio [35], variance inflation
factors [36], recursive feature elimination (RFE) [37], rough set [38], principal component
analysis [39], Pearson correlation coefficient [40], and Spearman correlation coefficient [41].
In addition, the GeoDetector method proposed by Wang et al., (2010) effectively uses spatial
information of data to identify the primary factors affecting a certain phenomenon [42,43].
This has been innovatively applied to landslide susceptibility analysis [44,45].

This study aims to develop a hybrid optimization method for the SI model. This
method optimizes the SI weight through GPR, which can avoid the irrationality of the
bivariate statistical model mentioned above and improve the accuracy of landslide suscep-
tibility assessment. In addition, the integration of GeoDetector and RFE is used to further
optimize landslide influencing factors used for modeling. The area along Duwen highway
in Sichuan Province, China, was used as the study area. A landslide inventory was created,
and the overall performance of the SI model, SI model with optimized factors (GD-SI), and
SI model with optimized factors and weights (GD-GPR-SI) were compared and analyzed.

2. Materials
2.1. Study Area

The study area stretches along the Duwen Highway (see Figure 1), located in Sichuan
Province, China. Its geographic coverage is 103◦36′ E–103◦64′ E longitude and 30◦94′ N–
31◦52′ N latitude, with an area of 922 km2. The Minjiang River, an important branch of the
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upper reaches of the Yangtze River, is the main river in the study area. Many hydropower
structures have been built along this river to provide energy for nearby areas. The Duwen
Highway is built along the basin. In addition, many roads are distributed throughout the
study area. On 12 May 2008, an earthquake with a magnitude of Ms 8.0 occurred in the
study area, leading to a large number of secondary disasters, including a large number of
landslides [46].
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Figure 1. Landslide inventory map and location of the study area: (a) location of Sichuan Province in
China; (b) location of the study area; (c) study area and landslide inventory map.

The altitude in the study area varies significantly. The lowest altitude is ~734 m, and
the highest altitude is ~5280 m, providing favorable conditions for landslide formation [47].
The study area has a continental monsoon climate. The annual rainfall is 800–1300 mm [45].
There is a wide range of stratigraphic outcrops in the study area, primarily Triassic in
age. The area has good vegetation coverage and is primarily covered with forests. Hard
rocks are mainly distributed in the north and middle of the study area, while soft rocks are
primarily distributed in the southern regions. In addition, the exposed bedrock is primarily
composed of granite, diorite, limestone, phyllite, sandstone, and granite [48].

2.2. Landslide Inventory

An accurate landslide inventory map is the basis for effective landslide susceptibility
assessment [35]. Landslide data in this study originates from a 0.5 m resolution multi-
band remote sensing image obtained by the Pleiades satellite in 2014. Based on remote
sensing image interpretation and field investigation verification, 493 historical landslides
were identified in the study area. According to the Varnes classification system [49], the
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landslides in the study area mainly belong to rock fall, and a small part of them belong
to debris fall and debris flow. The total landslide area is 15.6 km2, accounting for 1.69%
of the study area. The average area, maximum area, and minimum area of landslide are
0.032 km2, 0.991 km2, and 0.00041 km2 respectively. Roads in the study area are the main
infrastructure that suffers from landslide damage, causing enormous economic losses. In
this study, the geometric center of the landslide surface is taken as the landslide point.

According to the data and prior knowledge, a 30 m × 30 m grid was selected as the
basic evaluation unit. Consequently, 1,024,455 grids were created for the study area, and
493 landslide points were located in different evaluation units, with a total of 493 landslide
units. By random sampling, 70% (345 landslides) of landslides were used as training data
for modeling, while the other 30% (148 landslides) were used for testing. A landslide
inventory map was established using these data (see Figure 1a).

2.3. Landslide Influencing Factors

The selection of influencing factors is a key step in landslide susceptibility model-
ing [30]. The formation mechanism of a landslide is complicated, and its occurrence is
the result of numerous factors [36,50]. Factors affecting the emergence of a landslide vary
with different study areas. Therefore, at present, there is no definite rule for the selec-
tion of landslide influencing factors [33,51]. According to previous studies [5,44,45,47,52]
and data availability, the landslide influencing factors in the study area are divided into
four categories, and 20 factors were selected as the initial factors. These include topo-
graphic factors (altitude, slope, aspect, plan curvature, profile curvature, degree of relief,
and topographic wetness index (TWI)), geological factors (lithology, seismic intensity, dis-
tance from fault zones, and stratigraphy), ecological factors (distance from main rivers,
distance from streams, annual rainfall, normalized difference vegetation index (NDVI),
land cover, and soil erosion intensity), and factors related to human engineering activities
(distance from roads, residential kernel density, and distance from hydropower stations).
Land cover data originates from GlobeLand30 (http://www.globallandcover.com/, ac-
cessed on 21 April 2021), and the NDVI data originates from Geospatial Data Cloud
(http://www.gscloud.cn/, accessed on 7 August 2021). Topographic factors including
altitude, plan curvature, profile curvature, slope, aspect, degree of relief, and TWI, were
derived from a digital elevation model (DEM) with a 30 m resolution. All other factor data
including the DEM were provided by the Sichuan Province Bureau of Surveying, Mapping,
and Geoinformation, China.

In this study, ArcGIS (version 10.7.1, ESRI, Redlands, CA, USA) software was used
to overlay all factor layers with the landslide inventory map and then calculate the dis-
tance from roads, rivers, faults, and hydropower stations to each grid. Subsequently, all
continuous factors were reclassified according to previous studies and prior knowledge.
The equal interval method was used to classify distance factors (such as rivers and roads,
and this method was also applied to annual rainfall due to the availability of data). Specific
factors, including plan curvature, profile curvature, and aspect, were classified based on
the experience provided by previous studies [9,30,53]. Other factors were classified using
the Jenks natural breaks method. Table 1 shows the specific classification of each factor,
and Figure 2 shows the reclassified factor layers.

http://www.globallandcover.com/
http://www.gscloud.cn/
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Table 1. Classification of landslide influencing factors.

Category
Attribution Factor Data Type Reclassification

Method Class

Topographic

Altitude (m) Continuous Equal interval 1. 734–1000; 2. 1000–1400; 3. 1400–1800; 4.
1800–2200; 5. 2200–2600; 6. >2600

Slope (◦) Continuous Jenks natural breaks 1. 0–12.58; 2. 12.58–27.06; 3. 27.06–36.79; 4.
36.79–44.57; 5. 44.57–52.98; 6. >52.98

Aspect Continuous Expert knowledge
1. Flat; 2. North; 3. Northeast; 4. East; 5.

Southeast; 6. South; 7. Southwest; 8. West;
9. Northwest

Plan curvature Continuous Expert knowledge 1. <−0.001(Concave); 2.
−0.001–0.001(Plan); 3. >0.001(Convex);

Profile curvature Continuous Expert knowledge 1. <−0.001(Convex); 2.
−0.001–0.001(Plan); 3. >0.001(Concave);

Degree of relief (m) Continuous Jenks natural breaks 1. 0–8.92; 2. 8.92–16.52; 3. 16.52–22.97; 4.
22.97–30.94; 5. 30.94–43.98; 6. >43.98

Topographic Wetness
Index (TWI) Continuous Jenks natural breaks 1. 2.16–4.51; 2. 4.51–5.67; 3. 5.67–7.18; 4.

7.18–9.54; 5. >9.54

Geological

Lithology Categorical —— 1. Loose deposits 2. Very soft rock; 3. Soft
rock; 4. Hard rock; 5. Very hard rock

Seismic intensity Categorical —— 1. VIII; 2. IX; 3. X; 4. XI

Distance from fault
zones (m) Continuous Equal interval

1. 0–500; 2. 500–1000; 3. 1000–1500; 4.
1500–2000; 5. 2000–2500; 6. 2500–3000; 7.

>3000

Stratigraphy Categorical ——

1. Quaternary; 2. Neogene; 3. Jurassic; 4.
Triassic; 5. Permian; 6. Carboniferous; 7.

Devonian; 8. Silurian; 9. Sinian; 10.
Archean

Ecological

Distance from main
rivers (m) Continuous Equal interval

1. 0–200; 2. 200–400; 3. 400–600; 4.
600–800; 5. 800–1000; 6. 1000–1200; 7.

1200–1400; 8. 1400–1600; 9. 1600–1800; 10.
1800–2000; 11. >2000

Distance from streams
(m) Continuous Equal interval 1. 0–100; 2. 100–200; 3. 200–300; 4.

300–400; 5. 400–500; 6. >500

Annual rainfall (mm) Continuous Equal interval 1. <800; 2. 800–900; 3. 900–1000; 4.
1000–1100; 5. >1100

Land cover Categorical —— 1. Farmland; 2. Forestland; 3. Grassland;
4. Water bodies; 5. Artificial surface

Normalized Difference
Vegetation Index

(NDVI)
Continuous Jenks natural breaks 1. <0.25; 2. 0.25–0.49; 3. 0.49–0.66; 4.

0.66–0.79; 5. >0.79

Soil erosion intensity Categorical ——

1. 11; 2. 12; 3. 13; 4. 14; 5. 15; 6. 16; 7. 31; 8.
32; 9. 33; 10. 34; 11. 35 (Levels 11–16 are
hydraulic erosion and levels 31–35 are

freeze-thaw erosion)

Human
engineering

activities

Distance from roads
(m) Continuous Equal interval

1. 0–200; 2. 200–400; 3. 400–600; 4.
600–800; 5. 800–1000; 6. 1000–1200; 7.

1200–1400; 8. 1400–1600; 9. >1600
Residential kernel

density Continuous Jenks natural breaks 1. 0–1.07; 2. 1.07–3.07; 3. 3.07–5.37; 4.
5.37–8.10; 5. 8.10–12.34; 6. >12.34;

Distance from
hydropower stations

(m)
Continuous Equal interval

1. 0–500; 2. 500–1000; 3. 1000–1500; 4.
1500–2000; 5. 2000–2500; 6. 2500–3000;

7. >3000
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Figure 2. Landslide influencing factor layers: (a) altitude; (b) slope; (c) aspect; (d) plan curvature;
(e) profile curvature; (f) degree of relief; (g) topographic wetness index (TWI); (h) lithology; (i) seismic
intensity; (j) distance from fault zones; (k) stratigraphy; (l) distance from main rivers; (m) distance
from streams; (n) annual rainfall; (o) normalized difference vegetation index (NDVI); (p) land cover;
(q) soil erosion intensity; (r) distance from roads; (s) residential kernel density; (t) distance from
hydropower stations.

2.3.1. Topographic Factors

Altitude is a commonly used factor in landslide susceptibility assessments and plays
an important role in landslide occurrence demonstrated by many studies [44,45,47,54].
Environmental conditions (such as vegetation distribution and rainfall) vary with altitude,
affecting the occurrence of landslides [30].

Slope is one of the most direct and important factors affecting slope stability [52]. With
changing slope degrees, the stress field in the slope also changes, affecting slope stability [9].
In general, the steeper the slope, the greater the chance of failure [55].

Aspect refers to the direction a slope faces, which primarily affects environmental
conditions such as soil moisture, weathering, and topographic vegetation through rainfall,
wind, and solar radiation, thereby indirectly affecting slope stability [53]. Aspect ranges
from 0◦ to 360◦, which can be divided into eight basic directions of North, Northeast, East,
Southeast, South, Southwest, West, and Northwest, as well as flat areas.

Plan curvature and profile curvature are two types of curvature commonly used
in landslide susceptibility studies to reflect the geometric characteristics of slopes. The
plan curvature affects the convergence and divergence of flow, while the profile curvature
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affects the acceleration and deceleration of flow [9,30,36,41,44]. A positive plan curvature
indicates that the slope is sideward convex, while a negative value indicates that the slope is
sideward concave, and values around zero represent flat surfaces. On the contrary, positive
and negative values of profile curvature indicate upward concave and upward convex
respectively [9,33].

The degree of relief refers to the difference between the highest altitude and the lowest
altitude in a specific area and has a regional correlation with landslide occurrence [51,52].
The calculation formula is:

R = Hmax − Hmin (1)

where R is the degree of relief of a unit area, Hmax is the altitude of the highest point in the
area, and Hmin is the altitude of the lowest point in the area.

TWI is a physical indicator of the impact of regional topography on the direction
and accumulation of runoff flow. This index helps identify rainfall-runoff patterns, po-
tential areas with increased soil moisture, and waterlogging areas, as well as quantify
the control of topography over basic hydrological processes, which is commonly used in
landslide susceptibility assessments [36,44,52,53]. In this study, TWI was calculated with
the SAGA-GIS (http://saga-gis.org, accessed on 11 July 2021) software using the following
calculation formula:

TWI = ln(AS/tanβ) (2)

where AS is the slope contributing area, and β is the slope gradient.

2.3.2. Geological Factors

Lithology is an important factor affecting slope stability, which is commonly used as
a key factor in landslide studies [41]. Changes in lithology largely alter the strength and
permeability of rocks, resulting in differences in landslide susceptibility [56]. In this study,
lithology primarily refers to rock mass strength. Classification criteria are based on the
“Engineering Rock Mass Classification Standard”, which is one of the national standards
(GB50218-2014) of China.

Earthquakes are commonly regarded as a direct factor leading to landslides, and many
scholars have defined them as a landslide-triggering factor [9,33,44,47]. The Wenchuan
earthquake in 2008 triggered a large number of landslides in the study area [57] and
indirectly led to changes in its ecological environment [45]. In this study, the seismic
intensity of the Wenchuan earthquake was used as an influencing factor and such data was
obtained from the China Earthquake Administration (CEA 2008).

Faults are another important factor affecting slope stability. Because tectonic faults
reduce the strength of the surrounding rock mass, landslides are likely to occur near
faults [53,58]. Active faults usually increase the probability of landslide occurrence [41].
The fault zones in the study area are relatively well-developed, making them prone to
geological disasters [45].

Permeability and strength of rocks and soils can vary significantly with stratigraphy
(divided by geological ages), which is closely related to the change of slope stability [53,59].
According to research [60], stratigraphy has a specific influence on the distribution of
landslides. In certain stratigraphy, the slope will be more susceptible to sliding. Therefore,
some scholars have considered this factor in the study of landslide susceptibility [5,61].
There are 10 types of stratigraphy with different geological ages in the study area.

2.3.3. Ecological Factors

Erosion of the slope toe by fluvial activity, changes in pore water pressure, and
runoff can lead to a decrease in slope stability [36,41,62]. Therefore, distance from the
river is regarded as an important factor causing landslides in the mountains [58]. In
general, the smaller the distance to the river, the lower the slope stability, resulting in an
increased probability of landslide occurrence [63]. At present, most landslide susceptibility
assessment studies have considered the influence of hydrological networks on landslides.

http://saga-gis.org
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However, rivers of different scales exert different impacts on slopes, which many studies
have ignored, hindering the accurate analysis of the impacts of rivers on landslides. In
this study, to accurately identify the relationship between the hydrological network and
landslide occurrence, the river system was divided into two categories according to the
tributary level: the distance from the main river and the distance from the stream. In this
context, the main river refers to tributaries of Grade 6 and above, and the rest are classified
as streams.

Rainfall is a major triggering factor for landslides. High-intensity rainfall will lead
to an increase in the pore water pressure inside the slope, increasing the sliding mass and
decreasing the shear strength of the rock mass, which increases the chance of landslides [9,25].
This study used the annual rainfall in the study area as a landslide influencing factor. Land
cover is closely related to the occurrence of landslides [64], as it has a certain impact on
the scale and type of landslides [33]. Different land cover types can lead to significant
differences in vegetation types and frequency of human engineering activities, resulting in
changes in landslide susceptibility [41].

NDVI is an index reflecting vegetation growth within a given area. Vegetation coverage
is closely related to runoff, infiltration, and weathering on the slope surfaces [30], affecting
the occurrence of landslides. Therefore, NDVI can be used to quantify the impact of
vegetation density on landslides [41]. The calculation formula is:

NDVI = (NIR− R)
/
(NIR + R) (3)

where NIR is the reflection value of the near-infrared band, and R is the reflection value of
the red band.

Eroded soil makes up most landslides, reflecting the long-term rainfall erosion dam-
age of landslides [65]. Soil erosion has a non-negligible effect on the occurrence of land-
slides [66]. Soil erosion intensity reflects the intensity of destruction, denudation, trans-
portation, and deposition of soil in a region under the effect of water, wind, freeze-thaw
cycles, or gravity [67]. Soil erosion modulus is the primary index for soil erosion intensity
classification. The soil erosion intensity classification standard in this study is based on
the “Classification Standard for Soil Erosion Classification” (SL 190-2008) issued by the
Ministry of Water Resources of China. There are 11 soil erosion intensity levels in the study
area, of which levels 11–16 are hydraulic erosion and levels 31–35 are freeze-thaw erosion.

2.3.4. Human Engineering Activity Factors

Landslides near highways are a common phenomenon in certain mountainous ar-
eas [30,52]. The construction of roads commonly changes the surrounding topography
and geological conditions as well as the original equilibrium state of the slope, making it
unstable [9,41,56,68,69]. Therefore, the distance from roads is an important human activity
factor affecting the occurrence of landslides [25,53,58]. In general, the smaller the distance
to roads, the greater the probability of landslides [70].

To quantify the impact of human engineering activities on landslides, different meth-
ods (e.g., HAILS and POI kernel density) have been applied to landslide susceptibility
studies to represent the intensity of human engineering activities [44,54]. The density of
settlements in a specific area highly reflects the strength of human engineering activities
in that area. Therefore, residential kernel density was used as an influencing factor to
characterize the intensity of human engineering activities.

The study area is rich in water resources, and many water conservancy projects
have been constructed, of which hydropower projects are especially common. Reservoir
landslide is a typical geological disaster in hydropower reservoirs [71]. Hydropower
projects destroy the original ecological environment and change geological conditions.
Especially during water storage and drainage, water level fluctuation in the reservoir can
destroy the stability of surrounding slopes, leading to landslides [71,72]. Therefore, the
distance from hydropower stations was taken as a landslide influencing factor.
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3. Methods
3.1. Statistical Index

SI is a binary statistical analysis [33,68]. Because of its simplicity and robustness, SI is
commonly used in landslide susceptibility studies [25,69,73,74]. This method objectively
assigns weights to each factor class by calculating the natural logarithm of the ratio of the
landslide density in a certain factor class to that of the entire study area. The calculation
formula of this method is:

Wij = ln
( fij

f

)
= ln

(
Lij
/

Aij

L∗/A∗

)
(4)

where Wij is the weight value of category j of factor i, fij is the landslide density in class j
of factor i, f is the landslide density in the entire study area, Lij is the number of landslide
units in class j of factor i, Aij is the number of units contained in class j of factor i, L∗ is the
total number of landslide units in the study area, and A∗ is the total number of units in the
study area.

After all Wij are calculated, the landslide susceptibility index (LSI) of each evaluation
unit is calculated using the following formula: LSI = ∑n

1 Wi, where n is the number of
factors, and Wi is the weight value of factor i in the evaluation unit.

3.2. GeoDetector

GeoDetector is a statistical method that can detect spatial stratified heterogeneity and
identify the underlying driving force [42,43]. This method was originally applied in the
field of health risk assessment [42] and has been widely used in various fields in recent
years, including landslide susceptibility assessments because of its powerful factor analysis
capabilities [42,44,45,52,54]. The basic assumption of the GeoDetector can be drawn as:
if the variable X (factors) has an important impact on the variable Y (landslide or not),
the distribution of them should be very similar. GeoDetector includes four detectors: risk
detector, factor detector, ecological detector, and interaction detector. This study used
the factor detector to screen for influencing factors. GeoDetector is freely available at
http://www.geodetector.org/ (accessed on 8 May 2021).

The factor detector can detect the extent to which influencing factors explain the
spatially stratified heterogeneity of a dependent variable and use the q-value to measure
this property [43]. The specific concept of the q value is:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(5)

where

SSW =
L

∑
h=1

Nhσ2
h (6)

SST = Nσ2 (7)

h = 1, 2, 3, . . . , L is the strata; Nh and N are the number of units in stratum h and the
whole area, respectively; σ2

h and σ2 are the variances of the Y in the stratum h and the whole
area, respectively; SSW is the sum of variances within the stratum, and SST is the total
variances of the whole area.

The range of q value is 0 to 1, where the larger the q value, the stronger the explanatory
power of the factor X to the variable Y. In addition, the factor detector can also calculate the
statistical significance of the q value and express it as a p value. A small p value represents
strong statistical significance [43].

http://www.geodetector.org/
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3.3. Recursive Feature Elimination

RFE is a feature screening method derived from machine learning [75]. RFE is essen-
tially a greedy algorithm based on feature sorting technology. The basic idea is to start
from the original feature set and remove the least relevant features according to the feature
importance determined by the classifier. After several iterations, multiple feature subsets
are obtained, and the optimal subset is selected based on the prediction accuracy of the
classifier. The premise of RFE is that the classifier can calculate the feature importance
(such as random forest and support vector machine).

The flowchart of the RFE method is shown in Figure 3, which mainly includes five
steps. (1) The initial feature set {F1, F2, F3, . . . , Fn} contains n features, and the classifier
is trained on this basis. (2) The importance ranking of the features in the feature set is
calculated. (3) The least relevant feature is eliminated according to the importance ranking,
and a new feature subset {F1, F2, . . . , Fk−1, Fk+1, . . . , Fn−1, Fn} containing n− 1 features is
obtained. (4) The feature subset obtained in Step 3 is taken as a new feature set, and Steps
1–3 are repeated. A new feature subset is obtained in each iteration, and finally, n feature
subsets are obtained. (5) According to the accuracy of the classifier, the optimal subset is
selected.
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3.4. Gaussian Process Regression

As a kernel-based machine learning algorithm, GPR can effectively analyze small
samples and low-dimensional regression problems and is therefore widely used in the
research fields of lithium-ion battery and solar energy prediction [76,77]. GPR is essentially
a non-parametric model that uses Gaussian process priors to perform regression analysis on
data [78]. GPR uses probabilistic methods to train on sample data, while other regression
methods require detailed modeling parameters. Furthermore, GPR is determined by both
the mean function and covariance function, and Bayesian inference is used to obtain
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hypotheses for posterior probability [79]. GPR has wider applicability for dealing with
complicated and nonlinear problems [78].

A Gaussian process is commonly determined by the following functional formula:

f (x) ∼ GP
[
m(x), k

(
x, x′

)]
(8)

where
m(x) = E[ f (x)] (9)

k
(
x, x′

)
= E

[
( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))]

(10)

x, x′ ∈ Rn are random variables, and m(x) and k(x, x′) are mean function and co-
variance function, respectively. Usually, m(x) = 0 to simplify the calculation process [77].
Considering that the observed target value y contains noise, the general model for estab-
lishing GPR is:

y = f (x) + ε (11)

where ε is noise and ε ∼ N
(
0, σ2

n
)
. Thus, the prior distribution of the observed value y is:

y ∼ N
(

0, k
(
x, x′

)
+ σ2

n In

)
(12)

where In is an n-dimensional identity matrix. Assuming that the testing dataset X∗ and the
training dataset X have the same Gaussian distribution, the joint prior distribution of the
observed value y and the predicted value y∗ is:[

y
y∗

]
∼ N

(
0,
[

K(X, X) + σ2
n In K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(13)

where K(X, X) is the covariance matrix of the training dataset, K(X∗, X∗) is the covariance
matrix of the testing dataset, and K(X, X∗) = K(X∗, X)T is the covariance matrix between
the training dataset X and the testing dataset X∗. Accordingly, the posterior distribution of
the predicted value y∗ can be calculated as:

y∗|X, y, X∗ ∼ N
(
y∗, cov(y∗)

)
(14)

where
y∗ = K(X∗, X)

[
K(X, X) + σ2

n In

]−1
Y (15)

cov(y∗) = K(X∗, X∗)− K(X∗, X)
[
K(X, X) + σ2

n In

]−1
K(X, X∗) (16)

and y∗ and cov(y∗) are the mean and covariance of the predicted value y∗ on the
testing dataset X∗, respectively.

Choosing the covariance function (i.e., the kernel function) is one of the key factors
affecting model performance. As part of the model assumptions, the covariance function
describes the correlation between samples [79]. Commonly used covariance functions in-
clude the rational quadratic covariance function, exponential covariance function, squared
exponential covariance function, and Matérn covariance function. In this study, different
covariance functions are compared based on the root mean square error (RMSE), and
the exponential covariance function with the smallest RMSE was selected. Its functional
formula is:

k
(

xi, xj
∣∣θ) = σ2

f exp
(
− r

σl

)
(17)

where σf is the signal standard deviation, σl is the characteristic length scale, and r =√(
xi − xj

)T(xi − xj
)

is the Euclidean distance between xi and xj. Using the maximum like-

lihood method, the hyperparameter θ
(

σf , σl

)
of the covariance function can be obtained.
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3.5. Model Validation Method

The receiver operating characteristic (ROC) curve is widely used for evaluating model
performance in landslide susceptibility studies [41,44,56,80]. Its y-axis represents the
model sensitivity (i.e., the true positive rate), while the x-axis represents 1-specificity (i.e.,
the false positive rate) [56]. When the area under the curve (AUC) > 0.5, the model is
considered to have a good classification ability, and the larger the AUC value, the stronger
the classification ability of the model [52,68]. To plot the ROC curve, the LSI was taken as
the x-axis (1-specificity), and the cumulative percentage of landslide units was taken as the
y-axis (the sensitivity). Finally, the cumulative curve was plotted [32].

4. Modeling Process and Results

The modeling process (see Figure 4) can be divided into the following six stages:
(1) According to historical landslides, a landslide inventory map was created and subse-
quently divided into a training dataset (70%) and a test dataset (30%). (2) Twenty initial
landslide influencing factors were selected to construct a spatial database. These factors
were then overlaid with the landslide inventory map and reclassified. (3) The SI method
was used to assign weights to each class of factors to obtain the SI model. (4) The factors
were screened using GeoDetector combined with recursive feature elimination, and the
GD-SI model was obtained. (5) The weights of continuous factors were optimized using
GPR, and the final hybrid model GD-GPR-SI was obtained. (6) The performances of SI,
GD-SI, and GD-GPR-SI were compared and evaluated, and landslide susceptibility maps
were finally drawn.
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4.1. Implementation of SI

The SI model was constructed using the training dataset, and a total of 345 landslides
were used to calculate the SI weights. By overlaying factor layers with the landslide
inventory map, the relationships between factor classes and landslides were obtained (see
Table 2). The definition implies that when the SI value is greater than 0, the factor class
exerts a promoting effect on the occurrence of landslides. In contrast, when the SI value
is less than 0, the factor class is not conducive to the occurrence of landslides [81]. As
there are no landslides in certain factor classes (for example, the number of landslides is 0
when the land cover is water), for these classes, SI values cannot be calculated from the
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formula (4). In this study, the minimum SI value (−3.352) was obtained when the altitude
is 2200–2600 m, indicating that the probability of landslide occurrence is low in this class.
Moreover, if there is no landslide in a factor class, the class is unfavorable for the occurrence
of landslides. Therefore, the SI value of factor classes without landslides was set to a value
less than the minimum value (namely −3.5) to indicate that these classes are extremely
unfavorable for the occurrence of landslides.

Table 2. The spatial relationship between landslides and influencing factors and the results of SI.

Factor Class No. of Pixels
in Domain

Percentage of
Pixels in

Domain (%)

No. of
Landslides
in Domain

Percentage of
Landslides in
Domain (%)

SI Weight

Altitude (m)

734–1000 54,761 5.35% 19 5.51% 0.03
1000–1400 153,709 15.00% 180 52.17% 1.246
1400–1800 182,586 17.82% 128 37.10% 0.733
1800–2200 175,340 17.12% 16 4.64% −1.306
2200–2600 169,561 16.55% 2 0.58% −3.352

>2600 288,498 28.16% 0 0.00% −3.500

Slope (◦)

0–12.58 52,441 5.12% 1 0.29% −2.871
12.58–27.06 95,938 9.36% 4 1.16% −2.089
27.06–36.79 192,817 18.82% 30 8.70% −0.772
36.79–44.57 303,340 29.61% 102 29.57% −0.002
44.57–52.98 265,684 25.93% 144 41.74% 0.476

>52.98 114,235 11.15% 64 18.55% 0.509

Aspect

Flat 8592 0.84% 0 0.00% −3.500
North 123,018 12.01% 7 2.03% −1.778

Northeast 111,941 10.93% 13 3.77% −1.065
East 138,007 13.47% 67 19.42% 0.366

Southeast 142,757 13.93% 89 25.80% 0.616
South 122,625 11.97% 48 13.91% 0.15

Southwest 109,604 10.70% 25 7.25% −0.390
West 128,926 12.58% 52 15.07% 0.18

Northwest 138,985 13.57% 44 12.75% −0.062

Plan
curvature

<−0.001 (concave) 462,405 45.14% 186 53.91% 0.178
−0.001–0.001 (plan) 16,518 1.61% 0 0.00% −3.500

>0.001 (convex) 545,532 53.25% 159 46.09% −0.144

Profile
curvature

<−0.001 (convex) 500,096 48.82% 154 44.64% −0.089
−0.001–0.001 (plan) 13,696 1.34% 0 0.00% −3.500

>0.001 (concave) 510,663 49.85% 191 55.36% 0.105

Degree of
relief (m)

0–8.92 92,811 9.06% 3 0.87% −2.344
8.92–16.52 256,435 25.03% 45 13.04% −0.652

16.52–22.97 332,950 32.50% 113 32.75% 0.008
22.97–30.94 228,321 22.29% 122 35.36% 0.462
30.94–43.98 92,147 8.99% 54 15.65% 0.554

>43.98 21,791 2.13% 8 2.32% 0.086

TWI

2.16–4.51 287,750 28.09% 75 21.74% −0.256
4.51–5.67 359,830 35.12% 126 36.52% 0.039
5.67–7.18 244,013 23.82% 117 33.91% 0.353
7.18–9.54 87,380 8.53% 25 7.25% −0.163

>9.54 45,482 4.44% 2 0.58% −2.036

Lithology

Loose deposits 1360 0.13% 0 0.00% −3.500
Very soft rock 2182 0.21% 0 0.00% −3.500

Soft rock 207,368 20.24% 80 23.19% 0.136
Hard rock 138,648 13.53% 64 18.55% 0.315

Very hard rock 674,897 65.88% 201 58.26% −0.123
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Table 2. Cont.

Factor Class No. of Pixels
in Domain

Percentage of
Pixels in

Domain (%)

No. of
Landslides
in Domain

Percentage of
Landslides in
Domain (%)

SI Weight

Seismic
intensity

VIII 118,077 11.53% 6 1.74% −1.891
IX 275,212 26.86% 169 48.99% 0.601
X 244,590 23.88% 76 22.03% −0.080
XI 386,576 37.73% 94 27.25% −0.326

Distance from
fault zones

(m)

0–500 184,628 18.02% 153 44.35% 0.9
500–1000 148,152 14.46% 72 20.87% 0.367

1000–1500 114,805 11.21% 25 7.25% −0.436
1500–2000 91,087 8.89% 23 6.67% −0.288
2000–2500 78,608 7.67% 15 4.35% −0.568
2500–3000 63,375 6.19% 19 5.51% −0.116

>3000 343,800 33.56% 38 11.01% −1.114

Stratigraphy

Quaternary 1356 0.13% 0 0.00% −3.500
Neogene 65,904 6.43% 5 1.45% −1.490
Jurassic 2650 0.26% 0 0.00% −3.500
Triassic 123,997 12.10% 38 11.01% −0.094
Permian 560,698 54.73% 224 64.93% 0.171

Carboniferous 20,863 2.04% 10 2.90% 0.353
Devonian 19,213 1.88% 16 4.64% 0.905
Silurian 29,235 2.85% 8 2.32% −0.208
Sinian 13,305 1.30% 23 6.67% 1.636

Archean 187,234 18.28% 21 6.09% −1.099

Distance from
main rivers

(m)

0–200 100,243 9.79% 142 41.16% 1.437
200–400 73,927 7.22% 93 26.96% 1.318
400–600 67,217 6.56% 43 12.46% 0.642
600–800 61,451 6.00% 27 7.83% 0.266
800–1000 57,068 5.57% 15 4.35% −0.248

1000–1200 54,450 5.32% 4 1.16% −1.523
1200–1400 51,788 5.06% 5 1.45% −1.249
1400–1600 48,893 4.77% 10 2.90% −0.499
1600–1800 46,201 4.51% 4 1.16% −1.358
1800–2000 43,205 4.22% 2 0.58% −1.984

>2000 420,012 41.00% 0 0.00% −3.500

Distance from
streams (m)

0–100 186,318 18.19% 40 11.59% −0.450
100–200 146,304 14.28% 84 24.35% 0.534
200–300 132,049 12.89% 68 19.71% 0.425
300–400 116,847 11.41% 45 13.04% 0.134
400–500 100,868 9.85% 36 10.43% 0.058

>500 342,069 33.39% 72 20.87% −0.470

Annual
rainfall (mm)

<800 125,428 12.24% 60 17.39% 0.351
800–900 293,355 28.64% 79 22.90% −0.224
900–1000 232,367 22.68% 83 24.06% 0.059

1000–1100 281,346 27.46% 81 23.48% −0.157
>1100 91,959 8.98% 42 12.17% 0.305

Land cover

Farmland 63,219 6.17% 74 21.45% 1.246
Forestland 891,639 87.04% 271 78.55% −0.103
Grassland 43,812 4.28% 0 0.00% −3.500

Water bodies 23,847 2.33% 0 0.00% −3.500
Artificial surface 1938 0.19% 0 0.00% −3.500

NDVI

<0.25 60,448 5.90% 4 1.16% −1.627
0.25–0.49 72,494 7.08% 40 11.59% 0.494
0.49–0.66 176,990 17.28% 85 24.64% 0.355
0.66–0.79 340,106 33.20% 145 42.03% 0.236

>0.79 374,417 36.55% 71 20.58% −0.574
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Table 2. Cont.

Factor Class No. of Pixels
in Domain

Percentage of
Pixels in

Domain (%)

No. of
Landslides
in Domain

Percentage of
Landslides in
Domain (%)

SI Weight

Soil erosion
intensity

11 726,211 70.89% 173 50.14% −0.346
12 70,452 6.88% 77 22.32% 1.177
13 27,335 2.67% 31 8.99% 1.214
14 20,886 2.04% 33 9.57% 1.546
15 17,127 1.67% 7 2.03% 0.194
16 19,169 1.87% 24 6.96% 1.313
31 113,698 11.10% 0 0.00% −3.500
32 1829 0.18% 0 0.00% −3.500
33 5632 0.55% 0 0.00% −3.500
34 19,795 1.93% 0 0.00% −3.500
35 2321 0.23% 0 0.00% −3.500

Distance from
roads (m)

0–200 120,310 11.74% 136 39.42% 1.211
200–400 74,508 7.27% 110 31.88% 1.478
400–600 60,263 5.88% 40 11.59% 0.679
600–800 52,768 5.15% 28 8.12% 0.455
800–1000 46,377 4.53% 15 4.35% −0.040

1000–1200 41,758 4.08% 10 2.90% −0.341
1200–1400 38,641 3.77% 2 0.58% −1.873
1400–1600 35,999 3.51% 4 1.16% −1.109

>1600 553,831 54.06% 0 0.00% −3.500

Residential
kernel density

0–1.07 586,432 57.24% 69 20.00% −1.052
1.07–3.07 132,263 12.91% 60 17.39% 0.298
3.07–5.37 125,950 12.29% 59 17.10% 0.33
5.37–8.10 106,213 10.37% 111 32.17% 1.132

8.10–12.34 50,935 4.97% 37 10.72% 0.769
>12.34 22,662 2.21% 9 2.61% 0.165

Distance from
hydropower
stations (m)

0–500 21,405 2.09% 47 13.62% 1.875
500–1000 49,830 4.86% 68 19.71% 1.399

1000–1500 64,863 6.33% 38 11.01% 0.554
1500–2000 78,032 7.62% 61 17.68% 0.842
2000–2500 84,266 8.23% 29 8.41% 0.022
2500–3000 78,937 7.71% 29 8.41% 0.087

>3000 647,122 63.17% 73 21.16% −1.094

4.2. Construction of the GD-SI Model
4.2.1. GeoDetector Result

GeoDetector analysis was performed using both the spatially superimposed factor
data and the landslide training dataset. In this study, landslide influencing factors are
independent variables, and the classification is consistent with Table 1, while the dependent
variable is the occurrence of a landslide (in which case a value of 1 is assigned) or no
occurrence of a landslide (in which case a value of 0 is assigned), which is a binary variable.
Because GeoDetector requires negative samples, random sampling was performed to
produce the same amount of non-landslide samples. To reduce contingency and make the
analysis results more reliable, 10 times random sampling of non-landslide samples were
conducted to obtain the 10 times GeoDetector results. The analysis result is determined
by the average q value and p value. The factor detector results are shown in Figure 5.
The q value is the index of the factor’s explanatory power for landslides, and the p value
represents the statistical significance.
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Figure 5. Factor Detector results.

The results show that the q values for the distance from roads (q = 0.701), distance
from main rivers (q = 0.626), and altitude (q = 0.555) are among the top three, indicating
that these factors have the greatest impacts on landslides. The q values for plan curvature
(q = 0.007) and profile curvature (q = 0.005) are both less than 0.01, indicating that these
two factors are not related to landslide occurrence. In addition, these two factors did not
pass the significance test (p < 0.05). Therefore, plan curvature and profile curvature were
eliminated, and the remaining 18 factors were retained for further factor screening.

4.2.2. Factor Screening Based on GD and RFE

This study combined GeoDetector with the concept of RFE to perform factor screening
for SI models. First, 18 landslide influencing factors preliminarily screened by GeoDetector
were used as the initial feature set. Then, the GeoDetector q-value ranking was used as
the feature importance ranking. Subsequently, the least important feature was recursively
removed, and AUC values of the models under each factor subset were recorded in turn.
The results are shown in Figure 6, which depicts the trend of the AUC values of the model
with the number of factors. The results show that when the number of factors is 18, the
model AUC value is the highest.
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Considering the adaptation between the factor importance ranking based on GeoDe-
tector and the SI model, the concept of the RFE algorithm was improved. If the performance
of the model is improved after a certain factor is eliminated in order, it indicates that the
factor has a negative impact on the model to a great probability. Therefore, if the AUC value
of the model increases, the related factor will be eliminated, as shown by the yellow line in
Figure 6. As a result, six factors including annual average rainfall, distance from streams,
NDVI, seismic intensity, distance from fault zones, and residential kernel density were elim-
inated. The 12 factors of distance from roads, distance from main rivers, altitude, distance
from hydropower stations, soil erosion intensity, stratigraphy, land cover, aspect, slope,
degree of relief, topographic wetness index, and lithology were thus retained. The model
obtained after screening the factors by this hybrid method was named the GD-SI model.

4.3. Construction of the GD-GPR-SI Model

For the traditional bivariate statistical models, each factor class has the same weight,
causing all values in the same class for continuous factors to be weighted equally, which is
contrary to Tobler’s First Law of Geography. To solve this problem, the GPR algorithm was
used to optimize the weights obtained by the SI model.

First, for continuous factors, the following eight factors were included: distance from
roads, distance from main rivers, altitude, distance from hydropower stations, aspect, slope,
degree of relief, and TWI. The weight of each factor class obtained by the SI model was
used as the weight of the central value of the class. Then, the central value of the class was
used as the independent variable, its weight value was used as the dependent variable,
and GPR was used to perform regression learning, giving the weight of all factor values (as
shown in Figure 7). For discrete factors, including soil erosion intensity, stratigraphy, land
cover, and lithology, the weights of the SI model were used as final weight values.
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Figure 7. The algorithm for optimizing the SI model by Gaussian process regression.

MATLAB R2020b software was used to implement GPR. The results of the regression
are presented in Figure 8, which shows that the trends of factor weights change with
varying factor values. The RMSE values of the models for each factor are listed in Table 3.
Finally, the weights of all factors were accumulated to obtain the LSI of each evaluation
unit. This hybrid model was named the GD-GPR-SI model.

Table 3. Root Mean Squared Error (RMSE) of GPR regression results.

Factors RMSE

Altitude 3.463 × 10−4

Degree of relief 1.296 × 10−4

Slope 1.606 × 10−4

Aspect 1.356 × 10−4

Distance from main rivers 6.249 × 10−4

Distance from roads 6.225 × 10−2

Distance from hydropower stations 1.361 × 10−2

TWI 1.158 × 10−4

4.4. Correlation between Selected Factors and Landslide

Through factor screening, 12 landslide influencing factors were retained. Among them,
the distance from roads is the most important factor (q = 0.701), and its SI value is the
highest (1.478) when it is 200–400 m, indicating that it is most favorable for the occurrence
of landslides in this class. As shown by the GPR regression result (see Figure 8a), the greater
the distance from roads, the lower the probability of landslide occurrence. The distance
from main rivers (q = 0.626) ranked second in importance with the largest SI value (1.437)
at 0–200 m. Similar to distance from roads, the factor weight is approximately inversely
proportional to the distance (see Figure 8b). As the third most important factor, altitude
(q = 0.555) is most favorable for the occurrence of landslides at 1000–1400 m (SI = 1.246),
and no landslides occurred in areas above 2600 m. The importance of distance from
hydropower stations is second only to that of altitude (q = 0.36) as a human engineering
factor in this study. When it is 0–500 m, the SI value is the largest (1.875), and the larger the
distance, the smaller the SI value (see Figure 8d). Aspect (q = 0.099), slope (q = 0.08), degree
of relief (q = 0.059), and TWI (q = 0.031) are four topographic factors derived from the
digital elevation model, and all have a relatively weak influence on landslide occurrence
(q < 0.1). For Aspect, the probability of landslide is highest in the southeastern direction
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(SI = 0.616). With an increasing slope (see Table 2 and Figure 8f), the probability of landslide
occurrence gradually increases. When the degrees of relief and TWI are 30.94–43.98 m and
5.67–7.18, SI values are the largest at 0.353 and 0.554, respectively. In addition, for geological
factors, the two discrete factors stratigraphy (q = 0.117) and lithology (q = 0.019) were
retained. For stratigraphy, results show that in Devonian units, landslides are most likely
to occur (SI = 0.905), while for lithology, the probability of landslides is highest in hard rock
(SI = 0.315). Finally, for environmental factors, in addition to the distance from main rivers,
the two factors of soil erosion intensity (0.272) and land cover (0.111) were retained. For soil
erosion intensity, hydraulic erosion level 14 (SI = 1.546) is most likely to cause landslides.
For land covers, except for water bodies and artificial surfaces, forestland (SI = −0.103) is
not conducive to the occurrence of landslides, no landslides have occurred on grassland,
and farmland (SI = 1.246) is relatively more favorable for the occurrence of landslides.
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4.5. Landslide Susceptibility Mapping

After obtaining the LSI of each evaluation unit, ArcGIS 10.7.1 software was used to
draw landslide susceptibility maps. The natural breaks method can identify a classification
that maximizes the difference between categories, which is widely used in landslide sus-
ceptibility mapping [26,30]. In this study, the natural breaks method was used to divide LSI
values into five categories from high to low, representing very high, high, moderate, low,
and very low landslide susceptibility levels, respectively. Figure 9a–c show the landslide
susceptibility maps obtained by the SI model, the GD-SI model, and the GD-GPR-SI model,
respectively. Figure 10 shows the area percentage of each susceptibility class of models.
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Figure 10. Area percentage of different susceptibility classes.

Based on the landslide susceptibility maps, high susceptibility areas are approximately
distributed along roads and rivers, which is consistent with the distribution of historical
landslides. Moreover, most landslides are located in valleys, which are also compatible
with the characteristics of landslides in mountainous areas [44,82]. These observations
indicate that the landslide susceptibility maps obtained by the three models are reasonable
and reliable as well as prove the validity of the factor analysis results of GeoDetector.
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4.6. Validation of Models

The performance of SI model, GD-SI model, and GD-GPR-SI model was compared
and analyzed based on the ROC curves. The accuracy on the testing dataset reflects the
predictive ability of the model, and the ROC curves of three models were plotted based
on the testing dataset. Figure 11 shows the prediction rate curves of the SI (AUC = 0.931)
model, GD-SI (AUC = 0.936) model, and GD-GPR-SI (AUC = 0.943) model. Results show
that all three models have strong predictive capabilities (AUC > 0.93), which corroborates
the reliability of the SI model. Moreover, the GD-GPR-SI model has the highest AUC
value, followed by the GD-SI model, and finally the SI model. Results highlight the
superiority of the hybrid model. Therefore, both the factor screening method and the GPR
optimization method proposed in this study improved the performance of the SI model
and proved effective.
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5. Discussion
5.1. The Dominant Factors of Landslides in the Study Area

The selection of landslide impact factors is one of the key steps of landslide susceptibil-
ity assessments. Including uncorrelated factors commonly increases model uncertainty [83].
Various methods have been used to select appropriate landslide influencing factors, but
there are no definite rules or universal methods for how to select the best combination of
factors [52]. As a statistical model, GeoDetector can make full use of the spatial information
included in the data to calculate the degree of explanation of the independent variables
relative to the dependent variables. Several current studies [44,45,52] set the q value thresh-
old based on empirical knowledge, to eliminate factors below the threshold, which are
highly subjective approaches. In addition, adapting GeoDetector to the used landslide
susceptibility evaluation model should also be considered. To address these problems, the
GeoDetector method was combined with the concept of RFE to construct a new mixed
factor screening method that can be applied to statistical models. A previous study [54]
combined these two methods, applied them to the random forest model, and achieved
good results. On this basis, the current study applies a combination of these two methods
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to the traditional bivariate statistical model (SI). The RFE method could be improved to
more effectively combine the GeoDetector with the SI model.

The initial factor set contains 20 factors. Through the GeoDetector preliminary screen-
ing, two factors (i.e., plan curvature and profile curvature) that fail to pass the significance
test were eliminated. Then, using the hybrid method of GeoDetector and RFE, six factors
that negatively impacted the model were eliminated, and 12 factors were accordingly
retained. By comparing the AUC of the ROC curves of the original factor set and the
optimized factor set on the model, the predictive ability of the model using the retained
12 factors (0.936) was found to be higher than that using 20 factors (0.936) (see Figure 11).
The number of factors was decreased and the performance of the model was improved,
which proves the effectiveness of factor screening.

GeoDetector results (see Figure 5) show that among the 12 factors that were finally
selected, distance from roads, distance from main rivers, and altitude are the three factors
with the strongest effect on landslide occurrence. Historical landslides (see Figure 1) are
generally distributed along both sides of roads and rivers, which is consistent with the
results of GeoDetector showing that these two factors largely control the distribution of
landslides. In addition, the SI values in Table 2 and the regression results in Figure 8a,b show
that with increasing distance from main rivers and roads, the SI weight value generally
tends to decrease, and the probability of landslide occurrence also gradually decreases,
which is consistent with the results of most studies [30,84]. Furthermore, another conclusion
of this study is that the impact of rivers at different scales on landslide occurrence is
inconsistent. The hydrological network in the study area was classified into main rivers
and streams according to their level of tributaries. Figure 5 shows that the distance from
streams has little correlation to landslide occurrence (q < 0.05), while the distance from main
rivers has a higher q value (q = 0.626), which is largely due to the different scour and erosion
capacities of rivers of different scales. Therefore, future research should consider this
difference. The importance of altitude (q = 0.555) ranks after the distance from main rivers.
An altitude ranges between 1000–1400 m (SI = 1.246) is most conducive to the occurrence
of landslides, while in high-altitude areas, the probability of landslides is very low. Two
studies have reached the same conclusion [28,53]. This was found to be largely due to
differences in rock characteristics as well as the intensity of human engineering activities at
different altitudes [9,85]. Distance from hydropower stations also has a relatively high q
value (0.36), and the regression results (see Figure 8d) show that the larger the distance, the
lower the probability of landslides. In addition, for land cover, Table 2 shows that 87.04% of
the study area is covered by forestland, but the SI value in this area is negative, indicating
that it is not favorable for the occurrence of landslides. In contrast, the probability of
landslide occurrence in farmland is the highest (SI = 1.246). These results indicate that
human engineering activities exert an important impact on the occurrence of landslides in
the study area. Therefore, corresponding measures should be taken to address this risk.

5.2. Advantages of the Hybrid Model

Aiming at the unreasonable weight distribution of the traditional bivariate statistical
models, in this study, GPR in machine learning was used to optimize the factor weights.
More reasonable weight values were obtained, which finally improved the performance
of the landslide susceptibility model. Using GPR, the trend of factor values changing
with weights can be intuitively displayed, which helps to better grasp the relationship
between factors and landslides. This process is primarily derived from interpolation, which
indicates that adjacent regions should have the same characteristics.

Improving the accuracy of LSM by combining different models and forming a hy-
brid model is a common method. At present, many scholars have combined traditional
statistical models and opinion-driven models with machine learning-based algorithms,
and the performance of the resulting hybrid models is better than that of the original
models [9,25,26,74]. These studies show that hybrid models have good application poten-
tial, but the key is how to combine models effectively. Machine learning-based models can
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mine useful information from a large volume of data, while statistical models have clear
mathematical meanings and are conducive to the analysis of the relationships between
factors and landslides. Hybrids of both models have been used. The RF-CF (random
forest-certainty factor) model proposed by Chen et al. [25], the FT-IV-RF (fractal theory-
information value-random forest model) model proposed by Zhao et al. [86], and the
EBF-KLR (evidential belief function- kernel logistic regression) model proposed by Chen
et al. [74] are innovative combinations of statistical models and machine learning-based
models that have been proven to outperform the single models. In this study, a machine
learning-based model was used to obtain the distribution pattern of factor weights based on
statistical models. The hybrid model combines the advantages of both models, is straight-
forward to interpret, and can mine the potential information of factor weights. Therefore,
by integrating models, the advantages of different models can be effectively combined,
which provides a promising method for landslide susceptibility assessment.

5.3. Limitations of This Study and Prospects of Future Research

Although the proposed methods in this study improved the accuracy of landslide
susceptibility assessment to a certain extent, certain limitations remain. First, grid units
are most commonly used as evaluation units. However, they do not correlate well with
real-world geological environments [87]. Therefore, slope units [12] and terrain units [88]
have been used in landslide susceptibility assessment. The existing methods for extracting
slope units are complicated, and their effect is not ideal. Thus, these methods are not
widely used [29]. In addition, the size of grid units also affects the accuracy of landslide
susceptibility assessment [89]. Across different study areas, environmental conditions are
quite different, and there is no clear criterion for choosing an optimal grid size [56]. In this
study, based on literature and expert knowledge as well as considering the computational
cost and the actual conditions of the study area, a grid of 30 m × 30 m was selected as the
evaluation unit. The selection of the optimal evaluation unit is also a difficult problem that
should be addressed in future research.

Furthermore, in the process of regressing SI weights using GPR, the SI weight value
of a class was assigned to the central value of this class. Although this allocation method
has brought good results in this study, it still contains some subjectivity. Therefore, future
research should consider more reasonable allocation methods to further improve the
accuracy of landslide susceptibility assessments. Moreover, considering the second law of
geography, a more reasonable screening of regional risk factors should take into account
their spatial local heterogeneous (SLH) associations with landslides, and such SLH-based
factor screening methods [90,91] are also worthy of continued research in the future.

6. Conclusions

For bivariate statistical models such as SI, the distribution of weights does not conform
to the reality of factors, which require improvement. Moreover, the selection of factors
has a non-negligible impact on the performance of LSM models. This study proposes a
hybrid optimization method for the SI model, with the aim of addressing these problems
and improving the accuracy and reliability of LSM.

The hybrid approach of GeoDetector and RFE was used for factor screening (the
obtained model was named GD-SI). The number of factors decreased from 22 to 12, but
the AUC value on the testing dataset increased from 0.931 to 0.936. Results show that
the prediction performance of the model was improved, proving the effectiveness and
reliability of factor screening. Furthermore, the weights of the GD-SI model were optimized
using GPR (the obtained model was named GD-GPR-SI). The GD-GPR-SI (AUC = 0.943)
model has a higher AUC value than the GD-SI model (AUC = 0.936) on the testing dataset.
Therefore, by optimizing GPR, more reasonable weights were obtained, and the predictive
ability of the model was improved.

The methods proposed in this study improved the predictive ability of the LSM model,
which can be used as a general framework for it. The obtained landslide susceptibility maps
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can also provide a decision-making basis for landslide prevention and control. Further
consideration should be given to the optimization of evaluation units and improvement of
the quality of data for modeling.
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