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Abstract: This paper describes a comparison between hybrid and end-to-end Automatic Speech
Recognition (ASR) systems, which were evaluated on the IberSpeech-RTVE 2020 Speech-to-Text
Transcription Challenge. Deep Neural Networks (DNNs) are becoming the most promising tech-
nology for ASR at present. In the last few years, traditional hybrid models have been evaluated
and compared to other end-to-end ASR systems in terms of accuracy and efficiency. We contribute
two different approaches: a hybrid ASR system based on a DNN-HMM and two state-of-the-art
end-to-end ASR systems, based on Lattice-Free Maximum Mutual Information (LF-MMI). To address
the high difficulty in the speech-to-text transcription of recordings with different speaking styles and
acoustic conditions from TV studios to live recordings, data augmentation and Domain Adversarial
Training (DAT) techniques were studied. Multi-condition data augmentation applied to our hybrid
DNN-HMM demonstrated WER improvements in noisy scenarios (about 10% relatively). In contrast,
the results obtained using an end-to-end PyChain-based ASR system were far from our expectations.
Nevertheless, we found that when including DAT techniques, a relative WER improvement of 2.87%
was obtained as compared to the PyChain-based system.

Keywords: TV show speech-to-text transcription; ASR systems; hybrid DNN-HMM; end-to-end
deep learning; domain adversarial training

1. Introduction

Recently, the advancement of deep learning techniques has been able to improve
the performance of Automatic Speech Recognition (ASR) systems. At the beginning,
Deep Neural Networks (DNNs) became a fundamental part of conventional hybrid ASR
systems [1]. According to some research studies [2], these models perform better in many
scenarios with a small amount of training data, but they usually require strong context-
dependent trees to train the models [3].

Nevertheless, end-to-end approaches are emerging [4,5] due to the reduction of the
complexity associated with the training process. Whilst hybrid systems need to use Hidden
Markov Model (HMM) state probabilities to train the outputs of a DNN, end-to-end systems
are trained to map an input feature sequence to a sequence of characters [6,7]. Furthermore,
the independence of intermediate modeling (e.g., acoustic, pronunciation, and language
models) makes it easier to build an ASR model. They neither require any phoneme
alignment for framewise cross-entropy, nor a sophisticated beam search decoder [8].

Several approaches have appeared such as Connectionist Temporal Classification
(CTC) [4], the Recurrent Neural Network Transducer (RNN-T) [3], and the sequence-to-
sequence attention-based encoder–decoder [5,9]. This trend presents an easy-to-use and
easy-to-update pipeline. First, the training process does not have several stages, in which
more than a single model would be involved. Second, the continuous advances in deep-
learning-based technologies have allowed the quick development of powerful open-source
libraries for machine learning, such as PyTorch [10] or TensorFlow [11], among others.
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The promising results reported by many end-to-end ASR systems depend on the
scenarios, as well as on the availability of datasets. Thus, end-to-end ASR models have
achieved state-of-the-art results on the LibriSpeech database [12] and large public [13]
or proprietary datasets [6]. These end-to-end models demand the availability of large
training datasets [6], required for training very complex deep architectures [12]. However,
in noisy scenarios and low-resource domains, such as CHiME-6 [14], end-to-end methods
are still far from reaching the performance of HMM-based systems, as was reported, for
example, in Ref. [15]. Thus far, end-to-end systems have not been able to overcome the best
conventional hybrid models in those challenging conditions.

It is a fact that up to now, there is still a gap between end-to-end systems and hybrid
models. To tackle this, some studies, such as SpeechStew [16], focused on demonstrating
that a model is able to learn powerful transfer learning representations from a high volume
of available speech data. The authors pointed out that training large models is expensive
and not practical to perform frequently, but transfer learning allows fine-tuning a model
pretrained on a combination of several public speech recognition datasets.

Recent developments focused on reducing this gap have reported good results, as
was the case of ESPNet [17] or PyChain [18]. In PyChain, the end-to-end LF-MMI criterion,
which is the state-of-the-art for hybrid models in Kaldi [19], is implemented by combining a
single-stage training and a full parallelization under the PyTorch framework. Other speech
recognition challenges, such as multichannel robust end-to-end ASR, have been addressed
by a joint training of DNN-based front-end (speech enhancement) and back-end (speech
recognition) models based on CTC-Attention and the RNN-T [15].

Besides that, to improve the performance of end-to-end ASR systems, a variety of
techniques commonly applied in deep Learning have been introduced. Data augmentation
techniques [20,21] have been developed to increase the quality and variety of training data
following some criteria to improve the model robustness. Thus, a variety of scenarios can be
simulated trying to cover the more challenging acoustic conditions in a cost-effective way.

Other works have been focused on the enhancement of deep acoustic models, where
a sequence of local feature vectors is squeezed into a single global context vector [22],
representing both speaker and environment information. In addition, model agnostic meta-
learning has also been applied to rapidly adapt ASR models on cross-accented speech [23].

Other recent deep-learning-based techniques, such as Domain Adversarial Training
(DAT) [24], have demonstrated that the model is able to reuse a latent space to improve
performance on unseen input domains. Acoustic features must be robust to model the
wide variety of speaker characteristics [25] and can play a relevant role in avoiding the bias
in ASR systems with regard to diversity in gender, age, regional accents, and non-native
accents, as was reported in Ref. [26]. To this end, DAT has been applied to ASR tasks by
learning features invariant to different conditions, such as acoustic variabilities [27,28],
accented speech [29], and inter-speaker feature variability [30].

In this paper, our aim was to contribute to the comparison of both hybrid and end-
to-end ASR systems under the conditions of the IberSpeech-RTVE 2020 Speech-to-Text
Transcription Challenge [31]. This can be considered one of the aforementioned com-
plex scenarios containing a variety of TV shows and broadcast news, in different noisy
environments and challenging scenarios, such as TV debates. For this purpose:

• We firstly studied state-of-the-art techniques for hybrid and end-to-end ASR systems;
• We report the use of data augmentation techniques to improve our Kaldi-based hybrid

ASR system presented in the IberSpeech-RTVE 2018 edition [32];
• Then, we evaluated a baseline end-to-end system on a real TV content dataset. We

chose PyChain because it is based on the state-of-the-art LF-MMI approach, for which
good results have been previously reported;

• Finally, looking to improve the end-to-end ASR system, we propose the use of DAT to
learn features invariant to the environmental conditions and TV show format. Thus,
we developed a novel improved version of the PyChain baseline including DAT. This
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implementation allowed us to compare the performance of both end-to-end systems
in the case of having low-computational or -speech data resources.

The rest of the paper is structured as follows. In Section 2, we describe the architecture
of the ASR systems: a Kaldi-based hybrid ASR and two PyChain-based end-to-end systems.
Section 3 explains the experimental protocols we followed under the IberSpeech-RTVE
2020 Challenge. Results are shown and discussed in Section 4. Section 5 presents related
works comparing our systems with those submitted to IberSpeech-RTVE 2020 and other
approaches in prior work. Finally, we present our conclusions in Section 6.

2. Architectures
2.1. DNN-HMM ASR

This system is based on the Sigma ASR system [32] submitted to the Albayzin-RTVE
2018 Speech-to-Text Challenge [33], where it was in the top 2 ranking for both closed- and
open-condition evaluation.

This hybrid ASR system was built by using the Kaldi Toolkit [2]. The acoustic model
is based on Deep Neural Networks and Hidden Markov Models (DNN-HMMs), following
the so-called chain models [19], whose neural part is a subsampled Time-Delay Neural
Network (TDNN) [34]. This implementation uses a 3-fold reduced frame rate at the output
of the network.

We used the conventional feature pipeline that involves splicing 13-dimensional
MFCC coefficients across 9 frames, followed by applying Linear Discriminant Analysis
(LDA) to reduce the dimension to 40 and further decorrelation by means of Maximum
Likelihood Linear Transform (MLLT). In addition, Feature-space Maximum Likelihood
Linear Regression (fMLLR) was applied in a speaker-adaptive way. The input feature
vectors were represented by 40-dimensional MFCC spliced coefficients across 7 frames
and LDA+MLLT+fMLLR corresponding to 3 frames on each side of the central frame. In
addition, 100-dimensional i-vectors were appended to the 40-dimensional acoustic space
on each frame.

Our main conclusion from the results of Albayzin-RTVE 2018 [33] was the need for
more robust DNN training, looking for accuracy improvements, required in the most
challenging scenarios (street interviews, game shows, risky sports documentaries, etc.).
The environmental robustness of acoustic models has been significantly improved by
using multi-condition training data. However, the data collection process is very costly
compared to the artificial generation of new training data, which has become a common
alternative [20].

Thus, in our current contribution, we extended the amount of training data through
data augmentation techniques. In particular, we added reverberation to the available
training speech data following the approach presented in Ref. [35]. Depending on the
expected scenarios and distances, different Room Impulse Responses (RIRs) can be used.
They sample the room parameters and receiver position in the room and then randomly
generate a number of RIRs according to different speaker positions. In short, three sets
of simulated RIRs were applied: small room (1–10 m), medium room (10–30 m), and
large room (30–50 m). The real computation was carried out at the feature extraction level,
where the original data were mixed with their reverberated copies. The result was a 2-fold
training set.

This data augmentation technique was added to other data augmentation techniques
already used in the recipe followed in our previous system such as volume and speed
perturbations [20,21].

2.2. End-to-End LF-MMI ASR

Aiming to explore new state-of-the-art end-to-end ASR systems, we evaluated an
alternative to the developed Kaldi-based hybrid ASR system. That was the new end-to-end
ASR Lattice-Free Maximum Mutual Information (LF-MMI) approach [19], which is also
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used in Kaldi’s chain models. Thus, we found it interesting to perform a reliable comparison
of these two systems based on LF-MMI under IberSpeech-RTVE 2020 Challenge scenarios.

This end-to-end ASR system is based on PyChain [18], a powerful PyTorch-based
implementation, which is intended to have an easy-to-use pipeline in which the data
preparation and final decoding are carried out in Kaldi for efficiency, while data loading and
network training are performed in PyTorch [10]. It should be noted that no alignment was
necessary, i.e., the HMM-GMM training stage is not required, unlike other systems [36,37].

Data preparation consisted of both feature extraction (40-dimensional MFCC) and
numerator/denominator graph (FSTs) generation. By following Kaldi’s method for LF-
MMI, HMM graphs were used for supervision. Consequently, the final LF-MMI loss
function can be expressed as follows:

LMMI =
U

∑
u=1

log
P(X(u)|G(u)

num)

P(X(u)|G(u)
den)

(1)

where X(u) is the input frame sequences for the u-th utterance, while Gnum and Gden are
the numerator and denominator graph, respectively. These graphs are a combination of an
n-gram phone Language Model (LM) with the acoustic part encoding all possible word
sequences. As is widely known, Gden is generated from any possible transcription, while
Gnum makes use of the true transcription.

The probability distribution function (pdf) is used to estimate the likelihood of an
HMM emission [2]. In this case, the network output and the occupation probability are
computed from a pdf-index (pdf-id) instead of an HMM state. More specific details were
presented in Ref. [18].

Once the data are loaded, the PyTorch model tries to simulate a TDNN [34] by includ-
ing 1D dilated convolution in addition to batch normalization, ReLU, and dropout. This
sequence is stacked in that order up to 6 layers with residual connections. At the end of the
sequence, a fully connected layer is added (as described in Ref. [18]). From now on, this
system is called the PyChain-based baseline system.

2.3. End-to-End LF-MMI ASR Applying Domain Adversarial Training

Different acoustic conditions of TV shows can have a negative impact on the PyChain-
based baseline’s performance. To reduce this effect, we explored the integration of DAT [24],
trying to improve the PyChain-based baseline system. More specifically, in this approach,
we aimed to make acoustic representations invariant to the domain of the TV show charac-
teristics by using a Domain Adversarial Neural Network (DANN).

For this adversarial architecture, a training dataset denoted as {xi, yi, zi}i=1
N is com-

posed of xi, which are the acoustic features, and yi, zi, which are the posteriors of the
senones and the type of TV show, respectively.

Different from the PyChain-based baseline system training, in which the acoustic
representation is trained so as to minimize the LF-MMI loss function, in DAT, the acoustic
representations are learned adversarially against the secondary task (i.e., TV show classifi-
cation). In this way, the domain-dependent information is suppressed in the representation,
as it is irrelevant for the primary task (i.e., posterior classifier).

As can be seen in Figure 1, the parameters of our adversarial architecture consist of
three parts, θ =

{
θx, θy, θz

}
, where θx denotes the parameters of the first layers of the TDNN

used as the feature extractor and θy and θz denote the parameters of the pdf posteriors and
the TV show classifier sub-networks, respectively.

Between the feature extractor and the TV show classifier, a Gradient Reversal Layer
(GRL) [24] was implemented. In the forward propagation, the GRL keeps the input unchanged
and reverses the gradient by multiplying it by a negative coefficient during the backpropagation.

According to [24], for this adversarial training, the objective function for the TV show
classifier Ldom is defined as:
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Ldom(θx, θz) = −
N

∑
i=i

log P(zi|xi; θx, θz) (2)

The DNN acoustic model and the adversarial branch were jointly trained to optimize
the following:

min
θx ,θy

max
θz

LMMI(θx, θy)− λLdom(θx, θz), (3)

where λ is a trade-off parameter between the pdf classification loss LMMI , which corre-
sponds to the LF-MMI loss defined in Equation (1), and the domain loss Ldom, related to
the TV show classification task, which aims to make deep acoustic features invariant to the
domain of the TV show characteristics.

Conv 1D
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Output 
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Input 
x

GRL

Linear

ReLU

Linear

Softmax

Output 
z

- λ

Objective
function

𝑴𝑴𝑰

Objective
function

𝒅𝒐𝒎

Posterior

TV show domain

𝒛

𝒚
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Figure 1. Architecture of the end-to-end LF-MMI approach applying DAT. An adversarial branch (TV
show classifier) is added to the second layer of the main PyChain architecture (posterior classifier).

3. Experimental Setup
3.1. RTVE2020 Database

The proposed ASR systems were evaluated under the IberSpeech-RTVE 2020 Chal-
lenge conditions. The RTVE2020 Database [38] was provided to the participants. This is an
extension of the RTVE2018 Database, which contains a collection of Spanish TV shows and
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broadcast news from 2015 to 2019. The training partition consists of audio files, partially
subtitled, presenting the following limitations:

• Subtitles were generated by means of a re-speaking procedure that sometimes changed
the sentences and summarized what had been said, obtaining non-reliable transcrip-
tions;

• Transcriptions were not supervised by humans. Only 109 h from the dev1, dev2, and
test partitions contain human-revised transcriptions;

• Timestamps were not properly aligned with the speech signal.

Regarding all these limitations, we tried to avoid the use of these low-quality transcrip-
tions, which could poorly model the acoustic space. As shown in Figure 2, we carried out
a semi-supervised annotation process, which allowed training accurate acoustic models.
First, a baseline acoustic model was trained using our own databases (see Section 3.2).
Once the acoustic model was prepared, the unlabeled speech data were initially aligned to
obtain a provisional transcription. To improve the quality of these automatic transcriptions,
a human annotator team was responsible for the supervision process.

Training 

Process

Supervision

RTVE DB 

(Speech)

Others DB 

(Speech)

Training 

Process

Baseline 

Acoustic Models
RTVE-based

Acoustic Models

Others DB 

Trns

RTVE DB    

Auto. Trns

RTVE DB    

Superv. Trns

Forced 
Alignment

Figure 2. Entire process of obtaining high-quality transcriptions to train the acoustic models.

The RTVE training partition was prepared under this supervision process to obtain
reliable transcriptions aligned with the speech signal. Hereafter, we were able to develop
our first ASR models based on TV content [32].

Due to some limitations during the supervision process, two resulting datasets were used
for training the systems: RTVE_train350 (350 h from RTVE training set) and RTVE_train100
(100 h from RTVE_train350). The validation datasets were 20% of the training data. It
is worth noting that we tried to balance the partitions at any time, trying to cover the
different scenarios represented in the whole RTVE dataset, such as political and economic
news, in-depth interviews, debate and live magazines, among others. Consequently, for
testing purposes, several datasets corresponding to 1 h in duration each were built from
the RTVE_dev1 and RTVE_dev2 development partitions.

Finally, the RTVE2020 database was completed adding a collection of TV shows that
belong to a wide range of genres and broadcasts from 2018 to 2019. This was composed of
70.3 h of human transcribed audio. It was used as the test partition for the Speech-to-Text
Transcription Challenge (RTVE2020_test).

3.2. Other Databases

Additional datasets were added to train the system in an open training condition scenario:
The VESLIM database consists of 103 h of clean Spanish voice, where the speakers

read a set of sentences. More details are in Ref. [39].
OWNMEDIA is composed of 162 h of TV shows, interviews, lectures, and several

multimedia contents. It was used for training the baseline acoustic model, which allowed
the initial alignment of the unlabeled speech data.

Finally, data augmentation techniques related to the hybrid ASR system were carried
out by means of the reverberation database (http://www.openslr.org/28/, accessed on
14 January 2022), which was described in Section 2.1.

http://www.openslr.org/28/
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3.3. Training Setup

The acoustic model of the hybrid ASR system was trained using the RTVE_train350,
VESLIM, and OWNMEDIA databases, following the SWBD Kaldi recipe for chain models.
Some modifications were included following the ASpIRE recipe for multi-condition tasks.

Otherwise, end-to-end LF-MMI models without DAT were trained by using only
RTVE_train100. This relatively small amount of data allowed a light training process to test the
system performance. We used PyChain-example (https://github.com/YiwenShaoStephen/
pychain_example, accessed on 14 January 2022) as a reference by adding some changes in
terms of data loading and data parallelization to use more than one GPU.

The data preparation was carried out in Kaldi. To convert input features into PyTorch
tensors, we used kaldi_io (https://github.com/vesis84/kaldi-io-for-python, accessed on
14 January 2022), as suggested in Ref. [18]. For the adversarial training, note that the
number of pdf posteriors was yi = 62, corresponding to the senones, and the number of
TV shows was zi = 13 because of the different TV shows that the RTVE_train100 partition
contains. To reduce the bias effect due to unbalanced classes in TV shows at training time,
the data were previously merged according to their acoustic characteristics. As a result,
four new groups were defined (see also Table 1):

1. Live TV shows: a variety of content for the whole family;
2. Documentaries: show broadcasts about risky sports, adventure, street reports, and

current information in different Spanish regions;
3. TV game shows: content related to comedy competitions, road safety, or culture

dissemination, among others;
4. Interviews: moderated debates with analysis, political and economic news, and

weather information.

Table 1. Description of the domain classes according to the number of samples and the characteristics
of the TV shows. More details related to the TV shows are described in the RTVE2020 Database
specifications [38].

Class # of Samples Examples of TV Shows

1. live TV shows 11,239 La Mañana

2. documentaries 4671 Al filo de lo Imposible, Comando Actualidad, Es-
paña en Comunidad

3. TV-game shows 7995 Arranca en Verde, Dicho y Hecho, Saber y Ganar
4. interviews 22,194 Latinoamerica 24H, La Tarde en 24H, Millenium

As a consequence, the labels of the training data for the adversarial branch (i.e., the TV
show classifier sub-network) are defined as zi = 0, 1, 2, 3. In the adversarial architecture,
the second hidden layer of the TDNN was used as the input to the adversarial branch,
which consisted of a dense layer of size 384 and the ReLU activation function, followed by
a softmax output layer, whose output dimension corresponded to the number of TV shows
(i.e., 4). The cross-entropy loss function was used in the adversarial training. To select
the optimal trade-off parameter λ, several values were tested. The best performance was
achieved for λ = 0.041. In addition, all the systems were evaluated with the same 3-gram
LM. As described in Ref. [32], it was trained on several corpora: subtitles provided in the
RTVE2018 Database, supervised transcriptions, news between 2015 and 2018, interviews,
and file captions.

3.4. Resources

Several computational resources were required to carry out this work. A server with
2 Xeon E5-2630V4, 2.2 GHz, 10C/20 TH, and 3 GPUs Nvidia GTX 1080 Ti was used for
the hybrid ASR system. GPU calculation was necessary for the DNN stage, and only CPU
mode was used for the HMM stage and final decoding.

https://github.com/YiwenShaoStephen/pychain_example
https://github.com/YiwenShaoStephen/pychain_example
https://github.com/vesis84/kaldi-io-for-python
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4. Results
4.1. Hybrid ASR

The proposal of applying data augmentation techniques to improve the hybrid ASR
performance was fulfilled. The addition of reverberation to our whole training dataset
(over 600 h of speech) improved the performance in most of the scenarios represented by
every TV show set. As shown in Table 2, the model applied to the Comando Actualidad
(CA) dataset achieved a relative improvement of around 10%, as compared to the baseline
system. This might be due to the trained model having learned to model these speech
artifacts that can appear in the challenging scenarios described in Section 2.1. However,
the improvements in the rest of the TV shows were not so remarkable (e.g., 20H or LM)
because the contents were related to daily news with more favorable acoustic conditions.

As we mentioned in Ref. [32], the reference master of the transcriptions was not
reviewed. As usual, we evaluated the possible impact of transcription errors by means of a
new test using an external dataset. It consisted of 3.5 h of TV news broadcasts (similar to
20H). Applying the reverb-trained models of our Kaldi-based hybrid system, we reduced
the WER from 8.51% to 7.96%, being our new best results achieved so far. Table 3 shows
that data augmentation also maintained the WER improvement of around 10% relative on
the RTVE2020 test partition.

Table 2. WER (%) on the different datasets for hybrid and end-to-end ASR systems. Each one of the
evaluation datasets contains one hour of speech. In bold, the improvements of the Kaldi-based system
after applying reverberated data augmentation, and the improvements related to the Pychain-based
system after applying DAT.

20H_dev1 AP_dev1 CA_dev1 LM_dev1 Mill_dev1 LN24H_dev1

Hybrid ASR
Kaldi-based baseline [32] 14.88 20.94 49.55 21.44 17.01 24.13
Reverb. data augmentation 14.76 21.00 44.69 21.03 16.42 23.62
Kaldi-based baseline (RTVE_train100) 16.09 22.32 51.23 23.02 17.70 25.53

End-to-end LF-MMI ASR
PyChain-based baseline 23.66 33.31 59.34 29.95 35.09 25.08
Domain adversarial training 23.53 32.99 59.25 29.91 34.67 25.16

Table 3. WER (%) on the RTVE2020 test partition for all the systems. Results were obtained after
the submission.

RTVE2020_test

Hybrid ASR
Kaldi-based baseline [32] 31.01
Reverb. data augmentation 27.68

End-to-end LF-MMI ASR
PyChain-based baseline 40.90
Domain adversarial training 42.89

4.2. End-to-End LF-MMI ASR

Our PyChain-based baseline had a good performance in relation to the number of
parameters and the easier training process compared to other end-to-end frameworks.
The WER achieved for standard TV news (e.g., 20H, LN24H) was between 23% and 26%,
as Table 2 shows. These results are within the expected range where commercial ASR
systems operate.

To compare both hybrid and end-to-end systems, we also trained a hybrid model by
using only the RTVE_train100 partition. In this case, multi-condition data augmentation
was not applied. The PyChain-based system was still far from the Kaldi-based hybrid
system, with a WER increase of 17% in the worst-case scenario. This gap could be reduced
with the application of some data augmentation techniques (e.g., speed or volume pertur-
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bation). Despite the fact that augmented data caused a slight improvement of the WER for
the PyChain system [18], TV shows can contain some acoustic characteristics that could be
better modeled by some audio perturbations.

On the other hand, we evaluated the effect of learning acoustic representations invari-
ant to the TV show domain. After applying DAT, the results in Table 2 showed improve-
ments, in terms of the WER, up to 2.87% as compared to the PyChain-based baseline. We
are aware that those results are still far from the Kaldi-based hybrid ASR system based
on the DNN-HMM. Nevertheless, the results in Table 2 gave us an insight into how the
use of DAT in the end-to-end LF-MMI model can improve its performance in most of the
scenarios. Furthermore, it seemed that DAT was able to generate deep acoustic features
invariant to different TV shows with different acoustic conditions without the need for data
augmentation techniques.

In addition, Table 3 shows that applying DAT did not reduce the WER on the RTVE2020
test partition. The main reason was DAT alleviated the labeled domain conditions in the
training dataset. Thus, invariant features were trained without regarding these unseen
external factors.

Finally, regarding computational requirements for speech transcription, we considered
that PyChain carries out two main stages: a first decoding stage and a second four-gram
rescoring stage. Real-Time factors (RT) for different test partitions are presented in Table 4.
In all cases, the two GPU resources described in Section 3.4 were used. The results in
Table 4 show that time requirements depend on the characteristics of the test partitions.
Less time is required to transcribe the best acoustic conditions and less challenging sce-
narios. This makes sense as far as the confusion of the graph model is less complex to
transcribe accurately.

Table 4. Real-Time factor (RT) for the different stages carried out in the PyChain-based baseline
according to the different datasets.

Datasets Decoding LM Rescoring

20H_dev1 0.033 0.115
AP_dev1 0.035 0.175
CA_dev1 0.225 1.976
LM_dev1 0.092 0.450
Mill_dev1 0.082 0.442
LN24H_dev1 0.383 0.148

5. Related Works

As the evaluation of our systems was carried out under the conditions of the IberSpeech-
RTVE 2020 Challenge [31], we can now compare our work to other ASR systems participat-
ing in this challenge and thus also trained on this specific domain related to TV programs.
As a first general comment, we can say that all the results for the developed ASR systems
showed that end-to-end systems are still far from hybrid systems in the challenging con-
ditions of RTVE 2020. Kocour et al. [40] developed an end-to-end system based on the
wav2letter architecture [7], which was not able to generalize very well on the acoustic
conditions of the RTVE2020 database, reporting a WER of at least 13% higher than their
best hybrid ASR system. Álvarez et al. [41] presented a Quartznet-based [42] ASR im-
plementation showing promising results due to the use of more than a hundred hours of
speech data. Nevertheless, the results in terms of the WER from that system were 9% worse
when compared to other hybrid systems they developed for the challenge.

Furthermore, the acoustic conditions of databases provided in other international
challenges, such as CHiME-6 [14], have also been responsible for the poor performance
of end-to-end ASR systems. Different approaches based on RNNs and transformers,
along with the RNN-T and CTC-Attention [15] have been evaluated on one of the CHiME
partitions, concluding that speech-enhancement techniques contribute to the reduction
of to the gap between end-to-end and hybrid systems. The difficulty of obtaining high-
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quality labeled speech leads to emergent machine-learning-based paradigms, such as Self-
Supervised Learning (SSL), whose goal for ASR is to learn powerful speech representations
from unlabeled examples (e.g., wav2vec 2.0 [43]). Other recent works have tried to mitigate
the effect of limited training data [44] or noisy environment conditions [45]. In the case
of [44], the use of CTC and end-to-end LF-MMI to fine-tune a wav2vec 2.0 model showed
similar performance even for out-of-domain and cross-lingual adaptation. Regarding [45],
the authors integrated SSL with contrastive learning from original–noisy speech pairs to
model representations with noise robustness.

Along the same lines, we proposed the application of DAT in our baseline end-to-
end ASR systems as an alternative to obtain robust features invariant to the domain, i.e.,
different acoustic conditions of TV shows. It is a fact that DAT is beneficial for building
robust embeddings. In recent works, it has been even integrated with wav2vec embeddings
to have an accent-robust speech recognition [46]. The authors reported good results when
no accent labels were available for training.

6. Conclusions and Future Work

In this paper, we developed both hybrid and end-to-end ASR approaches exploring
some techniques to improve the performance of Speech-to-Text tasks under IberSpeech-
RTVE 2020 Challenge. We showed that Hybrid DNN-HMMs can be adapted to the TV show
domain by means of multi-condition data augmentation. The addition of reverberated
data to the training data decreased the WER significantly (10% relative). A WER of 7.96%
was achieved in better conditions. We demonstrated that the lack of data augmentation
techniques could be the main reason of the gap between the Kaldi-based hybrid system and
PyChain-based system. Moreover, a higher volume of data used to train the end-to-end
system could contribute to increasing the ASR performance. However, other easy-to-apply
techniques, such as DAT, can overcome this gap, yielding improvements in end-to-end ASR
systems. We found that using DAT, acoustic features invariant to different TV domains can
be learned, achieving a WER improvement of 2.87%.

The IberSpeech-RTVE 2020 Challenge has provided some findings pointing out that
end-to-end approaches are close to being competitive (between 28% and 40% WER) by
using more than 600 h of speech. However, they are still far from the hybrid models.

As future work, besides data augmentation, we believe that exploring speech-
enhancement techniques could help to close the performance gap between hybrid and
end-to-end systems. In addition, unsupervised machine learning methods (e.g., clustering)
or automatic perceptual speech quality methods (e.g., PESQ) could contribute to a more ac-
curate TV show classification prior to DAT. Finally, we also believe that the combination of
DAT with a self-supervised approach could be useful to achieve significant improvements
in ASR systems through robust embeddings trained even without supervised data.
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