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Featured Application: The high order degree of the porous structure of anodic alumina mem-
brane (consisting of a close-packed array of columnar hexagonal cells, each containing a central
cylindrical pore normal to the surface), makes it an ideal template for fabrication of nanostruc-
tured materials, suitable for applications in optoelectronics, sensors, magnetic memories and elec-
tronic circuits. A variety of nanostructures (metals, alloys, semiconductors, oxides and polymers)
with different morphologies (tubules, wires, rods) were fabricated by utilizing an anodic alumina
membrane as a template using a sol-gel process, microwave plasma chemical vapor deposition,
electrodeposition and electroless deposition.

Abstract: The great success of anodic alumina membranes is due to their morphological features
coupled to both thermal and chemical stability. The electrochemical fabrication allows accurate
control of the porous structure: in fact, the membrane morphological characteristics (pore length,
pore diameter and cell density) can be controlled by adjusting the anodizing parameters (bath,
temperature, voltage and time). This article deals with both the fabrication and use of anodic
alumina membranes. In particular, we will show the specific role of the addition of aluminum
ions to phosphoric acid-based anodizing solution in modifying the morphology of anodic alumina
membranes. Anodic alumina membranes were obtained at −1 ◦C in aqueous solutions of 0.4 M
H3PO4 added with different amounts of Al(OH)3. For sake of completeness, the formation of PAA
in pure 0.4 M H3PO4 in otherwise identical conditions was also investigated. We found that the
presence of Al(OH)3 in solution highly affects the morphology of the porous layer. In particular,
at high Al(OH)3 concentration (close to saturation) more compact porous layers were formed with
narrow pores separated by thick oxide. The increase in the electric charge from 20 to 160 C cm−2 also
contributes to modifying the morphology of porous oxide. The obtained anodic alumina membranes
were used as a template to fabricate a regular array of PdCo alloy nanowires that is a valid alternative
to Pt for hydrogen evolution reaction. The PdCo alloy was obtained by electrodeposition and we
found that the composition of the nanowires depends on the concentration of two metals in the
deposition solution.

Keywords: porous anodic alumina; alumina membranes; aluminum anodizing; nanotechnology;
template; nanostructures; nanowires; nanotubes; PdCo alloy

1. Introduction

Fabrication of porous aluminum oxide (PAA) has been extensively investigated owing
to both theoretical [1–3] and applicative interest [4]. The key feature distinguishing PAA is
the oxide morphology consisting of self-assembled ordered arrays of hexagonal cells with a
central cylindrical channel vertically oriented throughout oxide thickness. The porous layer
overlays the initial formed compact aluminum oxide (barrier layer) [5]. Under continuing
anodizing, pore develops on the barrier film as evidenced by the change in the current
vs. time plot [3]. Figure 1 shows a scheme of the ordered porous structure of PAA where
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the underlying barrier layer is clearly visible. All the structural parameters, such as the
thickness of the barrier layer, diameter of the pores and size of the cells correlate with the
anodizing voltage, with values of the order 1 nm V−1. The precise values depend upon
parameters such as current density and electrolyte composition, while the porous layer
thickness depends on the charge passed during anodizing [6].
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Figure 1. Schematic representation of the alumina porous structure formed by aluminum anodizing.

Over the years, several models have been proposed on the formation mechanism of the
porous structure [7–10]. Structural parameters of the PAA layer are dependent on anodizing
conditions (such as voltage, current, bath temperature, surface finishing of aluminum, and
so on), different reaction rates between pore bottom and pore walls, the time evolution of
the current density, and scalloped shape of the barrier layer were successfully predicted by
modeling and simulating self-ordering process in PAA [11–15].

The key issue for PAA fabrication is the easy control of morphological features by
adjusting the anodizing conditions of aluminum so that tailored porous layers can be fabri-
cated according to the desired application [16–23]. Some procedures were shown above
leading to well-ordered structures such as either multi-step or pre-textured aluminum
anodizing [22,24–26]. Fabrication of such a highly ordered porous structure was investi-
gated for applications in the field of optoelectronics and sensors [27–30]. Other anodizing
conditions lead to less ordered structures that can be used for the fabrication of templates
because the pore size is more relevant than the order degree for many applications in
the field of nanotechnology [31–33]. For instance, materials for either energy storage or
catalysis require high surfaces exposed to the reaction environment rather than highly
ordered structures [34–43]. The aluminum anodization can be conducted in only one step,
adjusting the pore size from 18–20 nm by 20 ÷ 25 V anodizing in 1.5 M H2SO4 to 180 ÷
220 nm by 160 ÷ 200 V anodizing in 0.4 M H3PO4. Intermediate pore diameters (~70 nm)
can be achieved by anodizing in 0.45 M oxalic acid. Additionally, the pore aspect ratio
(length/width) can be easily controlled by adjusting the passed electrical charge, while
the inter-pore distance can be varied in dependence on anodizing voltage, typically, in the
interval 2.5 ÷ 2.8 nm V−1 [44,45].

One simple way for controlling the PAA morphological parameters consists in ad-
justing the composition of the anodizing bath. Therefore, in the following, the attention
will be focused on the fabrication of PAA in 0.4 M H3PO4 aqueous solutions added with
different amounts of Al(OH)3. In comparison with PAA grown in pure 0.4 M H3PO4 [46],
different morphologies were found due to the specific influence of Al(OH)3 concentration
and electrical charge of anodization. Therefore, it is possible to modify the PAA morphol-
ogy by a simple variation of both bath composition and anodizing time, so widening the
effective use as a template. To our best knowledge, aluminum anodization in pore-forming
acid added with aluminum hydroxide is investigated for the first time. The interest in this
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type of mixed electrolyte is due to the mechanism of PAA formation. Despite there not
being agreement about a detailed model of pore formation and growth, there is general
agreement about oxide dissolution accompanying PAA formation. Therefore, it is expected
that the presence of aluminum ions in solution can affect the oxide dissolution during
anodizing and, consequently, PAA morphology.

PAA has found increasing diffusion as a template for nanostructured materials [20,
31,41,45,47,48], for applications in microelectronics [49,50], solar cells [30,51–53], filtra-
tion [16,54,55], batteries [56–59], separation of biomolecules [60,61], catalysts [62,63], and
other bio-medical sectors [64,65]. The success of PAA as the template is due to its easy
dissolution after the filling up of the pores, leading to 1D parallel and perpendicular nanos-
tructures. Moreover, it is possible to tune the nanohole interval by adjusting the anodizing
conditions [66]. Tailoring the template morphology is of great advantage because makes
otherwise impossible applications. For instance, some materials with high specific energy
cannot be used as anodes in Li-ion batteries owing to the risk of a rapid pulverization
due to the mechanical stresses induced by the cycling volume changes accompanying
intercalation/de-intercalation of Li. It was found that such a limitation can be overcome
by employing the same materials at nano-scale [67,68] because 1D nanostructures can
accommodate the mechanical stress owing to the void space allowing free expansion of the
single nanostructure during the intercalation (charging cycles).

Among the several fabrication methods employed for template synthesis [18,69–71],
electrochemical methods using alumina are very attractive, because simple and versatile.
These techniques were used for the fabrication of different materials with nanotubes (NTs)
or nanowires (NWs) morphology [38,72–74].

In this work, the PAA membranes obtained in 0.4 M H3PO4 were used as a template to
obtain, by electrodeposition, nanostructured arrays of Pd, Co and PdCo alloys. Depending
on deposition conditions either NTs and NWs were obtained. These materials were selected
because having good magnetic properties [75], high electrocatalytic activity [76], they are
also excellent sensors for hydrogen gas [77,78].

2. Materials and Methods

PAA were grown by aluminum foil (99.99%) anodization in mixed phosphoric acid/
aluminum hydroxide bath whose composition was 0.4 M H3PO4 added with Al(OH)3 at
different concentration, from 0.04 M to 0.095 M, and 0.13 M. For comparison, the PAA
morphology obtained by aluminum anodization in pure 0.4 M H3PO4 aqueous solution
was also investigated. Prior to the anodizing, aluminum foils were degreased with acetone
and electropolished in a stirred 4:1 mixture of ethanol and 60% perchloric acid for 5 min at
20 V and temperature below 10 ◦C, followed by ultrasonic rinsing in a cold ethanol bath
for 5 min, and then in cold distilled water for 5 min. Anodization was carried out in a
thermally insulated bath at 0 ± 1 ◦C vigorously stirred by a magnetic needle to maintain
uniform temperature on the electrode surface. The low electrolyte temperature was selected
in order to form hard and abrasion-resistant anodic layers [4] that are highly desirable in
PAA membranes because they are largely handled for any final use. The two-electrode cell
for aluminum anodizing was powered at the constant voltage of 160 V for different times,
in order to let pass electrical charges from 20 to 160 C cm−2.

Before anodizing, aluminum mass to be anodized was carefully determined by weigh-
ing, while the oxidized mass was evaluated by difference between the initial mass, ex-
pressed as Al2O3, and PAA mass formed. Since the two values were found to be different,
the total consumed aluminum was evaluated and also anodizing efficiency was determined
as the ratio of PAA molar mass to oxidized aluminum molar mass (expressed as Al2O3).
The PAA layer detached from the un-oxidized aluminum was weighed after having been
again and again washed with distilled water and then dried overnight at 60 ◦C. The weight
values of both aluminum and PAA were accepted when weighing was stable within ±5%.
The remnant metal was dissolved chemically in 0.1 M CuCl +20% w/w HCl mixture, while
the opening of the pore bottom (alumina barrier film) was achieved by chemical etching
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in aqueous 1 M NaOH solution. The weight measurements were performed employing a
SARTORIUS microbalance (mod. Premium Microbalance ME36S).

At acidic pH, more or less hydrated Al3+ ions are present in solution by dissociation of
Al(OH)3 that is sparingly soluble in aqueous solutions. The true concentration of aluminum
ions in solution was evaluated by back-titration with 0.0101 M ZnNO3•6H2O [79]. A large
excess of a standard solution of 0.0101 M EDTA was added to the solution containing
Al(OH)3 whose pH was buffered at 5 by CH3COONa/CH3COOH. Xylenol orange was
used as indicator. The saturation value of Al(OH)3 in 0.4 M H3PO4 solution was evaluated
by the same procedure and it was found to be 0.138 M, slightly higher than the maximum
concentration employed in aluminum anodizing (0.13 M).

Characterization of the porous layers was basically conducted by a Field Emission Gun
Scanning Electron Microscopy (FEG-SEM). In particular, an FEI QUANTA 200 FEG-ESEM
electron microscope was used and both section and plan views were examined. Prior
to inserting samples into the microscope chamber, they were gold-sputtered, even if in
some cases the environmental option of the microscope was preferred in order to avoid
morphological tricks due to the gold film.

For the fabrication of nanostructures, in order to make the template electrically con-
ductive, a thin film of Au was sputtered on one side of the membrane. Then membrane was
mounted onto copper support by means of a conductive paste and the active surface (about
1 cm2) was delimited by means of an insulating lacquer. Electrochemical experiments
were performed using a P.A.R. Potentiostat/Galvanostat (mod. PARSTAT 2273) using a
standard three-electrode cell, with a platinum mesh and a saturated calomel electrode
(SCE) as counter and reference electrode, respectively. Nanostructures were obtained by
galvanostatic deposition at –1 mA cm−2.

Analytical grade reagents and distilled water were used to prepare all solutions. As
Pd precursor Pd(NH3)4(NO3)2 was used while CoSO4 was employed for Co. Different
concentrations of these salts were dissolved to prepare the electrodeposition baths. A fresh
solution was used for each experiment, and it was stirred during the electrodeposition
process. In order to vary nanostructures length, depositions were performed at different
electrodeposition times. Chemical composition and morphology of nanostructures were
investigated by FESEM, energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD).
For XRD a RIGAKU X-ray diffractometer (model: D-MAX 25600 HK) was used. The
patterns were obtained in the 2θ range from 10◦ to 100◦ with a sampling width of 0.004◦

and a scan speed of 3 deg./min, using Ni-filtered Cu Kα radiation (λ = 1.54 Å).

3. Results and Discussion
3.1. Fabrication and Characterization of AAM

The effect of the addition of Al(OH)3 is clearly evidenced in Figure 2 where aluminum
mass oxidized and PAA moles formed are plotted vs. bath composition. The two curves
shown in Figure 2a clearly evidence that the oxidized aluminum is partially converted
into PAA, therefore a dissolution process must occur for accounting of the aluminum mass
unconverted into PAA. Consequently, the aluminum anodizing occurs with an efficiency
less than 1, whose values depend on Al(OH)3 concentration in the electrolyte, as shown
in Figure 2b evidencing that the maximum efficiency of 80 ± 5% is attained for 0.13 M
Al(OH)3. The findings of Figure 2 can be attributed to a variation in the dissolution extent
of the anodic oxide as the concentration of Al(OH)3 increases. The most likely cause of such
a variation is the common ion effect that controls the solubility of any sparing substance in
a solution that contains an ion in common [80].
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formed; (b) anodizing % efficiency.

The influence of Al(OH)3 concentration on PAA morphology is evidenced in Figure 3
where FESEM images are reported for the lowest and highest anodizing electrical charges.
In detail, Figure 3b,d show the top (outer surface) views of PAA grown at 160 V in
0.4 M H3PO4 and 0.04 M Al(OH)3 for 20 (b) and 160 C cm−2 (d), while Figure 3a,c show the
typical morphology of the pore base formed at the interface metal/oxide (inner surface).
Each geometrical unit discloses the shape and size of the cell featuring the structure of
PAA [3]. Ideally, such units should be hexagonal with size depending on the anodizing
voltage at a value of about 433.2 nm [6], whereas, in the present case, they are not uniform
in either shape or size. The cells present a pentagonal shape, prevalently, while the few
hexagonal cells are not regular in the shape with variable inter-pore distances. The most
relevant issue is the cell population independence of the passed charge since values of
6.5 × 1012 cells m−2 were always found. On the contrary, the surfaces exposed to the
solution show more relevant differences (Figure 3b,d). After 20 C cm−2, different pores for
shape and size, and randomly distributed over the surface are clearly distinguishable. Typ-
ically, a mean diameter of about 60 ± 5% nm was measured. Differently, after 160 C cm−2,
the surface shows a more regular structure with pores of a rather uniform size, prevalently
circular in shape with a mean diameter of about 167 ± 5% nm. Some ellipsoidal pores are
also evident whose formation can be attributed to the coalescence of neighboring circular
pores due to the chemical dissolution of the inter-pore oxide owing to the long exposure
time to the solution. Hence, pores with a higher diameter and more regular shape were
formed at 160 than 20 C cm−2.

As the Al(OH)3 concentration was increased from 0.04 M to 0.095 M in otherwise
identical conditions, the PAA morphology for 20 C cm−2 is shown in the images of Figure 4.
The inner surface, in contact with the metal (Figure 4a), is identical to that of Figure 3a with
a cell population value of 6.5 × 1012 m−2. The outer surface, in contact with the electrolyte
(Figure 4b), discloses, in comparison with Figure 3b, a reduction of about 10 nm in the pore
mean size, from 62.5 ± 5% to 51.68 ± 5%, together with a thickening of the inter-pore oxide.
It means that the increase in Al(OH)3 concentration from 0.04 M to 0.095 M promotes the
formation of more compact porous layers with narrower pores, in accordance with the
solubility decrease whose trend is shown in Figure 2. As the passed charge was increased
from 20 to 160 C cm−2 in 0.4 M H3PO4 and 0.095 M Al(OH)3, the inner surface shows
identical morphology with the same cell density of 6.52 x 1012 m−2, while the outer surface
discloses a non-uniform distribution of circular pores a few of which ellipsoidal.
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Table 1 gives an overview of the influence on PAA morphological features of bath
composition and electrical charge passed during aluminum anodizing at 160 V and 0 ◦C.
The pore mean diameter of PAA formed in 0.4 M H3PO4 and 0.095 M Al(OH)3 after passing
160 C cm−2 is 104 ± 5% nm, a value far higher than the 51.68 ± 5% nm evaluated at
20 C cm−2 in the same anodizing conditions. Hence, Table 1 evidences that the increase in
both charge passed and Al(OH)3 concentration have the opposite effect because the first
one promotes pore enlargement, while the second one favors pore narrowing. Figure 5
more clearly shows such behavior since it is possible to draw valuable information by
the slopes of the curves. Figure 5a shows that the curve at 160 C cm−2 is more sloping
than those at lower charge density. This means that the longer time in solution greatly
affects the decrease in pore size. It is also interesting to observe that the pore size of the
PAA layers formed at 160 V in 0.4 M H3PO4 and 0.13 M Al(OH)3 are practically identical,
independently of the charge passed. Such an effect is confirmed by Figure 5b, showing that
pore population increases with Al(OH)3 concentration up to about 0.095 M, then it sharply
decreases to 0.13 M Al(OH)3 where the pore population values are practically identical for
all passed charges.
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Table 1. Morphological features of PAA dependent on the electrolyte composition and passed
electrical charge for aluminum anodization at 160 V and 0 ◦C.

Electrolyte

20 C cm−2 40 C cm−2 80 C cm−2 160 C cm−2

Pore
Mean
Size.
nm
±5%

Pores
m−2

×1013

±10%

Cells
m−2

×1012

±1%

Pore
Mean
Size.
nm
±5%

Pores
m−2

×1013

±10%

Cells
m−2

×1012

±1%

Pore
Mean
Size.
nm
±5%

Pores
m−2

×1013

±10%

Cells
m−2

×1012

±1%

Pore
Mean
Size.
nm
±5%

Pores
m−2

×1013

±10%

Cells
m−2

×1012

±1%

0.4 M
H3PO4

79.27 1.96 6.53 81.98 1.86 6.53 109.76 1.73 6.53 196.75 0.98 6.53

0.4 M
H3PO4
0.04 M

Al(OH)3

62.5 2.48 6.53 70.12 2.12 6.53 97.56 1.84 6.53 167.25 1.21 6.53

0.4 M
H3PO4
0.095 M
Al(OH)3

51.68 2.63 6.53 55.17 2.32 6.53 65.1 2.04 6.53 103.66 1.67 6.53

0.4 M
H3PO4
0.13 M

Al(OH)3

48.71 1.04 6.53 50.09 1.18 6.53 54.68 1.15 6.53 60.6 1.13 6.53

The slopes of the curves of Figure 5a evidence that the progressive decrease in the
pore size with Al(OH)3 concentration is much greater at 160 C cm−2 (about 69.2%), while
it is slight at 20 C cm−2 (about 38.5%). On the contrary, the pore population decreases
by 49% from 0.0 M to 0.13 M Al(OH)3 at 20 C cm−2, while an increase of about 15% was
found in the same concentration interval for sample anodized at 160 C cm−2. Moreover,
Figure 5b shows that the pore population decreases as the passed charge increases from 20
to 160 C cm−2 at constant Al(OH)3 concentration with the exception of 0.13 M, where the
pore population values are similar, practically.
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Figure 5. Pore mean size (a), and surface pore population (b) of PAA layers obtained by Al anodiza-
tion at 160 V and 0 ◦C in 0.4 M H3PO4 added with different amounts of Al(OH)3.

A strict coherence with the curves of Figure 5 can be found in Figure 6, which shows
the FESEM images of sample anodized at 0.13 M Al(OH)3, corresponding to the most
external point of the curves of Figure 5. In detail, Figure 6 shows the outer surface of PAA
formed at 160 V and 0 ◦C in 0.4 M H3PO4 and 0.13 M Al(OH)3 after passing 20 (a), 40 (b),
80 (c), and 160 C cm−2 (d). It can be observed that more compact layers were formed
with passed charge as the concentration of Al(OH)3 was increased. Besides, at 20 C cm−2

(Figure 6a), the surface shows irregular shape pore distributed on the surface, while, at
160 C cm−2 (Figure 6d), the surface morphology appears more structured with an enlarged
pore entrance with a more regular shape. Figure 6d shows also the presence of micro-cavity
likely due to local oxide dissolution promoting the onset of new pores.

Since the increase in charge densities are obtained through longer anodizing times, i.e.,
longer times in solution, the obtained PAA morphologies can be explained in light of this
parameter by considering anodic oxide dissolution during anodizing. Without any attention
to argue about the various mechanisms proposed for PAA formation, and above cited,
the findings appear consistent with the occurrence of oxide dissolution during anodizing.
Otherwise, it should be impossible to explain the curves of Figure 2a whose difference
gives just the oxide dissolution extent. The major obstacle in invoking oxide dissolution
under anodizing is the flow model of formation of PAA that excludes dissolution [7,81].
However, the successive in-depth investigation showed the possible coexistence of oxide
dissolution under a high electrical field with the flow model, because oxide dissolution has
been attributed to field-induced instability, while mechanical instability has been invoked
for the oxide flow [8]. On this basis, it is possible to elucidate tentatively the influence
on PAA morphology of Al(OH)3 at constant charge density, and of charge density at
constant Al(OH)3 concentration. In the first case, the addition of Al(OH)3 to phosphoric
acid determines the growth of a more compact oxide because the oxide dissolution during
anodizing is progressively inhibited, owing to the ion common effect. Therefore, pore size
decreases because the growth of a more compact oxide determines the shrinkage of the
channels due to the wall thickening. Such a decrease is more significant at 160 C cm−2

owing to the longer anodizing time, as shown in Figure 5a. In addition, the practical pore
mean size independence of charge passed at 0.13 M Al(OH)3 is likely due to the close of
this concentration value to the saturation one (0.138), where the oxide dissolution is hardly
inhibited, independently of anodizing time. According to oxide dissolution over anodizing,
it is possible to explain also the variations of pore size and population with the passed
charge at constant Al(OH)3. As the anodizing time increases, pore mean size increases
because oxide dissolution can occur at a higher extent with consequent enlargement of pore
mouth (Figure 5a), while pore population decreases because the narrowest pores generated
at the initial stages of anodizing are subject to closure by the formation of the more compact
film. Therefore, anodizing time (i.e, passed charge) has two opposite effects because
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determines on the one hand enlargement of the pore with consequent size enhancement,
but on the other hand it causes the closure of the narrowest pores.
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(a) 20 C cm−2; (b) 40 C cm−2; (c) 80 C cm−2; (d) 160 C cm−2.

About the generation of new pores over anodizing, Figure 5b shows an increase in pore
population with Al(OH)3 up to 0.095 M, where a sharp decrease to 0.13 M starts towards
values that are independent of the passed charge. Likely, such a behavior can be explained
by inferring that the pore onset occurs prevalently in the first stages of anodizing. The pore
population variation with Al(OH)3 concentration is rather limited, with the exception of
160 C cm−2 where the greatest variation was found (from 0.69 to 1.67 m−2). The increase
in population up to 0.095 M could be likely attributed to the opening of some new but
shallow pores. Such a new pore generation will occur at a higher extent as the longer is the
electrode immersion time in solution (just 160 C cm−2). This interpretation is supported by
the difference between the pore population at the outer PAA surface and the cell population
at the bottom one. One pore should be located inside one cell, therefore the two values of
the population should be identical, but this is not, as shown in Table 1. In practice, only the
pore generated in the first instants of anodizing leaves its imprint on the aluminum, whose
surface consequently becomes scalloped. Over anodizing, additional pores are generated
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at the oxide/electrolyte interface, but their height is lower than the initially formed ones,
which are separated from the oxidizing aluminum by the barrier layer. In practice, two
types of channels are formed, which can be distinguished on the basis of their length.
Initially formed pores that extend throughout the PAA thickness, and successively formed
pores that stop their growth at different depths of penetration into the oxide layer. Such a
difference can be attributed to the electric field strength that, according to the most recent
literature [82,83], contributes to the growth of the initially formed pores, because the oxide
barrier layer is thin, and, consequently, the electric field reaches high strength values. On
the contrary, as the PAA layer is thickening, the electric field strength is diminishing, and
with it, the contribution to the channel’s growth. Figure 7 shows a schematic diagram of
PAA with pores that stop its growth at some depth inside the oxide layer. Such a scheme
justifies the difference between the pore population evaluated at the PAA surface in contact
with the electrolyte and cell density evaluated at the PAA surface in contact with aluminum.
As a consequence, a few ordered nanostructure is formed with channels of different lengths.
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Figure 7. Schematic view of PAA with channel of different heights some of which stop after onset at
the outer oxide surface in contact with the electrolyte. Additionally, the scalloped surface imprinting
oxidizing aluminum is shown.

The scheme of Figure 7 is confirmed by the FESEM images of Figure 8 where sectional
views of PAA formed at 160 V and 0 ◦C in different electrolytes are shown. Channels
of different heights are evident. It can be also observed that the thickness of the pore
wall increases with the concentration of Al(OH)3 in solution, so that, for instance, the
channel-free cross-section is heavily reduced as PAA is formed in 0.4 M H3PO4 and 0.13 M
Al(OH)3. Moreover, Figure 8 shows that also the morphological disorder of the PAA layer
increases with Al(OH)3 concentration likely owing to a non-uniform thickening of the pore
wall, determining the loss of parallelism between the channels. A more in-depth analysis
of the images of Figure 8 indicates that the most ordered PAA layers can be obtained by
anodization in 0.4 M H3PO4 and 0.04 M Al(OH)3 (Figure 8b), even if the order degree of
Figure 8a appears satisfying. Its drawback is the very low thickness of the PAA layer which
is about 6.4 ± 5% µm as shown in Table 2 where the PAA layer thickness is shown for the
different anodizing conditions.
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Table 2. PAA layer thickness dependent on the electrolyte composition and passed electrical charge
for aluminum anodizing at 160 V and 0 ◦C.

Electrolyte
PAA Layer Thickness, µm ± 5%

20 C cm−2 40 C cm−2 80 C cm−2 160 C cm−2

0.4 M H3PO4 12.15 24.7 43.3 89.3

0.4 M H3PO4
0.04 M

Al(OH)3

11.63 21.40 40.97 82.60

0.4 M H3PO4
0.095 M Al(OH)3

9 19.3 39.4 81.2

0.4 M H3PO4
0.13 M

Al(OH)3

6.4 15.7 29.1 59.8
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In order to better evidence the effect of Al(OH)3 addition to 0.4 M H3PO4 aqueous
solutions, the morphology of PAA formed in pure 0.4 M H3PO4 was also investigated,
in otherwise identical conditions. Really, a similar study was already conducted, but the
attention was focused on tailoring the PAA as a template for fabrication of Ni nanostruc-
tured array [46], while in the present case, the investigation has been aimed to compare
the morphology of PAA formed at different anodizing times in bath containing different
Al(OH)3 amounts. Figure 9, to be compared with Figure 3, shows the morphological
features of the inner and outer surface after passing 20 and 160 C cm−2. It can be observed
that narrow pores are distributed on the outer surface formed at 20 C cm−2. They are not
uniformly distributed on the surface, and their shape and diameter are rather variable.
After 160 C cm−2, a relevant modification occurred due to the large dissolution of the
inter-pore oxide leading to a strong increase in the pore size also enhanced by the probable
coalescence of neighboring pores. As a consequence, a highly porous surface is formed.
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Figure 9. Top views of PAA formed in 0.4 M H3PO4 at 160 V and 0 ◦C: (a,b) inner, and outer surface
at 20 C cm−2, respectively; (c,d) inner, and outer surface at 160 C cm−2, respectively.

The micrographs of the inner surface (Figure 9a,c) show the formation of well-defined
cells, even if they are rather irregular in shape and size. The comparison of the two images
clearly discloses that the electric charge passed did not affect cell shape and population
that is fixed at 6.5 × 1012 m−2, i.e., the same value found for PAA formed in mixed 0.4 M
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H3PO4 and Al(OH)3. It is noteworthy that, also in pure H3PO4, the cell population is less
than the pore population independently of the passed electric charge. This means that, also
in pure 0.4 M H3PO4, the channels do not have the same height, but only some of them
extend through the total thickness of PAA, while other ones stop their growth, such as
those shown in Figures 7 and 8.

The pore diameter distribution on the outer PAA surface is shown in Figure 10 for
different anodizing conditions. It can be observed that at the lowest concentration of
Al(OH)3, pore diameters change from about 40 nm at 20 C cm−2 to 160 nm at 160 C cm−2.
In addition, a bimodal distribution is distinguishable at the lowest charge with a second
peak at about 70 nm. Additionally, at higher Al(OH)3 concentration (Figure 10b), a bimodal
distribution appears at 20 C cm−2, but, in this case, the most intense peak is the second one
at about 50 nm, while the weaker one is at about 40 nm. In any case, Figure 10 confirms
that PAA morphology formed at higher Al(OH)3 concentration changed slightly with the
electric charge. In fact, the distribution curves are partially overlapped, with the exception
of the curve relative to 160 C cm−2 that is centered around 100 nm and is distinct from the
other ones. It is also interesting to emphasize the decrease in the pore population as the
electric charge was increased. In pure 0.4 M H3PO4 solutions, a bimodal distribution has
been found at 20 C cm−2, with two peaks of the same intensity centered at 65 and 100 nm,
respectively. At 160 C cm−2, the distribution curve is centered around 200 nm, which is the
highest pore diameter obtainable in all the investigated solutions [46]. Finally, it has to be
observed that all the distribution curves are rather narrow, independently of both solution
composition and charge passed.
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For better detailing the influence of passed charge on PAA porosity, the pore mean 
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Figure 11. The useful information by such a plot is the slope of the curves because it is 
clear evidence of how strong the effect is of the passed charge on the pore size. For 
instance, it can be observed that the mean pore diameter changes very little with electrical 
charge density at 0.13 M, while it is very significant at 0.04 M. Since the passed electrical 
charge is linked to the anodizing time, the slopes of Figure 11 curves provide the rate of 
variation of pore size during anodizing, in practice. Therefore, such a plot is another 
valuable tool for tailoring PAA layers according to the desired application. 

Figure 10. Diameter distribution of PAA formed at 160 V and 272.15 ◦K in (a) 0.4 H3PO4 and
0.04 Al(OH)3; (b) 0.4 M H3PO4 and 0.09 5 M Al(OH)3.

For better detailing the influence of passed charge on PAA porosity, the pore mean
size has been plotted as a function of charge density for different Al(OH)3 concentrations,
Figure 11. The useful information by such a plot is the slope of the curves because it is clear
evidence of how strong the effect is of the passed charge on the pore size. For instance,
it can be observed that the mean pore diameter changes very little with electrical charge
density at 0.13 M, while it is very significant at 0.04 M. Since the passed electrical charge is
linked to the anodizing time, the slopes of Figure 11 curves provide the rate of variation of
pore size during anodizing, in practice. Therefore, such a plot is another valuable tool for
tailoring PAA layers according to the desired application.
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0.4 M H3PO4 aqueous solutions containing different amounts of Al(OH)3.

Tables 1 and 2 summarize the morphological features of PAA formed at 160 V and
0 ◦C in mixed Al(OH)3 and 0.4 M H3PO4 electrolytes, therefore can be considered as useful
guidelines for PAA designing, while plots and SEM pictures provide more in-depth details.
At this aim, it must be taken into account that the increase in Al(OH)3 concentration leads
to the growth of compact PAA featured by small, and not uniformly distributed pores, each
other separated by a more or less thick oxide. In particular, at the highest concentration
of Al(OH)3, extended areas of the surface are covered by a compact oxide that may be
considered as a further evident confirmation that pore generation and development strongly
depend on the extent of oxide dissolution on anodizing. Additionally, the morphological
modification of PAA with the electric charge can be attributed to the oxide dissolution.
In fact, the passage of higher electric charge implies a longer time of exposure of the
oxide surface to the solution with consequent enhancement of chemical dissolution of
alumina leading to an enlargement of the pore mouth. Of course, this effect should be more
relevant when Al(OH)3 concentration is lower. This assumption is just confirmed by the
distribution curves of Figure 10, showing that the range of variation is more extended at
a low concentration of Al(OH)3. In particular, the most significant modification occurred
for anodizing in pure 0.4 M H3PO4, even if it must be emphasized that after 160 C cm−2, a
high population of the coalesced pore was found, due to the complete dissolution of the
inter-pore oxide. Additionally, the difference between outer and inner pore populations
can be explained in terms of Al(OH)3 concentration in solution. A schematic view of
the channel length accounting for such differences is reported in Figure 7, disclosing the
presence of channels with different lengths.

3.2. Fabrication and Characterization of Nanostructures

For the fabrication of PdCo nanostructures, the membranes obtained in 0.4 M H3PO4
and 160 C cm−2 were used. Nanostructures were obtained in galvanostatic conditions, at
−1 mA cm−2 and for a deposition time of 1 h. In addition to PdCo alloys, for comparison,
also nanostructures of Pd and Co were prepared using the same conditions. Before the
electrodeposition, a surface of PAA membrane was sputtered with a thin gold layer in order
to make it conductive. To obtain the PdCo alloy with different compositions, different elec-
trodeposition baths were used simply changing the Pd2+/Co2+ ratio. Dilute solutions were
also used in order to study the influence on nanostructure morphology and composition.
All samples were characterized by FESEM, EDS and XRD and the results were summarized
in Table 3.
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Table 3. FESEM (cross-sectional view), EDS and XRD results for nanostructured electrodes obtained
at −1 mA cm−2 for 1 h. Additionally, the composition of electrodeposition bath and the nanostructure
height was reported.

Sample FESEM EDS XRD

Pd NWs
3 µm

(0.035 M Pd2+)
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As concern the morphology, in concentrated solutions, the deposits consist of highly
ordered and parallel NWs, perfectly replicating the structure of AAM, and thus with an
average diameter of about 200 nm and a density of about 1013 m−2, coincident with that
of the cylindrical channels. NWs length can be controlled by tuning the electrodeposition
time. Indeed, we have verified that, after two hours of deposition, keeping all the other
conditions the same, nanostructures have a mean height of about 100% higher than those
obtained after 1h of deposition. In the case of diluted solution, arrays of NTs were formed.
The NTs have an extremely thin wall, and in fact, appear almost transparent. We observed
that the wall thickness can be controlled by increasing the concentration of Pd2+ and
Co2+ in the deposition bath. This aspect is important because it allows for increasing the
mechanical stability of the NTs, which, when they have a too-thin wall, tend to crumble
during the dissolution of the alumina template. The elemental composition of the alloy was
determined by EDS. In all spectra, apart from Pd and Co peaks, peaks of Al and O, coming
from alumina template, and Au, due to the gold-sputtered layer, can be observed. The
composition of the alloy clearly depends on the composition of the bath with a dependence
that is roughly linear. Therefore, by simply controlling the Pd2+/Co2+ ratio in solution, it is
possible to obtain alloys rich in Pd in Co or with approximately similar content of the two
metals. Using dilute solutions, but maintaining the same Pd/Co ratio, the composition of
the nanostructures does not change.

Interesting results were obtained from the XRD study. The crystallographic structure
of nanostructures changes with their composition. In particular, pure Pd NWs are poly-
crystalline. The XRD pattern, apart from Au diffraction peaks, due to the gold-sputtered
layer, shows the presence of all diffraction peaks of the face-centered cubic phase of Pd
metal [84]. Co NWs are instead completely amorphous according to the data reported
in [67]. Obviously, the tendency of cobalt to deposit amorphously affects the crystallinity of
the alloy. In the case of alloys rich in Pd, the NWs are crystalline and practically have the
same diffraction pattern as the pure Pd NWs. As the Co content increases, the crystallinity
of the NWs decreases, and in fact, the intensity of the diffraction peaks of Pd decreases,
which disappear completely in the alloy’s rich in Co. In this case, the diffraction pattern
is that typical of amorphous material and therefore completely similar to that of the NWs
of pure Co. The dilution of the deposition solution has no effect on the crystallinity of the
nanostructures, and in fact, keeping all the other deposition conditions the same, XRD
patterns similar to those discussed so far are obtained.

4. Conclusions

The fabrication of PAA to be used as a template for the synthesis of nanostructured
materials was studied. Particular attention has been devoted to evidence the morphological
features of PAA when aluminum is anodized in 0.4 M H3PO4 added with various amounts
of Al(OH)3. For a more complete elucidation of the PAA fabrication process, the kinetic
behavior of aluminum anodizing in the pure and mixed electrolyte has been considered.
The role of both Al(OH)3 concentration and electrical charge on PAA growth can be
explained on the basis of the extent of oxide dissolution into the electrolyte, over anodizing,
so that it appears as a key parameter in controlling both the growth kinetics and morphology
of PAA. As the Al(OH)3 increased, more structured porous layers were formed that could
be further modified by changing the anodizing electric charge. In particular, the increase
in the electric charge implies a longer exposure time of the outer oxide surface to the
electrolyte with consequent enhancement of chemical dissolution.

The Al(OH)3 concentration also controls the development of secondary pore, i.e., pores
generated at the oxide/electrolyte interface after the complete development of the PAA
layer. Their growth is due almost exclusively to oxide chemical dissolution with minor
contribution by an electric field because its strength is diminishing as the PAA thickness is
increasing. As a consequence, the growth of these pores stops after partial penetration into
the PAA layer. This can be due to the saturation of the electrolyte contacting the base of the
growing channel because the onset and propagation of the secondary pores are controlled
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by chemical dissolution. The secondary pores greatly contribute to the PAA disorder, which
can be eliminated by re-anodizing the scalloped aluminum surface obtained after removing
the disordered oxide layer formed by first anodizing.

In conclusion, it can be said that aluminum anodizing in mixed Al(OH)3 and 0.4 M
H3PO4 suggests another cheap and easy way for fabricating PAA that can be used as a
template when a high level of order is not required. The flexibility of the procedure, in
terms of aspect ratio values that can be accomplished, is very high, so that tailoring of PAA
for each specific application is possible.

PAA obtained in 0.4 M of H3PO4 was used as a template for fabrication of nanos-
tructured arrays of Pd, Co and PdCo alloys. Pd NWs have a polycrystalline nature while
Co NWs present a completely amorphous structure. The composition of the alloy was
controlled by adjusting the electrolyte composition. The content of Co influences the crys-
tallinity of the NWs. In fact, polycrystalline NWs following the diffraction peaks of Pd
were obtained in the case of a low Co content, while a practically amorphous alloy was
obtained in the case of a high Co content. Very dilute solutions lead to the formation of an
alloy with crystallinity and composition similar to the concentrated solution which has a
completely different morphology formed by an array of nanotubes.
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