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Abstract: Highway crashes, along with the property damage, personal injuries, and fatalities that
they cause, continue to present one of the most significant and critical transportation problems.
At the same time, provision of safe travel is one of the main goals of any transportation system.
For this reason, both in transportation research and practice much attention has been given to the
analysis and modeling of traffic crashes, including the development of models that can be applied to
predict crash occurrence and crash severity. In general, such models assess short-term crash risks
at a given highway facility, thus providing intelligence that can be used to identify and implement
traffic operations strategies for crash mitigation and prevention. This paper presents several crash
risk and injury severity assessment models applied at a highway segment level, considering the input
data that is typically collected or readily available to most transportation agencies in real-time and at
a regional network scale, which would render them readily applicable in practice. The input data
included roadway geometry characteristics, traffic flow characteristics, and weather condition data.
The paper develops, tests, and compares the performance of models that employ Random effects
Bayesian Logistics Regression, Gaussian Naïve Bayes, K-Nearest Neighbor, Random Forest, and
Gradient Boosting Machine methods. The paper applies random oversampling examples (ROSE)
method to deal with the problem of data imbalance associated with the injury severity analysis. The
models were trained and tested using a dataset of 10,155 crashes that occurred on two interstate
highways in New Jersey over a two-year period. The paper also analyzes the potential improvement
in the prediction abilities of the tested models by adding reactive data to the analysis. To that end,
traffic crashes were classified in multiple classes based on the driver age and the vehicle age to
assess the impact of these attributes on driver injury severity outcomes. The results of this analysis
are promising, showing that the simultaneous use of reactive and proactive data can improve the
prediction performance of the presented models.

Keywords: crash risk analysis; crash prediction; crash likelihood; crash injury severity; machine
learning

1. Introduction

Ensuring traffic safety is one of the primary goals of highway transportation authorities.
To better understand the causes and factors contributing to highway crashes, and identify
the measures for improving highway safety, much of the traffic safety research focuses on
developing a better understanding of how, why, when, and where the highway crashes
occur. The outcomes of such studies can then be used to ascertain the likelihood of crash
occurrence under the given conditions and take the appropriate actions to reduce the
frequency or mitigate the crashes before they occur.
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Conceptually, a variety of factors contribute to the crash occurrence (or likelihood of
crash) and crash severity, including the factors related to driver performance, roadway
characteristics, vehicle characteristics, and environmental conditions. Some data that can
help ascertain these factors are known or can be monitored in real time. This data is known
as proactive data. Examples of such data are road characteristics, road-weather and traffic
condition data. The advances in intelligent transportation systems (ITS), especially in the
areas of connected vehicle, vehicle telemetry, and remote sensing data collection technolo-
gies, have significantly improved the ability to analyze traffic and road performance. These
technologies have provided opportunities to collect and analyze data in near-real-time and
aggregated to relatively short roadway segment level, including the data on prevailing
vehicle speeds and travel times, lane occupancy, and road-weather and environmental
characteristics. However, the challenges in this respect remain as such data collection is
often limited to critical roadway segments and major highway facilities, without providing
the coverage at the regnal transportation network scale. Indeed, the literature review
reveals that the existing studies of real-time crash risk prediction are based on the real-time
traffic counts and density collected from Automatic Vehicle Identification (AVI) sensors
and real-time weather data collected from weather stations. Due to the limitation in data
availability, those models could only be applied to specific, well instrumented facilities or
local networks, and would not be applicable as support systems for dynamic monitoring
of crash risks (in terms of crash likelihood and severity) and regional traffic operations
decision making.

Moreover, the findings of the previous studies [1–3] suggest that the driver and vehicle
characteristics represent significant factors of crash occurrence and severity of crashes.
The data about the drivers and vehicles involved in a crash is collected after the crash
occurrence as part of crash investigation and reporting, which is why this data is often
referred to as reactive crash data. Thus, it is challenging to ascertain the effect of driver
performance and vehicle characteristics data in proactive crash risk models. Yet, Reiman
and Pietikäinen [4] showed that using both reactive and proactive data can be more useful
for the organizations and decision makers. This premise is confirmed by Sarkar et al. [5] in a
study that demonstrated the effectiveness of using a combination of reactive and proactive
data in predicting the injury severity of accidents in the workplace.

The impetus and motivation for this study is the interest in developing a model-
ing framework for segment-level crash risk prediction considering roadway geometry
characteristics, traffic flow characteristics, and weather conditions (e.g., precipitation and
visibility). In contrast to previous studies, this paper demonstrates application of crash
prediction models using the data that is readily available at a regional road network scale,
rather than considering data generally available only at specific, well-equipped, and data-
rich roadway segments. The main shortcoming of the previous models calibrated using
such datasets is that they cannot be applied in locations where such data is not available in
real time or near-real time, which renders these models not applicable in regional traffic
operations management. In addition, this study proposes a combined real-time crash
severity prediction model that includes both proactive and reactive explanatory variables,
thus closing the gap that exits in the current literature due to lack of consideration of
reactive data in predictive crash models. The proposed approach examines the potential
improvement in predictive performance of the injury severity models by incorporating
the reactive data on driver age and vehicle age. The proposed modeling framework is
implemented using a case study of two freeways in the State of New Jersey, United States.
Several statistical and machine learning models were compared to find the most effective
one based on the prediction performance metrics. In addition, the data sampling was
employed including the matched case–control and random oversampling examples (ROSE)
methods to address the data imbalance problem of the dataset.
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2. Summary of the Literature Review

Numerous studies have been conducted that utilized advanced data analysis methods
to assess the crash risk in real time. Statistical analysis and machine learning (ML) models
are the most common methods used in real-time traffic crash risk and crash severity
prediction research. These models highlight the identification of factors affecting traffic
crash risk and severity. In fact, both statistical analysis and ML methods focus on the
prediction capabilities and false alarm rate of real-time traffic crash risk prediction models.
For instance, Xu, Tarko [6] developed a three-stage sequential binary logit model to predict
crash likelihood along a 29-mile segment of the I-88 freeway in San Francisco. The model
considered three severity levels and it was calibrated using 22 input variables derived from
the data obtained from roadside detectors in 30 s intervals. The weather condition (clear
vs. adverse weather) was considered as an additional explanatory variable. The model
evaluation was performed using a 20-fold cross-validation, and the findings showed that
the traffic flow characteristics contributing to crash likelihood were substantially different
at each severity level.

Theofilatos [7] investigated accident likelihood by incorporating real-time traffic and
weather data for urban arterials in Athens, Greece. The traffic and weather data were
aggregated into 1 h intervals. For every crash case, two non-crash cases were identified
for the same location and time interval, one week before and one week after the crash
occurrence. The random forest (RF) method was used to select the significant variables,
and the Bayesian logistic regression (BLR) was used to model the likelihood of crashes.
The results showed that the crash likelihood is most impacted by the standard deviation of
occupancy and the coefficient of variation of traffic flow.

Yu and Abdel-Aty [8] developed crash risk assessment models that could be applied
in real time crash prediction. The models were tested using the data from a 15-mile
freeway section of I-70 in Colorado. The study dataset included crash record data and
real-time traffic data collected from roadside radar detectors. For each crash case, four
non-crash cases were identified for the same location two weeks before and two weeks
after the crash occurrence. The classification and regression tree (CART) method was used
to select the significant variables. The modeling methods applied in this study included
(i) Bayesian logistic regression with fixed-parameters, (ii) Bayesian random-parameter
logistic regression considering the seasonal variation, (iii) Bayesian random-effect logistic
regression considering segment level heterogeneity, (iv) Support Vector Machine (SVM)
with linear kernel, and (v) SVM with Radial Basis Function (RBF) kernel. The results
showed that the Bayesian logistic regression with fixed parameters and the SVM with RBF
kernel performed better than the other models.

Wang et al. [9] proposed a crash prediction model for crashes occurring at the express-
way ramps in Central Florida. The dataset used in model calibration and testing consisted
of the crash records collected from the Florida DOT statewide crash database, traffic flow
data, roadway geometry data, and weather condition data collected from the National
Climate Data Center (NCDC). Two separate BLR models were developed for single-vehicle
and multi-vehicle crashes. The study found that four variables were significant in both
models, including logarithm of the vehicle count in 5 min intervals, ramp configuration,
road surface condition, and visibility. The traffic speed was found to be significant only in
the single-vehicle model.

Theofilatos et al. [10] conducted a comparative study of crash prediction models
using several machine learning (ML) and deep learning (DL) methods, including k-nearest
neighbor (KNN), Naïve Bayes, decision tree (DT), RF, SVM, and shallow neural network.
The models were trained and tested using the crash data for an urban motorway in Greece.
For the modeling purposes, each crash record was matched with two non-crash cases. The
explanatory variables were derived from the traffic data and weather data obtained in real
time and matched to the crash and non-crash cases based on the corresponding time and
location. The models were compared based on the performance metrics including accuracy,
sensitivity, specificity, and AUC (area under the receiver operating characteristic (ROC)
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curve). The study found that the DL model outperformed the ML models as it provided a
relatively balanced performance among all metrics.

Furthermore, Guo et al. applied RF in identifying the most critical variables in crash
risk analysis study. A logistic regression model was developed to predict the crash risk on
freeways in China and ascertain the relationship between traffic flow and risky driving
behavior [11]. Wang et al. provided systematic ML models to predict the driving risk based
on the data of drivers involved in crashes in China. Four three-based ensemble learning
approaches were implemented: a gradient boosting decision tree (GBDT), an extreme
gradient boosting decision tree, and RF models. The results revealed that GBDT outper-
formed other methods with an acceptable average precision of 0.68 [12]. Regarding the
crash severity prediction, Sameen and Pradhan compared the Recurrent Neural Network
(RNN), Multilayer Perceptron (MLP), and Bayesian Logistic Regression (BLR) models in
prediction of injury severity based on 1130 crash records from the North-South Expressway
in Malaysia, occurring over six years. The results suggested that the RNN appeared to
have better prediction performance than MLP and BLR [13]. In another study, Lin et al., ap-
plied RF and Extreme Gradient Boosting (XGBoost) methods to analyze severity of crashes
involving teen drivers on rural roads in West Texas. The RF and XGBoost models were
each developed using two coding methods: (a) label encoder and (b) one hot encoder. The
label encoder assigns numerical values to the unrepeated categories and treats categories in
data as ordered. The potential shortcoming of this encoding method is that it can assume
the relationships between the categories due to their ordering. On the other hand, one
hot encoder converts the categorical variable into a sparse binary matrix. The results of
this study indicate that the combination of label encoder and XGBoost appeared to yield
better accuracy and computation time [14]. Along the same line of thought, Zhang et al.
compared the prediction performance of two discrete choice models and four ML models
to predict the injury severity in crashes at freeway diverge areas in Florida. This study
applied ordered probit (OP) model and multinomial logit model, in comparison to RF,
KNN, SVM, and decision tree models. Higher prediction accuracies were obtained with
ML models as compared to discrete choice models, with RF showing the best performance
and OP performing the worst [15]. In another study, Wahab and Jiang investigated the
factors of injury severity in motorcycle crashes in Ghana. The authors applied ML methods
including RF, J48 Decision Tree, and instance-based learning with parameter k, as well as
multinomial logit model (MNLM). A ten-fold cross-validation was used to validate the
ML models. This study also demonstrated superior performance of the ML methods as
compared to the MNLM, with RF having the highest accuracy and extrapolation ability
among the models [16].

With regards to data sampling and handling of imbalanced data in crash analysis, Kim
and Lym investigated the prediction performance of the eight ML classifiers with/without
data balancing in a case study of crash injury severity in Ohio, U.S. They applied the
logistic and ordered logistic regression, RF, and ordered RF models. The results reveal
that inclusion of data balancing improves performance of predicting severe crashes, while
implementing ordering nature to develop an ordered RF model without balancing seems to
yield the highest prediction accuracy [17]. Fiorentini and Losa compared four crash severity
prediction models, including random tree, RF, KNN, and logistic regression, by handling
the data imbalance using random undersampling the majority class (RUMC) technique.
Results show that RUMC-based models enhance the positive rate of identifying fatality
and injury crashes compared to imbalanced models [18].

3. Methodological Background

This section introduces analysis methods used in this study. The methods are selected
based on the literature review, and each method is briefly explained in the following subsections.
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3.1. Random Effect Bayesian Logistic Regression

The random effects Bayesian logistic regression (RBLR) was applied in this study as
one of the methods for modeling crash risks. The Bayesian logistic regression differs from
the standard (frequentist) logistic regression in the treatment of coefficients—it assumes that
the coefficients follow a random distribution, rather than being fixed. The main advantage
of Bayesian approach is the ability to capture uncertainty (variability) in the measured
phenomena that may not be captured in the sample. This is achieved by formulating the
model parameters as random variables that follow assumed prior distributions derived
from some (prior) information about the measured phenomenon. The resulting confidence
region associated with each estimated parameter is equivalent to the confidence interval in
standard regression analysis, but it also captures the unobserved variability in the model
parameters, which may improve the accuracy of the estimates. As another advantage
over the standard regression models, the Bayesian models can help avoid the odds ratio
overfitting, especially in complex models with large number of parameters. problem.

In this study of traffic crashes, the response variable is binary with two outcomes:
yi = 1 and yi = 0. In the crash likelihood model, “1” represents a crash event and “0”
represents a non-crash case. In the crash severity model, “1” represents an injury/fatal
crash, and “0” represents a property-damage-only (PDO) crash. The probabilities associated
with the binary events are pi and 1− pi, respectively. Thus, applying the Bayes theorem,
the RBLR is formulated as follows:

yi ∼ Bernoulli(pi) (1)

logit(pi) = β0 + β jXj (2)

where the probability of each observation (yi) is assumed to follow Bernoulli distribution,
Xj is the vector of N explanatory variables (j = 1, . . . , N), β j is the vector of random coeffi-
cients (slopes) associated with the explanatory variables, and β0 is the random intercept
in the regression model. Both the intercept and slope coefficients follow specific prior
random distributions.

In general, depending on the corresponding prior probability distributions, the coeffi-
cients can be categorized into two groups: informative priors and non-informative priors.
The informative priors are used when prior information about the estimated coefficients or
their possible values are known, while the non-informative priors are used when little or
nothing is known about the values of the coefficients except a general functional form of
the prior probability distribution (most often Normal distribution).

3.2. Random Forest (RF)

Random Forest (RF) is a non-parametric supervised learning method that can be ap-
plied in both regression and classification modeling. The basic idea of the RF method is to
build an ensemble of decision trees (i.e., a forest), which are randomly created through a pro-
cess called bagging [19]. The bagging process consists of two components: bootstrapping
and aggregation. With bootstrapping, each decision tree is trained using a random subset
of features (decision factors) for splitting the nodes, and a random sample of observations
from the original dataset. Each tree will still be trained using the same sample size as the
original dataset, but each one will be formed through a random sampling from the original
dataset with replacement. The final estimation of the response variable is then achieved by
aggregating the estimates (outputs) of all decision trees in the forest. In regression models
the aggregation is accomplished as an average of the decision trees outputs, while in the
classification models this is accomplished by majority voting, i.e., selecting the outcome
generated by the majority of trees in the forest. The RF method produces a collection of
relatively uncorrelated trees, which are used to derive the output, rather than deriving the
output from a single decision tree. This addresses the problem of overfitting and sensitivity
to the sample dataset, which is the main shortcoming of individual decision trees. The RF
method is commonly applied in modeling and analysis of highway crashes [7,10].
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The hyperparameters of the RF model that should be specified include the number of
decision trees in the forest and the number of features that should be randomly selected to
split the nodes in each tree (referred to as mtry). These hyperparameters are optimized in
the tuning process so as to minimize the error of the estimate. In that context, an important
feature of the RF algorithm is differentiation of the input dataset due to random sampling.
Namely, due to the sampling method applied in the bootstrapping process approximately
one third of the data is not selected for model training. This subset of input data is called
out-of-bag (OOB) data [20]. The OOB data is used to test the RF model and calculate the
error of the estimate (referred to as OOB error). The OOB error depends on the selection of
hyperparameters. For example, smaller number of randomly selected features to split the
nodes at each tree (mtry) reduces the correlation among the trees, which is desirable, but it
also reduces the strength (predictive power) of individual trees. Therefore, the objective of
the model tuning process is to select the hyperparameters so as to minimize the OOB error.

In addition to model tuning, the OOB data can be used to quantify the variable
importance. This is accomplished by assessing the change in OOB error in response to
individual exclusion of explanatory variables (features) from the OOB data, while keeping
the other variables unchanged. The change in OOB error can be measured by Mean
Decrease Accuracy (MDA) as an average change in error over all trees in the RF after the
exclusion of the given feature [21]. Higher values of MDA indicate the greater relative
importance of a variable.

3.3. Gradient Boosting Machine (GBM)

Similar to RF, the Gradient Boosting Machine (GBM) is an ensemble learning method
that uses decision trees as the base learning units. In contrast to RF, which uses relatively
large trees and develops prediction through bootstrapping and aggregation, the GBM uses
small trees and applies the concept of boosting which improves the learning strength of
learner trees in a sequential manner. The GBM algorithm starts with a “weak learner”
decision tree that fits the data using a simple regression model, and then calculates the
error of prediction, e.g., as prediction residuals. It then develops new trees in a sequence,
each growing more complex by focusing on the harder to predict examples in the data so as
to reduce the prediction error. The prediction error is calculated using a differentiable loss
function, and the algorithm searches for the best error reduction tree along the gradient of
the loss function. Each tree in the sequence is given a certain weight (called “learning rate”)
equivalent to the step-size (multiplier) of the residuals along the gradient applied to the
next tree. The number of trees and the learning rate are determined (optimized) along with
other model parameters in the model tuning process. In the end, the algorithm produces
a complex ensemble of trees, and the final prediction is made as a weighted prediction
of all trees in the ensemble. The study presented in this paper uses the multinomial
deviance as the loss function. The GBM has gained a lot of popularity in machine learning
modeling due to recent advancements and improvements in the search algorithm and the
sampling methodology.

3.4. K-Nearest Neighbor (KNN)

KNN is a supervised machine learning method that can also be used both for classi-
fication and regression. The KNN algorithm determines the class of each observation in
the analysis dataset based on the classes (e.g., PDO, injury, or fatality in the crash severity
analysis) of K closest observations (nearest neighbors). The closeness is measured using
some function of distance in a multi-dimensional space, with each dimension representing
an explanatory variable (e.g., speed, traffic volume, geometric design characteristics, etc.).
In classification algorithms, the class of an observation is determined as a majority class
among its K nearest neighbors; in regression algorithms the class is determined as an
average of classes of the K nearest neighbors [22]. To execute the KNN algorithm, two
parameters must be specified: the value of K (i.e., how many neighboring observations
should be considered for classification or regression), and the distance function (e.g., how
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will the distance between the neighbors be determined). Small values of K may create a
model that is too specific to the training dataset, leading to overfitting and rendering the
model unfit to properly classify datasets other than the one used in training. Large values
of K, on the other hand, may lead to a weak, overly generalized model, unbale to properly
classify both the training and testing datasets. The value of K is therefore determined in an
iterative process, in which different values of K are applied and the one that yields the best
performance (e.g., achieves the highest accuracy of prediction) is selected for the model. As
a rule of thumb, in classification models where there are only two classes, which is the case
in this study, K should be odd to avoid ties [23]. As for the distance function, in this study
the Euclidean distance was used, which is formulated as:

dist
(
xi, xj

)
=

√√√√ p

∑
k=1

(
xik − xjk

)2
(3)

where dist
(

xi, xj
)

denotes the distance between the observations i and j, and xik and xjk are
the values of the Kth factor for i and j, respectively.

3.5. Gaussian Naïve Bayes (GNB)

The Naïve Bayes (NB) algorithm is a supervised probabilistic classification method
based on Bayes’ theorem. The NB method classifies the observations by calculating the
conditional probability that they belong to a target class given the values of model features,
as follows:

P(y|X) =
P(X|y)P(y)

P(X)
=

P(y)∏n
i=1 P(xi|y)

P(X)
(4)

where P(y|X) denotes the posterior probability of the observation belonging to the class
y given the set of features X, P(X|y) denotes the likelihood of feature X given the class y,
and the P(y) and P(X) represent the prior probabilities of the occurrence of class y and
feature X respectively, calculated from the training data. An important assumption in this
method is the strong (naïve) independence among the model features X. Additionally,
the denominator P(X) does not depend on the class y and the values of features X are
given, so the prediction only depends on the enumerator in the formula above. In the study
presented in this paper the Gaussian Naïve Based (GNB) method is applied, which uses
the Gaussian (normal) distribution for the likelihood functions of feature X given class y:

P(xi|y) =
1√

2πσy2
exp

(
−
(
xi − µy

)2

2σy2

)
(5)

where the µy is the mean and σy is the standard deviation of the likelihood function
calculated for each feature in the training dataset using maximum likelihood. The GNB
method has been used in various road safety studies [10,24].

3.6. Model Performance Criteria

The performance of models in this study was evaluated using the following perfor-
mance measures:

Overall accuracy =
TP + TN

Total crashes
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

where:
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• TP = True positive value, defined as the number of crash cases in the crash likelihood
model (or fatal/injury crashes in crash severity model) that are correctly predicted.

• TN = True negative value, defined as the number of non-crash cases in the crash likeli-
hood model (or PDO crashes in the crash severity model) that are correctly predicted.

• FP = False positive value, defined as the number of non-crash cases that are falsely
predicted as crash cases in the crash likelihood model (PDO crashes falsely predicted
as fatal/injury crashes in the crash severity model).

• FN = False negative value, defined as the number of crash cases that are falsely
predicted as non-crash cases in the crash likelihood model (fatal/injury crashes falsely
predicted as PDO crashes in the crash severity model).

The AUC was also used to evaluate each model. The closer the values of each of these
measures are to 1, the better the prediction performance.

4. Data Collection and Preparation
4.1. Study Dataset

The study location included two interstate highways in New Jersey: the 68.5 miles
long interstate I-80, which has a west-to-east alignment; and 67.5 miles long interstate I-287,
which has a south-to-north alignment. The locations of I-80 and I-287 on the map of New
Jersey along with the location of weather stations used in this study to collect the weather
data are shown in Figure 1.

Figure 1. The study area with the location of I-80, I-287, and weather stations.

As stated before, the proactive data can be collected before the crash occurrence,
ideally in near-real-time. The proactive data sources and datasets used in this study are
readily available in real-time, at a roadway segment level, and for all sections of the ma-
jor roadways in the State of New Jersey. The analysis dataset was compiled from the
following sources: (a) New Jersey Department of Transportation (NJDOT) crash records
database, which contains records of all reported highway crashes in the State of New Jersey;
(b) NJDOT Congestion Management System (NJCMS), which provides estimated, syn-
thesized hourly volume and volume-to-capacity ratio at a roadway segment level for all
highways in NJDOT jurisdiction; (c) Prevailing vehicle speeds and travel times aggregated
from the probe vehicles in 1 min increments at the roadway segment level, obtained from
the Regional Integrated Transportation Information System (RITIS), (d) Historical weather
observation data obtained from the Local Climatological Data (LCD) database for the
weather stations managed by the National Weather Service (NWS).
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The reactive data is collected after the crash occurrence and it provides additional
details about the crash, such as vehicle and driver characteristics. The reactive data used in
this study is contained in the statewide NJDOT crash records database, and it was used in
the crash injury severity model only.

4.2. Data Integration

The study dataset included 10,155 crashes recorded from January 2017 to December
2018. Each crash record included the date and time of crash, as well as crash location as
standard route identification (SRI), milepost, and direction, or as the latitude and longitude
of the crash location that was matched to the SRI and milepost using the NJDOT roadway
network GIS. The crash locations were matched to the corresponding NJCMS records (links)
based on the SRI, the milepost range, and directionality defined for each NJCMS link. The
matching NJCMS records provided the segment-level roadway characteristics, such as
number of lanes and capacity, as well as traffic data such as hourly volumes and v/c ratios.

The traffic speed data at the crash location and the corresponding upstream and
downstream segments was obtained from the RITIS dataset, in which the prevailing vehicle
speeds are aggregated in 1-min increments for each Traffic Message Channel (TMC) link
in the network. The TMC link definition tables for this study were obtained from NJDOT
and they contained the Route ID, direction, and milepost range for each TMC link. This
information, along with the timestamp of the reported speed, was used to associate the
TMC link and the corresponding speed data with the crash records and NJCMS records.
It should be noted that the limits of TMC do not coincide with the NJCMS roadway
segments. Therefore, the TMC links had to be matched and conflated with the NJCMS
segments in order match the speed records from the RITIS dataset to the roadway data and
traffic volumes associated with the NJCMS segments. Having the speeds and volumes for
consistent roadway segments (using NJCMS links as the bases), each crash record was then
matched to the corresponding roadway segment.

To reduce the noise in the speed data and simulate the application of the models
for crash prediction in traffic operation, each crash event was matched to 1 min speeds
recorded over 10 min periods 5–15 min prior to the crash occurrence. For the modeling
purposes, the 10 min average speed the standard deviation of speed, the coefficient of
variation of speed, as well as average deviation from the speed limit was calculated for
each of these 10 min period.

The weather data was collected from the LCD dataset and matched to each crash
record based on the weather station location, date and time of the crash and the weather
report. The shortest Euclidian distance was used to match the weather stations to NJCMS
link associated with each crash, and by association to each crash in the analysis dataset.
The weather data included hourly precipitation and hourly visibility observed during the
hour of the crash. The weather stations used in this study (shown on the map in Figure 1)
are all located at the regional airports.

Lastly, the effect of sun glare was assessed in this study as an additional factor of
crash occurrence and severity. To assess the effect of sun glare, the position of the sun was
estimated using Pysolar Python library [25] for each crash and non-crash case considering
the crash location (i.e., it’s latitude and longitude), date and time (t). This procedure is
illustrated in Figure 2.

As can be seen in Figure 2, the horizontal angle between the Sun and the vehicle can
be calculated as:

hglare = |∅− ϕ| (9)

where ∅ denotes the azimuth of the Sun, and ϕ denotes the horizonal angle of the roadway
at the crash (non-crash) location relative to the East. Similarly, the vertical angle between
the Sun and the vehicle can be calculated using the following equation:

vglare =
∣∣θ − θ′

∣∣ (10)



Appl. Sci. 2022, 12, 856 10 of 22

where θ denotes the sun elevation and θ′ denotes the slope of the roadway at the crash
(non-crash) location. The horizontal and vertical angle of the roadway were assumed to
reflect the corresponding horizontal and vertical angle of the vehicles traveling at the road
segment at the time of crash (or non-crash event). The presence of sun glare affecting the
driver was affirmed if the values of both hglare and vglare were less than 25◦. Otherwise, it
was assumed that there was no sun glare affecting the driver.

The summaries of the basic descriptive statistics of the datasets used in this study are
provided in Tables 1 and 2.

Figure 2. (a) The geometric model of the relative position of the Sun and the vehicle, (b) vehicle’s
position vs. sun azimuth, (c) vehicle’s position vs. sun elevation (Source: [26]).

Table 1. Summary of the roadway segment characteristics (including crash statistics).

Characteristic I-287 I-80 Total

Number of crashes (total) 1267 8888 10,155
Number of injury/fatal crashes 236 1903 2139

Number of PDO crashes 1031 6985 8016
Roadway length (in miles) 67.5 68.5 136

Number of roadway segments (both ways) 116 164 280
Minimum length of a roadway segment (in miles) 0.020 0.100 0.020
Maximum length of a roadway segment (in miles) 5.140 4.020 5.140
Average length of a roadway segment (in miles) 1.218 0.936 1.053

Table 2. Summary of basic statistics for the continuous variables.

Variable Min Max Mean Median

CAPLINK 3268 8570 6138 6856
VC_RATIO 0.032 1.599 0.600 0.577

Vol16_Tr 0.032 1.450 0.576 0.554
HourlyPrecipitation 0.000 0.720 0.002 0.000

HourlyVisibility 0.000 74.00 8.898 10.00
speed_avg_1015 2.00 83.00 61.56 64.80
speed_sd_1015 0.00 25.23 1.29 0.89

speedup_dif_1015 0.00 63.00 8.72 6.20
speeddown_dif_1015 0.00 63.00 8.23 5.80
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4.3. Explanatory Variables

The explanatory variables that were identified as the most critical and informative for
crash likelihood and crash severity analysis are listed in Table 3.

Table 3. Definition of the explanatory variables used in the study.

Variable Type Class Source Description
LANES Categorical Proactive NJCMS Number of lanes (the values are: 2, 3, 4, or 5)
Hour Categorical Proactive NJCR Time of the crash or non-crash (hour of the day)

Month Categorical Proactive NJCR Time of the crash or non-crash (month of the crash)
MEDIAN_TY Binary Proactive NJCR Median type (protected or non-protected)

Weekend Binary Proactive NJCR Day of the week (weekend of weekday)
Sun glare Binary Proactive NJCMS The effect of sun glare (0 = no effect, or 1 = Sun glare existed)
CAPLINK Continuous Proactive NJCMS Link capacity (vehicles/hour)

VC_RATIO Continuous Proactive NJCMS Volume-to-capacity ratio at the highway section during a given hour of
the day and month [unitless]

Vol16_Tr Continuous Proactive NJCMS Hourly truck volume ratio

Hourly
Precipitation Continuous Proactive NWS

Hourly precipitation at the highway section during the hour of the crash
or non-crash event obtained from the weather records for the closest
weather station [inches/hour]

Hourly Visibility Continuous Proactive NWS
Hourly visibility at the highway section during the hour of the crash or
non-crash event obtained from the weather records for the closest
weather station [miles]

speed_avg_1015 Continuous Proactive RITIS

Average speed at the highway section [miles/hour]. It is calculated for
each crash and non-crash event as an average of 1 min prevailing speeds
for the pertinent highway section over a 10 min period (5–15 min) prior
to the crash or non-crash event.

speed_sd_1015 Continuous Proactive RITIS

Standard deviation of speed at the cash location [miles/hour]. It is
calculated as a standard deviation of 1 min prevailing speeds for the
pertinent highway section over a 10 min period (5–15 min) prior to the
crash or non-crash event.

speedup_sd_1015 Continuous Proactive RITIS

Standard deviation of speed at the upstream highway section
[miles/hour]. It is calculated as a standard deviation of 1 min prevailing
speeds for the pertinent highway section over a 10 min period
(5–15 min) prior to the crash or non-crash event.

speeddown_sd_1015 Continuous Proactive RITIS

Standard deviation of speed at the downstream highway section
[miles/hour]. It is calculated as a standard deviation of 1 min prevailing
speeds for the pertinent highway section over a 10 min period
(5–15 min) prior to the crash or non-crash event.

speedup_dif_1015 Continuous Proactive RITIS

Deviation of speed from the speed limit [miles/hour] at the upstream
roadway segment. Calculated as the difference between the average
speed (speed_avg) and the speed limit (obtained for the upstream
roadway segment from the NJCMS dataset).

speeddown_dif_1015 Continuous Proactive RITIS

Deviation of speed from the speed limit [miles/hour] at the downstream
roadway segment. Calculated as the difference between the average
speed (speed_avg) and the speed limit (obtained for the downstream
roadway segment from the NJCMS dataset).

Shape_Leng Continuous Proactive RITIS Length of the highway segment [miles]

Age Categorical Reactive NJCR Driver’s age in years (the classes are defined as: age ≤ 25, 25 < age ≤ 60,
and age > 60)

Veh_age Categorical Reactive NJCR Vehicle age in years (the classes are defined as: 0 < age ≤ 5, 5 < age ≤ 10,
and age > 10)

4.4. Generating Non-Crash Cases for the Crash Likelihood Modeling

In the crash likelihood model the matched case-control methodology was used to
introduce the non-crash cases to match the crash cases. The methodology is implemented
by generating four non-crash cases for each crash at the same location, day of the week,
and time-of-day: one case in the week before, one case two weeks before, one case in the
week after, and one case two weeks after the corresponding crash occurrence. The 1:4 ratio
of crash cases to non-crash cases were selected based on Ahmed and Abdel-Aty [27] who
found this ratio to provide slightly better results when compared to other ratios of crash-
to-non-crash cases. It should be noted that the matched case-control method employed in
this study accounted for the confounding effects of the location (with the corresponding
roadway characteristics) and time on crash occurrence. The other factors, such as vehicle,
driver, weather and road condition parameters at the time of crash were not considered
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when generating non-crash cases for the analysis. After completing this step, the study
dataset for the crash likelihood model had additional 40,620 records representing non-crash
cases (in addition to the 10,155 crash records).

4.5. Correlation between the Explanatory Variables

Before proceeding with model estimation, it is important to check for correlation
between the explanatory variables in the analysis dataset. The correlation was analyzed
using the Pearson correlation coefficient matrix. Based on the correlation matrix, it was
decided to exclude from further consideration the highway capacity (CAPLINK variable)
as it was correlated with the number of lanes (LANES variable). The hourly volume
(VOL variable) was also excluded from the models as it was correlated with the v/c ratio
(v_ratio variable).

4.6. Determination of Significant Variables

The relative importance (significance) of explanatory variables was determined using
an RF model, using MDA (Mean Decrease Accuracy) as the criterion of relative variable
importance. The ranking of the relative variable importance is shown graphically in
Figure 3 for both the crash likelihood model and the crash severity model. The vertical red
(cordon) lines denote the separation between the significant variables to be considered (to
the right of the cordon line) and variables that should be excluded as insignificant (to the
left of the cordon line). The cordons were determined where the gap between variables
was relatively large in terms of MDA.

Figure 3. RF variable importance plot for: (a) the crash likelihood model, (b) the crash severity model.

It should be noted that in an attempt to include more parameters as models’ input,
it was decided to use the second largest gap between the variables, in terms of MDA, to
include (or eliminate) the variables in consideration. The literature suggests that models
such as RF and GBM, are not affected by the inclusion of insignificant variables [20]. In RF,
in general, nodes with the greatest decrease in impurity are found at the start of the trees,
while nodes with the least decrease in impurity occur at the end of trees. Thus, the less
important nodes have little effects on the models’ performance.

In both models the variables SHOULDER, Sunglare, Weekend, and MEDIAN_TY were
not significant. Furthermore, the plots in Figure 3 suggested that HourlyPrecipitation and
LANES should be omitted from the crash likelihood and crash severity models, respectively,
due to their low relative importance.
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4.7. Dealing with the Data Imbalance Problem

To overcome the problem of low frequency of fatal crashes, for the modeling purposes
they were combined in a single class with injury crashes. However, even after combining
the injury and fatal crashes, it was found that non-injury crash class accounted for 79% of the
cases (8016 non-injury or PDO crashes out of the total of 10,155 crashes in the dataset). This
may present a problem in model training: the traditional accuracy maximizer techniques
may not perform adequately with the training dataset containing skewed distribution of
classes, as they generally tend to perform better in favor of the majority class. In such
situations it is advantageous to apply certain data transformations that result in a more
balanced training dataset.

This study applied relatively novel Random Oversampling Examples (ROSE) method
to resample and balance the initial training dataset. The ROSE method employs a random
bootstrapping technique introduced by Menardi and Torelli [28], which can alleviate the
data imbalance issue in binary classification problems. The method combines random
oversampling and random undersampling by generating new artificial instances of data
examples in the original classes using a smoothed bootstrapped approach [29].

Consider a training set of size n, consisting of a binary response variable y, with class
labels Yj and a set of input data for each class, xij, i = 1, . . . , nj, where nj < n is the
number of cases in class j. For each x belonging to the class Yj, ROSE generates samples
from a multivariate kernel density estimate of f (x | y = Yj) as follows:

f̂ (x | y = Yj) =

nj

∑
i=1

piPr (x | xij) =

nj

∑
i=1

1
nj

KHj

(
x− xij

)
(11)

where KHj denotes an estimated kernel function, and it’s smoothing matrix Hj is defines as:

Hj = diag
(

h(j)
1 , . . . , h(j)

d

)
(12)

where d denotes the number of explanatory variables and

h(j)
q =

(
4

(d + 2)n

)1/(d+4)
σ̂
(j)
q , q = 1, . . . , d (13)

where σ̂
(j)
q is the estimated standard deviation of the q-th variable. According to Bow-

man and Azzalini [30], the smoothing matrix minimizes the Asymptotic Mean Integrated
Squared Error, assuming that the true conditional densities of the data follow Normal
distribution. The practical implementation of ROSE encompasses the following steps:

1. select y∗ = Yj with probability πj;
2. select x such that yk = y∗, k = 1, . . . , n with probability 1

nj
;

3. sample x∗ from the estimated kernel function.

Repeating steps 1 to 3 yields a newly generated training set of size m, with the prob-
ability of each class being πj. Menardi and Torelli [28] showed that ROSE outperformed
other well-known oversampling methods, such as synthetic minority oversampling tech-
nique (SMOTE), measured by higher values of the AUC in models implementing logistic
regression and classification trees. This was the main motivation for implementing ROSE
method, given the similar class of models employed in his study.

4.8. Final Preparation of the Training and the Testing Datasets

The input datasets for both crash likelihood and crash severity models were split into
two subsets: (a) training dataset, which was used to train the models and contained 75% of
features (data records), and (b) testing dataset, containing 25% of features. The training
and testing datasets were separated using stratified sampling, which ensured that the same
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proportion of output class labels was preserved in both the training and testing datasets as
in the original data.

For the crash severity model training, the ROSE transformation was applied to the
original data to generate a synthetic training dataset used specifically for training the crash
severity prediction models. When implementing ROSE, different probability values for the
minority classes in the original dataset were evaluated (e.g., 0.3, 0.4, 0.5). The probability of
0.5 was selected as it provided the best model performance in terms of sensitivity and AUC
values. The number of crash records (features) in the training datasets for each class before
and after the ROSE transformation, as well as the size of each class in the testing datasets,
are summarized in Table 4. The Figure 4 illustrates the effect of the ROSE transformation
on balancing the majority class (PDO crashes) and minority class (injury/fatal crashes) in
the training dataset. The figure shows the graphs of training data points before the ROSE
transformation (on the left-hand side) and after the ROSE transformation (on the right-hand
side), using as an example the relationship between the standardized speeds and V/C
ratios in the data. It should be noted that any two variables could be used for the visual
representation as the aim of the figure is to illustrate the change in the number of cases
belonging to the minority class. As can be observed in the graphs, there is a significant
increase in the number of minority class cases after applying ROSE, providing a more
balanced dataset to be used in model training.

Table 4. Size of input datasets for the crash severity models.

Models/Corresponding Classes
Training Dataset

Testing Dataset
Before ROSE After ROSE

Crash Severity Dataset 7616 12,719 2539
PDO Crashes 6009 6614 2003

Injury/Fatal Crashes 1607 6105 53

Figure 4. Standardized average speed vs. standardized v/c ratio in the crash injury severity dataset:
before ROSE (left) and after ROSE (right).
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5. Model Implementation

The RBLR models were estimated in in WINBUGS statistical software, where all model
parameters were assumed to be non-informative priors following Normal distribution. The
slope parameters βi (where i = 1, . . . , N) were set to be distributed β ∼ Normal(0, 0.000001),
with the mean equal to 0 and precision equal to 0.000001 (the precision being defined as
the reciprocal of the variance, so the variance is equal to 1,000,000). The intercept was set
to follow normal distribution β0 ∼ N(0, t), with the mean equal to 0 and the precision
parameter t having Gamma distribution t ∼ Gamma(0.001, 0.001) with the mean equal
to 1 and precision equal to 0.001 (i.e., the variance equal to 1000).

The Bayesian inference was estimated using the Markov Chain Monte Carlo (MCMC)
simulation. Unlike the previous crash risk analysis studies, which did not provide the
initial values of the decision variables in the estimation procedure, this study used ordinary
logistic regression to assign the initial values to the variables. The simulation was performed
with 20,000 iterations, with the first 5000 samples considered as burn-in. The 95% Bayesian
Credible Interval (BCI) was used as the significance indicator of explanatory variables [31],
indicating that an explanatory variable is statistically significant if the 95% BCI for the
corresponding model coefficient does not include the value of zero [32]. The Deviance
Information Criterion (DIC) was used to assess the model complexity and goodness-of-fit.
The Bayesian logistic model with smaller values of DIC is preferable [33]. The RBLR models
of crash severity and crash likelihood in this study were estimated separately using the
corresponding training datasets and both converged with the acceptable DIC. The crash
likelihood model had the DIC value of 8578.47 and the crash severity model had DIC
value of 4850.40, both of which were lower than the DIC of the corresponding null models,
indicating that the explanatory variables improve the fit of both models to the training data.
The resulting models were then applied using the corresponding testing datasets to derive
the performance metrics for evaluation and comparison with other models.

All other models in this study were implemented in R statistical software using CARET
package version 6.0–86 [34]. Before model tuning and validation, the data preprocessing
was performed including centering and scaling of all continuous variables used in the
model. The model tuning and validation was performed in all ML models using 10-fold
cross-validation.

6. Results
6.1. Crash Likelihood Models

The fitted RBLR crash likelihood model is summarized in Table 5. The explana-
tory variables that were significant at the 95% BCI included standard deviation of speed
(Speed_sd_1015), average speed (speed_avg_1015), hourly precipitation (HourlyPrecipita-
tion), hourly visibility (HourlyVisibility), and v/c ratio (v_ratio). As shown in the table,
hourly precipitation, average speed, and standard deviation of speed have positive rela-
tionship with the crash occurrence (increase the odds of a crash outcome), while v/c ratio
and hourly visibility have negative relationship with the crash occurrence (reduce the odds
of a crash outcome). Application of the model with the testing dataset produced the AUC
value of 0.67.

Table 5. Summary of the Bayesian logistic regression model for crash likelihood.

Variables Mean Std. Err 95% BCI

speed_sd_1015 0.069 0.022 (0.028, 0.111)
speed_avg_1015 0.32 0.024 (0.415, 0.295)

HourlyPrecipitation 0.125 0.033 (0.082, 0.179)
HourlyVisibility −0.118 0.026 (−0.167, −0.071)

V_ratio −0.138 0.027 (−0.192, −0.080)
Constant −0.148 0.026 (−0.206, 0.103)
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After the data preprocessing, the estimation of the RF, GBM, and KNN models in-
volved hyperparameter tuning. The set of tuning parameters that were found to yield
the highest AUC value for the RF, GBM, and KNN models are summarized in Table 6.
The optimal hyperparameters in the RF model (mtry, split rule, and node size) were ob-
tained using the OOB sample and 10-fold cross-validation. In the GBM model, several
parameters were optimized as part of model tuning: number of trees (n.trees), the size
of trees (interaction.depth), the learning rate (shrinkage), and the minimum number of
observations allowed per node (n.minobsinnode). The tuning of the GBM is a challenging
task considering the tradeoffs between model bias and variance. For example, allowing
a larger number of trees improves the learning capability of the model, but it may lead
to overfitting [35]. The larger size of trees increases the order of predictor-to-predictor
interaction captured in the model [36], which increases the model and computation com-
plexity that may not result in higher predictive power. The learning rate takes values
between 0 and 1; generally, the lower learning rates provide better results by allowing
more gradual “climb” in the regression combined with the larger number of trees in the
model [37]. Finally, the minimum number of observations per node can be used to control
the impact of ‘noise’ in the data on the model performance. Generally, increasing the
minimum number of observations per node results in smaller trees that are less impacted
by noise in the training data. Lastly, the K-parameter in the KNN model (i.e., the number of
nearest neighbors considered in classification) was obtained in an iterative search process
such that the selected K-value provided the highest accuracy of prediction based on the
cross-validation of the training dataset.

Table 6. Crash likelihood models’ performance summary and Hyperparameters.

Model Hyperparameters Accuracy Sensitivity Specificity AUC

RBLR Not applicable 0.67 0.53 0.77 0.67
RF mtry = 4, split rule = gini, node size = 1, sample size = full training set 0.72 0.65 0.75 0.70

GBM ntree = 250, interaction.depth = 1, shrinkage = 0.1, n.minobsinnode = 10 0.64 0.53 0.75 0.66
GNB Not applicable 0.63 0.52 0.74 0.64
KNN K = 13 0.58 0.50 0.65 0.61

The performance indicators for the RBLR, RF, GBM, GNB, and KNN models, including
the overall accuracy, sensitivity, specificity, and the AUC, are summarized in Table 6. The
higher values for all metrics indicate better performance of the models, with the value
if 1.00 indicating perfect (predictive) performance. The comparison shown in Table 6
indicates that the RF model outperforms all other models, followed by the RBLR and the
GBM models.

6.2. Crash Severity Models

The summary of findings in the RBLR model for crash severity is provided in Table 7.
The results show that crash severity increases with an increase in the average speed, hourly
visibility, and the existence of sun glare, all of which are significant at the 95% BCI. The
AUC value calculated using the testing dataset is equal to 0.59.

Table 7. Summary of the Bayesian logistic regression model for crash severity.

Variables Mean Std. Err 95% BCI

Speed_avg_1015 0.2 0.08 (0.05, 0.4)
HourlyVisibility 0.02 0.009 (0.001, 0.03)

Sunglare 0.01 0.006 (0.005, 0.02)
Constant 0.02 0.001 (0.004, 0.04)

The performance metrics for the BLR, RF, GBM, GNB, and KNN models for the crash
injury severity analysis is summarized in Table 8. It can be observed that the RF model
has the highest AUC value of 0.61, and the highest sensitivity value of 0.46. It can be
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observed that overall, the sensitivity values of all models are quite low (the lowest being
0.08 for GBM, and others hovering around 0.4), which indicates poor performance of the
models in predicting fatal/injury crashes (minority class). In terms of specificity, which
reflects the ability of the models to correctly predict PDO cases (majority class), GBM
provides the highest values (0.96), followed by GNB and RBLR (0.73), and RF (0.72). KNN
provides the lowest sensitivity value (0.66) among all investigated models. Overall, as in
the crash likelihood analysis, the RF appears to demonstrate the best performance of all
tested models, although it is very similar to the performance of the RBLR and GNB models,
with very minor differences in the values of performance criteria.

Table 8. Crash severity models’ performance summary and Hyperparameters.

Model Hyperparameters Accuracy Sensitivity Specificity AUC

RBLR Not applicable 0.67 0.41 0.73 0.59
RF mtry = 16, split rule = gini, node size = 1, sample size = full training set 0.68 0.46 0.72 0.61

GBM ntree = 250, interaction.depth = 5, shrinkage = 0.1, n.minobsinnode = 10 0.80 0.08 0.96 0.58
GNB Not applicable 0.67 0.41 0.73 0.58
KNN K = 5 0.61 0.40 0.66 0.55

It should be notes that despite the high overall accuracy (0.80) and specificity (0.96)
values, the GBM model cannot be recommended for predicting the severity of crashes as it
exhibits very poor sensitivity (0.08).

6.3. Application of Reactive Data in the Crash Severity Model

The unsatisfactory model performance suggest that the data used for model devel-
opment is not sufficient or sufficiently informative to enable accurate prediction of crash
outcomes and separation of severity classes in the crash dataset. This could be caused by
excessive noise in the data, the quality of the data, or missing important features in the
data. To address the potential shortcoming related to missing features, the input data was
expanded by adding the reactive data, specifically the driver age and vehicle age variables.
As noted in the literature review, the studies have shown that driver and vehicle character-
istics have a significant impact on crash occurrence and their severity outcomes [14–16].
Despite the critical impact of the factors described by reactive data on the crash severity
outcomes, the main challenge of using the reactive data for operational crash prediction
is that they are not available in real-time. To overcome this problem, the crash records in
the crash severity model were divided in classes based on the driver age and vehicle age,
which was provided for each crash record in the NJDOT crash records database. It should
be noted that as one aims to investigate the impact of driver age and vehicle age on crash
outcomes, the driver injury severity level should be considered as the dependent variables
rather than the most severe crash injury in the combined studies. The summary of number
of records included crash classes by driver age and vehicle age characteristics is provided in
Table 9. The case study dataset contained 12,566 driver records, with 11,059 (88%) records
of non-injury cases and 1507 (12%) records of injury and fatality cases. The RF models was
calibrated for each driver/vehicle age class to predict the driver injury severity. The RF
method was selected as it outperformed other investigated models for the crash likelihood
and crash severity analyses using the proactive data (see Section 5). The performance
statistics for the RF models considering the driver age and vehicle age is summarized
in Table 9.
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Table 9. Summary statistics of crash records considering driver age and vehicle age, and results of
the driver injury severity models.

Group # Variable N % Accuracy Sensitivity Specificity AUC

1 DrAge 1 < 25 and VehAge 2 < 5 1096 8.72 0.61 0.60 0.61 0.62
2 DrAge < 25 and 5 ≤ VehAge < 10 627 4.99 0.58 0.66 0.55 0.63
3 DrAge < 25 and 10 ≤ VehAge 716 5.69 0.62 0.55 0.63 0.66
4 25 ≤ DrAge < 70 and VehAge < 5 5927 47.17 0.68 0.54 0.79 0.68
5 25 ≤ DrAge < 70 and 5 ≤ VehAge < 10 1991 15.84 0.69 0.52 0.77 0.64
6 25 ≤ DrAge < 70 and 10 ≤ VehAge 1832 14.57 0.63 0.55 0.72 0.64
7 70 ≤ DrAge and VehAge < 5 198 1.58 0.68 0.42 0.89 0.66
8 70 ≤ DrAge and 5 ≤ VehAge < 10 89 0.71 0.65 0.52 0.76 0.66
9 70 ≤ DrAge and 10 ≤ VehAge 90 0.72 0.62 0.52 0.67 0.61

Average 0.64 0.54 0.71 0.64
1: DrAge = driver age; 2: VehAge = vehicle age.

The model performance metrics presented in Table 9 indicates that the average AUC
value incased to 0.64, a 4-percentage point increase compared to the crash severity model
that did not account for driver and vehicle age. An improvement was also achieved in
terms of model sensitivity, which increased by 8-percentage points, from 0.46 in the crash
severity model, to 0.54 in the driver severity model. Nevertheless, despite the improved
performance, the accuracy and predictive power of the resulting models should be further
improved to be used in operational crash severity prediction with greater reliability.

Another challenge to applying this model in practice is that the information about
individual drivers and vehicles is not known in real time. In fact, as noted earlier, the
information about the drivers and vehicles participating in reported crashes is only known
after the crashes occurs. Nevertheless, one way of overcoming this challenge is to use as
inputs the relative shares of drivers by age and vehicles by age in the total driver population
and vehicle fleet respectively. These relative shares could be estimated for a given roadway
section or analysis area, and for given analysis time frame (e.g., AM peak, PM, peak,
weekday, weekend, etc.). Having the estimated share of each class of drivers (e.g., by
age) and vehicles (by age) at a given road segment, the probability of a crash having a
certain driver injury severity outcome along that segment can be calculated using the law
of total probability:

Pi
(
Sj
)
= ∑

k
Pi(Gk) Pi(Sj|Gk) (14)

where Pi
(
Sj
)

is the probability that a crash on segment i will result in driver injury
severity outcome j, Pi(Gk) is the proportion of drivers and vehicles belonging to class
k (∑k Pi(Gk) = 1), and Pi(Sj

∣∣Gk) is the conditional probability of driver injury severity
outcome j for class k.

Combined, the crash likelihood prediction model and the crash injury severity predic-
tion model can be applied to estimate the probability of a crash and the expected severity of
a crash (if the crash does occur) at a given roadway segment with the corresponding road-
way, traffic, and environmental characteristics, and the assumed (estimated) composition
of drivers by age and vehicles by age.

7. Practical Implications of the Presented Modeling Framework

The outcomes of this research can be implemented in designing an operational traffic
safety management system that can predict the relative short-term (e.g., next 5–15 min)
crash risk for all regional roadways at the roadway segment level. For the operational
purposes it is suggested to use relative crash likelihood as the measure of crash risk, instead
of using the absolute crash probability values generated as model outputs. Each of the
presented models calculates the probability of crash occurrence and its associated injury
severity level for each road segment. These values can be clustered into multiple groups
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based on pre-defined thresholds that represent the relative risk of crash. To exemplify, the
following values can be used to categorize the crash risk at a road segment level:

Low risk if Pi ≤ 0.3
Moderate risk if 0.3 < Pi ≤ 0.6
High risk if 0.6 < Pi ≤ 0.75
Extremely high risk if Pi > 0.75

To facilitate monitoring of the crash risk across a roadway network in real-time, a
map-based system can be deployed in which the road segments are colored/labeled based
on the associated relative crash risks (see a sample illustration in Figure 5). This is expected
to help the traffic operations management authorities to take proactive traffic management
strategies such as utilizing variable speed limits, variable message signs, and coordinated
warning signals to mitigate crash risks at the high-risk locations.

Figure 5. Real-time crash risk map-based system.

8. Conclusions

The main goal of this study was to apply advanced data analytics methods to develop
and evaluate crash prediction models that can be used in near-real-time. The application
of several machine learning models for crash likelihood and crash severity prediction has
been demonstrated in a case study of two interstate highways in New Jersey. The analysis
dataset from which the explanatory variables and the response variables were derived
included detailed crash data from the crash records database, basic roadway geometry
data, synthetic vehicle volume and road segment capacity data, probe-vehicle traffic speed
data, and weather data from the National Weather Service. In addition to crash records,
the analysis included non-crash cases that were generated using the matched case-control
methodology. To deal with the data imbalance between the non-injury (PDO) crashes
and injury/fatal crashes, the study employed the random oversampling examples (ROSE)
method. The relative importance of explanatory variables was evaluated using the RF
model and they were ranked based on mean decrease accuracy (MDA).

The RBLR model further revealed (or rather confirmed) the significance of each ex-
planatory variable in the crash prediction model. In addition to RBLR, the RF, GBM,
GNB, and KNN models were also estimated for both crash likelihood and crash severity
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modeling. The predictive performance of the presented models was evaluated using the
performance metrics that included overall accuracy, sensitivity, specificity, and the AUC
value. The estimation results showed that the RF model outperformed all the other inves-
tigated models. However, none of the models based solely on the proactive data readily
available to the transportation agencies performed sufficiently well for a meaningful and
reliable application as operational models. The reason for such underperformance may be
the lack of information and noise in the data used for model development. To address the
potential shortcoming due to missing data features, a combined modeling framework has
been presented that includes the data reflecting both proactive and reactive factors. The
proposed method produced an improvement in the predictive performance of the injury
severity model by incorporating the reactive data on driver age and vehicle age. This is
achieved through implementation of a modeling framework that evaluates injury severities
for different crash classes defined for different combinations of driver age and vehicle age.

It is postulated that the results of this study could help the transportation agencies
and decision-makers in advancing the design and implementation of more effective oper-
ational decision support systems for roadway safety management. Such systems would
assist the traffic operations personnel in implementation of operational countermeasures
and tactics to reduce the likelihood of crashes, such as proactive activation of advanced
warnings on variable message sign (VMS), adjustments of variable speed limits (VSL),
ramp metering (RM), or deployment of highway patrol and law enforcement resources to
roadway segments with higher crash risk. The proposed modeling framework also provide
a basis for further research in crash risk prediction, considering the emerging datasets. Such
datasets include driving behavior records collected by the vehicle telemetry and user-based
insurance (UBI) systems, which are already being offered to the policy holders by the major
insurance companies. Another possible source of useful data are naturalistic driving stud-
ies [38], which can also be incorporated in the analysis to achieve more accurate predictive
models. Using this rich source of data will enable the prediction of crash likelihood and
injury severity by simultaneous use of proactive data and reactive data, such as driver
and vehicle characteristics. The increasing adoption of connected vehicle technology and
the share of connected vehicles on the roads will also provide the opportunity to utilize
vehicle telemetry and driver behavior data in near real time, which can further improve the
performance of the crash risk prediction models proposed in this research.

The addition of the variables that have not been considered in this study such as
the presence of a work zone and the locations of interchanges/intersections relative to
the roadway segment, may be beneficial towards the improved accuracy and predictive
capability of the ML models and may shed more light on potential pros and cons of
including certain variables in the ML models. Along with consideration of connected
vehicle and vehicle telemetry data, the addition of those factors and the corresponding
parameters in the analysis is a promising future research direction.
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