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Abstract: In the face of increasingly severe resource and environmental constraints, accelerating the 
transformation of agricultural green development through agricultural science and technology in-
novation is an effective measure to reduce agricultural pollution and improve agricultural produc-
tion efficiency. From the perspective of multidimensional proximity, this paper expounds the mech-
anism of agricultural science and technology innovation on agricultural green development through 
spatial spillover from two perspectives: factor spillover path and product spillover path. Based on 
panel data of 30 provinces in China from 2006 to 2019, using the gray correlation analysis method, 
the level of agricultural green development in China was measured, and its spatial–temporal evo-
lution trend was analyzed. The spatial economic matrix was selected as the spatial weight matrix, 
and the spatial econometric model was used to analyze the spatial spillover effect of agricultural 
science and technology innovation on agricultural green development. The results showed the fol-
lowing: (1) Agricultural green development had distinct spatial characteristics. The development 
level of green agriculture in eastern and northwestern China showed a trend of fluctuation decline, 
while that in southwest China showed a trend of fluctuation increase. The overall spatial distribu-
tion of green agriculture was high in the east and low in the west. (2) The spatial distribution of 
agricultural science, technological innovation and the agricultural green development level showed 
a significant positive global spatial autocorrelation, and the local spatial pattern characteristics of a 
number of provinces showed high-value agglomeration (HH), low-value agglomeration (LL), low-
value collapse (LH) and high-value bulge (HL) as the auxiliary local spatial distribution. (3) Under 
the economic matrix, the improvement of the agricultural science and technology innovation level 
not only had a significant promoting effect on agricultural green development within each province 
but also promoted agricultural green development in neighboring provinces through positive spill-
over effects. This study provides insights that can help make up for the lack of regional agricultural 
science and technology investment, formulate scientific regional agricultural science and technol-
ogy innovation policies and promote agricultural green development. 

Keywords: agricultural technology innovation; green agriculture; gray relational degree; space 
overflow 
 

1. Introduction 
Agricultural production is the foundation of China’s national economy. The promo-

tion of agricultural green development is the driving force for the development of the 
green economy and a prerequisite for achieving sustainable development [1,2]. The doc-
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ument “Opinions on Promoting Agricultural Green Development and Innovation Sys-
tems and Mechanisms”, issued by the General Office of the State Council of the People’s 
Republic of China, pointed out that the basic driving force of agricultural green develop-
ment should be institutional innovation, policy innovation and technological innovation. 
This important document on green agriculture stresses that agricultural technological in-
novation is the main contributor to, and source of power for, the high-quality develop-
ment of green agriculture. However, in actual implementation, the development of green 
agriculture is still unbalanced, and it is impossible to fully implement the ideological pol-
icy of relying on agricultural technology innovation to comprehensively promote the de-
velopment of green agriculture and ultimately achieve sustainable development. There-
fore, determining how to use scientific and technological agricultural innovation to drive 
the balanced development of green agriculture so as to achieve the goal of sustainable 
agricultural development in China is an open question. 

Agricultural green development is a complex concept that integrates the concepts of 
organic agriculture, circular agriculture, low-carbon agriculture and ecological agricul-
ture [3]. Scholars believe that the key to the development of green agriculture is to use 
green technology and optimize the mode of production so as to promote the construction 
of sustainable ecosystems [4], which is a new agricultural model that differs from past 
models. The existing research on agricultural green development is mainly focused on 
two aspects: one is the evaluation of the agricultural green development level. Based on 
the theory of the agricultural circular economy, scholars have established an evaluation 
index system of the green agricultural development level from the perspectives of the 
economy, input, utilization, safety and input–output using AHP objective consistency and 
other evaluation methods. They have comprehensively evaluated the current situation of 
agricultural green development and conducted an empirical analysis of the advantages 
and existing problems of agricultural green development in different regions [5–7]. Some 
scholars have carried out an empirical analysis from the perspectives of benefits, the en-
vironment, health and resource protection. An evaluation index system was constructed, 
and the development level of green agriculture was evaluated [8–11]. Some scholars have 
also evaluated the development level of green agriculture from the perspective of agricul-
tural green total factor productivity, such as select input–output indicators, considered 
the “relaxation” of input factors and the sequencing of effective units, and they have used 
the super SBM model method to accurately measure China’s agricultural green TFP and 
analyze its evolution trend [12,13]. At the same time, certain regional differences and re-
gional imbalance in the development of green agriculture in China have also been pointed 
out [14,15]. 

The other aspect of agricultural green development that has been researched is its 
influencing factors. From the perspective of micro farmers, farmers’ green agricultural 
production behavior is a complex process, and the individual characteristics, family char-
acteristics, time preference, cognition, economic incentives and potential benefits of agri-
cultural green development have a positive impact on farmers’ green production behavior 
[16–19]. From a macro perspective, the proportion of agricultural output value, the level 
of agricultural technology and the adjustment of agricultural industrial structure are im-
portant factors affecting China’s agricultural green total factor productivity [20,21]. At the 
same time, scholars have also pointed out that agricultural factor endowment, scientific 
and technological agricultural innovation and regional characteristics also affect China’s 
agricultural green development, and these effects have regional differences [22]. 

In sum, scholars at home and abroad have made significant breakthroughs in the 
sustainable development of green agriculture and have determined that scientific and 
technological agricultural innovation is one of the important factors affecting the devel-
opment of green agriculture. However, the internal impact mechanism of this innovation 
on the development of green agriculture remains to be studied, and traditional panel data 
measurement methods ignore the existence of spatial heterogeneity and spatial correla-
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tion, which makes it difficult to reflect the essence of scientific and technological agricul-
tural innovation to enhance the development of green agriculture. In fact, by incorporat-
ing spatial factors into the endogenous growth model, it can be seen that the free flow of 
factors and products between regions can promote spatial knowledge spillover and lead 
to the Pareto equilibrium of regional economic development [23]. In view of this, this pa-
per first analyzes the impact mechanism of scientific and technological agricultural inno-
vation on the development of green agriculture on the dual spillover path of elements and 
products. Then, it analyzes the temporal and spatial evolution law and spatial distribution 
pattern of green agriculture development, explores the spatial spillover effect of scientific 
and technological agricultural innovation on the development of green agriculture and 
then defines the promotion path of scientific and technological agricultural innovation to 
promote the development of green agriculture. Finally, it provides insights for formulat-
ing scientific and reasonable agricultural science and technology innovation policies and 
promoting regional balance and the sustainable development of green agriculture. 

2. Influence Mechanism 
Based on the perspective of spatial spillover, scientific and technological agricultural 

innovation is an important way to improve the level of agricultural green development. 
This is because the interregional flow of factors and products will promote the optimal 
allocation of resources in space, accelerate the dissemination and diffusion of innovative 
technology, knowledge, experience and information through the spatial spillover effect, 
strengthen the basic conditions of local innovation activities and promote the local green 
development of agriculture. Accordingly, in this paper, we divide the spatial spillover 
path of scientific and technological agricultural innovation on agricultural green develop-
ment into the factor spillover path and the product spillover path, and we reveal the im-
pact mechanism of scientific and technological agricultural innovation on green agricul-
tural development (Figure 1). 

From the perspective of the factor path, scientific and technological agricultural in-
novation itself is the result of the interaction and synergy of relevant factors, such as sci-
ence, technology and organization. Through the two stages of agricultural technology, 
namely, R&D and agricultural technology application, scientific and technological agri-
cultural innovation will promote the application of new factors, such as the efficient use 
of new capital elements through financial investment, talent introduction and learning 
demonstrations. Information elements and technical elements will also lead to the further 
upgrading of traditional elements, such as the upgrading of labor elements through talent 
training. Combined with economic externality theory and proximity dynamics theory, sci-
entific and technological agricultural innovation is characterized as a public good and has 
strong positive externalities. Based on the perspective of multidimensional proximity, tal-
ent, knowledge, information and other elements of scientific and technological agricul-
tural innovation will flow between regions via geographical proximity, organizational 
proximity and technological proximity. In particular, regions with high geographical 
proximity have less spatial distance and low communication costs, which is conducive to 
the flow of elements between regions; regions with high organizational proximity can 
more effectively obtain the spillover of remote knowledge and technology under the same 
external business environment, and in regions with high technical proximity, a knowledge 
structure with high similarity will promote knowledge spillover. Therefore, there is a spa-
tial spillover effect of scientific and technological agricultural innovation in adjacent re-
gions. This can achieve the reuse and re-upgrading of factors through the spillover and 
flow of factors among regions so as to improve the development level of agricultural green 
development in adjacent regions. 

Product spillover is also one of the important paths for scientific and technological 
agricultural innovation to improve the development level of green agriculture in adjacent 
regions through the spatial spillover effect. Under the joint action of new elements and 
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traditional elements, scientific and technological agricultural innovation will promote ag-
ricultural green development through three aspects: the production supply end, market 
demand end and product life cycle end. Among these aspects, the production supply side 
mainly refers to the fact that scientific and technological agricultural innovation can carry 
out R&D and the implementation of green means of production, such as biological pesti-
cides, biological fertilizers and organic fertilizers, and apply the products to green pro-
duction in adjacent areas through product spillover so as to realize the dual improvement 
of local and adjacent regional economic benefits and speed up the process of agricultural 
green production. The market demand side mainly refers to the fact that scientific and 
technological agricultural innovation can update the products of traditional agricultural 
production by integrating resource advantages so as to enrich the product diversity of 
local and adjacent regions and expand the market demand through product spillover. The 
product life cycle aspect mainly refers to the fact that scientific and technological agricul-
tural innovation can gradually improve products, prolong the life cycle of green agricul-
tural products, carry out technological innovation on the performance and quality of ag-
ricultural products to increase product demand at the stage of rising product demand and 
carry out gradual innovation on original products during product recession. The updated 
green agricultural products flow between adjacent areas so as to improve their market 
adaptability. 

 
Figure 1. The mechanism diagram of the effect of agricultural science and technology innovation on 
agricultural green development. 

3. Research Model Design 
3.1. Measurement of China’s Agricultural Green Development Level 
3.1.1. Construction of BPEIR Conceptual Model 

Vigorously developing the agricultural circular economy is an effective way to 
achieve sustainable agricultural development and is a strategic measure to relieve pres-
sure on agricultural resources, protect ecology, use clean resources and promote green 
agricultural development and sustainable rural economic development. This paper is 
based on the theory of the agricultural circular economy and comprehensively evaluates 
the development level of agricultural green development by constructing the BPEIR con-
ceptual model. The BPEIR conceptual model, namely, the “behavior–pressure–effect–im-
pact–response” model (Figure 2), is one of the typical quantitative models of the agricul-
tural circular economy. The model assumes that the green agricultural production system 
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consists of several regional systems and that there is total circulation in the system, whose 
size is determined by its external input and internal consumption. Specifically, if the use 
of system resources in a region increases and the consumption decreases, this behavior 
will increase the pressure on the system, resulting in negative effects. For example, in ag-
ricultural production, the abuse of fertilizers and pesticides will reduce the actual effective 
utilization rate and then lead to a reduction in crop yield and a decline in farmers’ income. 
The accumulation of negative effects has a strong impact on the system, causing economic 
and ecological problems, which forces the main body to respond to them and take a series 
of measures that are conducive to agricultural production to reduce the pressure on the 
system, such as controlling the total amount of agricultural water use. Additionally, envi-
ronmentally polluted agricultural water, the reduced use of chemical fertilizers and pes-
ticides, livestock and poultry manure, agricultural film and crop straw are resourced, 
comprehensively recycled and reused as harmless treatment measures to achieve re-
source-saving input and resource recycling. On the contrary, if resource usage in a re-
gional system decreases, consumption increases and resource recycling is realized, de-
creasing the system pressure, which is conducive to benign development. In conclusion, 
based on the BPEIR conceptual model, this paper comprehensively evaluates the devel-
opment level of green agriculture by considering the input, process and output of the sys-
tem. 

crop yield, farmer incomes,  
water quality and soil

economic loss, 
crop quality 

safety, 
agricultural 

resource 
pollution

production 
input behavior,

Systematic 
consumption 

behavior

resource saving investment and recycling subject adoptiongovernment intervention

Running Process

the input sidethe output side

 economic and social development resource saving investment

Resource recycling friendly resource and environment 
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impact
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Input   consumption   pressure  
Input   consumption   pressure 

 
Figure 2. Conceptual model of BPEIR. 

3.1.2. Construction of an Indicator System for Measuring the Development Level of 
Green Agriculture 

At present, there is no unified and complete evaluation system for the measurement 
of the development level of green agriculture. This article is based on the BPEIR concep-
tual model combined with the Green Development Index System issued by the Ministry 
of Environmental Protection and the National Development and Reform Commission and 
the basic guidelines of Made in China 2025. The evaluation of agricultural green develop-
ment should fully consider social, economic and ecological benefits to accurately and truly 
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reflect the important content involved in the input, output and operation of the green ag-
ricultural production system. Considering the science and availability of data, in this arti-
cle, we propose a green agricultural development level measurement index system with 
18 indicators in 4 dimensions: economic and social development, resource-saving invest-
ment, resource recycling and resource and environmental friendliness. The specific meas-
urement index system is shown in Table 1. 

Table 1. Indicator system for measuring the development level of green agriculture. 

First-Level  
Indicators 

Secondary Indicators 
Unit of  

Measurement 
Indicator Type Interpretation of Indicators 

Economic and social 
development 

Agricultural GDP output value per unit 
area 

CNY/hm2 Positive 
Agricultural GDP output value/sown 

area of crops 
Per capita disposable net income of 

farmers 
CNY/person Positive 

Farmers’ total income per capita minus 
various expenditures per farmer 

Per capita grain production kg/person Positive Total food production/total population 
Per unit area yield of grain kg/hm2 Positive Food production/area of arable land 

Total power of agricultural machinery Ten thousand kW Positive 
Agricultural machinery power + forestry 

machinery power + animal husbandry 
and fishery machinery power 

Resource-saving in-
vestment 

Fertilizer application intensity kg/hm2 Negative 
Scalar amount of fertilizer applica-

tion/sown area of crops 
Intensity of pesticide use kg/hm2 Negative Pesticide use/sown area of crops 

Intensity of agricultural mulch use kg/hm2 Negative 
Amount of agricultural film used/sown 

area of crops 

Intensity of agricultural water use m3/hm2 Negative 
Total water consumption/sown area of 

crops 

Resource recycling 

Coefficient of effective use of chemical 
fertilizer 

CNY/kg Positive 
Planting industry output value/scalar 

amount of chemical fertilizer application 
Effective utilization coefficient of pesti-

cide 
CNY/kg Positive 

Planting industry output value/amount 
of pesticide use 

Water-saving irrigation coefficient % Positive 
Water-saving irrigation area/total irriga-

tion area × 100% 

Cultivated land multiple cropping index % Positive Sown area of crops/area of arable land × 
100% 

Resource environ-
mental friendliness 

Total agricultural chemical oxygen de-
mand COD emissions 

Ten thousand tons Negative Agricultural waste discharge 

Total agricultural ammonia nitrogen 
emissions 

Ten thousand tons Negative Agricultural waste discharge 

Forest cover rate % Positive Forest area/total land area × 100% 
Annual afforestation area hm2 Positive Annual afforestation area 

Proportion of area of nature reserves % Positive 
Area of natural resource protection 

area/area of jurisdiction × 100% 

3.1.3. Inspection of the Indicator System for Measuring the Development Level of Agri-
cultural Green 

(1) Single-element inspection 
Single-unit testing is used to analyze individual indicators from the perspective of 

operability, accuracy and authenticity so as to ensure that the obtained indicator data are 
true and reliable. First, for the available data, the data sources were selected from the 
China Agricultural Yearbook, China Statistical Yearbook, China Forestry Statistical Year-
book, China Environmental Yearbook and China Water Conservancy Statistical Yearbook. 
Second, in addition to the existing statistical yearbook data, there were still a few indica-
tors that needed to be measured. The specific indicators are explained in Table 1. Finally, 
during data collection, some provinces were found to have missing data for certain indi-
cators. In this case, calculation methods such as linear interpolation and the mean filling 
method were selected to ensure the integrity of the agricultural green measurement indi-
cator data. 

(2) Overall inspection of elements 
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The overall inspection of the agricultural green development level measurement in-
dex system mainly starts with the specific inspection from three aspects: consistency, com-
pleteness and necessity. Specifically, consistency measures the consistency of the range of 
the index calculation and the calculation method. The completeness of the indicators re-
flects the input end, output end and the important content involved in the operation pro-
cess of the green agricultural production system. Necessity tests the irreplaceability of 
each index element from the perspective of the whole index system. This paper focuses 
on the overall necessity of eliminating indicators that are not representative or highly cor-
related by calculating identification and redundancy. In particular, the recognition degree 
is calculated by the minimum mean square error method, and the formula is as follows: 

mjxx
n

S
n

i
jijj ,3,2,1,)(1

1

2 =−= ∑
=

 (1) 

In the formula, jS  is the evaluation object, and ijx  is the jth index value of the ith 

evaluated object. If )1( 00 mkk ≤≤  exists, then }{ jmjk SS
≤≤

=
1
min

0
. Then, the evaluation in-

dex 
0kx corresponding to 

0kS can be eliminated. 

It can be seen from Table 2 that the standard deviation calculated for the total agri-
cultural ammonia nitrogen emission index is 2.05, which is the smallest standard devia-
tion among all indicators, indicating that this indicator is not representative. Although it 
can indicate the degree of resource and environmental friendliness in theoretical analysis, 
the scores of green agricultural development in China’s 30 provinces from 2006 to 2019 
are comparable for this indicator; that is, the impact of this indicator on the ranking of 
units is negligible, so it can be eliminated. 

Table 2. Recognition degree results. 

Index Standard Deviation Index Standard Deviation 

Agricultural GDP output value per unit area 24,911.86 
Coefficient of effective utilization of 

chemical fertilizer 
46.17 

Per capita disposable net income of farmers 5250.80 Coefficient of pesticide effective utili-
zation  

3761.49 

Per capita food production 334.74 Coefficient of water-saving irrigation 22.72 

Grain yield 1709.29 
Cultivated land multiple cropping in-

dex 
38.30 

Total power of agricultural machinery 3124.55 
Total agricultural chemical oxygen de-

mand COD emissions 
34.08 

Fertilizer application intensity 129.17 
Total agricultural ammonia nitrogen 

emissions 
2.05 

Intensity of pesticide use 9.35 Forest cover rate 17.67 
Intensity of agricultural mulch use 14.36 Annual afforestation area 156,693.30 
Intensity of agricultural water use 14,644.74 Proportion of area of nature reserves 5.85 

Proceeding from the four first-level indicators of economic and social development, 
resource-saving investment, resource recycling and resource and environmental friendli-
ness, the irreplaceability of various indicators is ensured by performing a layered meas-
urement of redundancy. The principle is to select independent indicators with very little 
correlation with other indicators. The specific steps are as follows: 

Step 1: Calculate the correlation coefficient matrix 

mjirrR
jjii

ij

SS

S
ijij ,,2,1,,),( ===

•
. Here, )( jiSij ≠  is the covariance, and iiS  and 

jjS  are the variance. 
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Step 2: Calculate the correlation degree between the ith index and the other m-1 in-
dexes in each layer; that is, the multiple correlation coefficient, which is defined as iδ . 
Replace the ith row and jth column of matrix R to the last row and last column of the 

matrix at the time 







→ −

1T
i

ii

r
rR

R ; then, the calculation formula of the multiple correla-

tion coefficient is: 

mirRr ii
T

ii ,,2,1,1
=••= −

−δ  (2) 

Step 3: After calculating mδδδ ,,, 21  , determine which indicator has the largest 
value: this indicator has the highest correlation with the other indicators in the layer and 
is easy to replace. Specify the lower limit of the critical value D when Di >δ ; then, this 
indicator can be eliminated. 

Step 4 Repeat the above steps until Di ≤δ  is reached. 
As can be seen from Table 3, for the economic and social development index, the 

critical lower limit D is 0.70. Since the complex correlation coefficient between the grain 
yield per unit area and other indexes within the layer exceeds 0.70, the grain yield per unit 
area index is eliminated. For the resource-saving input index, resource recycling index 
and resource and environment friendliness index, the complex correlation coefficient 

Di ≤δ  indicates that these indexes are not highly correlated with each other, so they are 
retained. Through the single test and overall test of the green agricultural development 
level index system, two indexes—total agricultural ammonia nitrogen emission and grain 
yield per unit area—were eliminated on this basis, and finally, an evaluation index system 
of agricultural green development was formed, which included 4 first-level indexes and 
16 specific indexes. 

Table 3. The redundancy results of the index calculated by the “maximum uncorrelation method”. 

First-Level Indicators Secondary Indicators 
Multiple Correlation  

Coefficient 

Economic and social develop-
ment 

Agricultural GDP output value per unit area 0.682 

Per capita disposable net income of farmers 0.661 
Per capita grain production 0.569 
Per unit area yield of grain 0.708 

Total power of agricultural machinery 0.676 

Resource-saving investment 

Fertilizer application intensity 0.610 
Intensity of pesticide use 0.614 

Intensity of agricultural mulch use 0.458 
Intensity of agricultural water use 0.181 

Resource recycling 

Coefficient of effective use of chemical fertilizer 0.278 
Effective utilization coefficient of pesticide 0.350 

Water-saving irrigation coefficient 0.601 
Cultivated land multiple cropping Index 0.587 

Resource and environmental 
friendliness 

Total agricultural chemical oxygen demand COD emissions 0.229 
Total agricultural ammonia nitrogen emissions 0.359 

Forest cover rate 0.234 
Annual afforestation area reserves 0.376 

3.1.4. Construction of Agricultural Green Development Level Measurement Model 
Gray correlation analysis is a method to measure the development trend of the gray 

system. Its basic principle is to infer whether there is an influence between the factors and 
the degree of influence based on the similarity of the curve shape of the behavior factor 
series. If the curve shape similarity between the comparison series and the reference series 
is high, it indicates that the relationship between the two series is relatively close, and the 
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gray correlation degree between the two series is relatively large; on the contrary, it indi-
cates that the gray correlation degree between the two series is small. The specific steps 
are as follows. 

Step 1: Determine the comparison sequence. Based on the measured value of each 
indicator in the green agricultural development level measurement indicator system, the 
comparison series is as follows: 



















=

mnmm

n

n

ij

XXX

XXX
XXX

X









21

22221

11211

 (3) 

Step 2: Standardize each indicator. Since the measurement units of the existing initial 
data are not uniform, and there is a difference between positive and negative indicators, 
it is necessary to normalize the selected initial data to obtain a dimensionless matrix: 



















=

mnmm

n

n

ij

YYY

YYY
YYY

Y









21

22221

11211

 (4) 

Step 3: Determine the reference sequence and calculate the difference sequence. The 
reference sequence is usually composed of the optimal value of each comparison se-
quence. For a sample containing m research objects and n indicators, the reference se-
quence is usually expressed as }{ onooo YYYY ,,, 21 = . 

Step 4: Find the gray correlation coefficient. Correlation is the degree of difference in 
geometric shapes between curves. Calculate the gray correlation coefficient between the 
jth index of the ith province and the reference series. The formula is as follows: 

ojijjiojij

ojijjiojijji
ij YYYY

YYYY

−+−

−+−
=

maxmax

maxmaxminmin

ρ

ρ
ε  (5) 

In the formula, ρ  is the resolution coefficient and 10 ≤≤ ρ , which plays a role in 
increasing the significance of the correlation coefficient difference, usually taken as 

5.0=ρ  
Step 5: Find and sort the degree of gray correlation. This paper uses the absolute 

value correlation method to calculate the correlation coefficient of each evaluation subject 
of the agricultural green development level. The greater the correlation, the higher the 
similarity. The closer the comparison series is to the reference series, the better the agri-
cultural green development level measurement index, and vice versa. The formula is as 
follows: 

∑
=

=
n

j
iji n 1

1 εγ  (6) 

In the formula, iγ  is the ith gray correlation degree, ijε  is the ith gray correlation 

coefficient, and n is the number of ijε . 

3.2. Measurement of Spatial Spillover of Agricultural Technological Innovation on the Level of 
Agricultural Green Development 
3.2.1. Spatial Autocorrelation Test 

(1) Global spatial autocorrelation 
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Global spatial autocorrelation is an index that measures the spatial correlation of re-
search objects from a global perspective. This article uses the global Moran’s index to 
measure the global spatial pattern of agricultural technological innovation and green ag-
ricultural development, and its value range is [−1,1], with 0 as the dividing line. When the 
value is greater than 0, this indicates that the variable has a positive spatial correlation—
that is, spatial agglomeration; when the value is less than 0, it indicates that the variable 
has a negative spatial correlation—that is, spatial dispersion; when the value is equal to 0, 
it indicates that the variables are not spatially correlated and are randomly distributed. 

∑∑

∑∑

∑ ∑∑

∑∑

= =

= =

= = =

= =

−−
=

−

−−
= n

i

n

j
ij

n

i

n

j
jiij

n

i

n

i

n

j
iji

n

i

n

j
jiij

WS

XXXXW

WXX

XXXXWn
sIMoran

1 1

2

1 1

1 1 1

2

1 1
)((

)(

))((
'  (7) 

Here, 
n

XX
S

n

i
i∑

=

−
= 1

2

2
)(

 is the variance of the observation unit, n is the number 

of observation units, ijW  is the spatial weight matrix, and iX  and jX  are the values of 
variable X on spatial units i and j. 

(2) Local spatial autocorrelation 
Local spatial autocorrelation is an index to measure the spatial correlation of research 

objects from a local perspective. In this paper, Moran’s index is used to identify the local 
spatial pattern characteristics of agricultural science and technology innovation and agri-
cultural green development, which can be divided into four types of agglomeration. The 
first type is high-value agglomeration (HH), which indicates that the innovation level of 
agricultural science and technology in the province is high, and that of the neighboring 
provinces is also high, presenting a high-level mean spatial correlation agglomeration 
state of “high in the center, high in the surrounding areas”. The second type is low-value 
collapse (LH), which indicates that the innovation level of agricultural science and tech-
nology in the province is low, but the innovation level of agricultural science and technol-
ogy in the neighboring provinces is high, presenting a spatial disequilibrium correlation 
agglomeration state of “low in the center, high in the surrounding areas”. The third type 
is low-value agglomeration (LL), which indicates that the innovation level of agricultural 
science and technology in this province is low, and that of its neighboring provinces is 
also low, presenting a low-level mean spatial correlation agglomeration state of “low in 
the center, low in the surrounding areas”. The fourth type is high-value bulge (HL), which 
indicates that the agricultural science and technology innovation level of the province is 
high, but that of the neighboring provinces is low, presenting a spatial disequilibrium 
correlation agglomeration state of “high in the center, low in the surrounding areas”. The 
specific calculation formula of the local Moran’s index is as follows: 
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3.2.2. Spatial Measurement Model 
(1) Spatial panel measurement model setting 
Spatial panel measurement models are classified into different categories due to the 

similarities and differences between the lag and error terms, and they mainly include 
three types: spatial lag model (SLM), spatial error model (SEM) and spatial Dubin model 
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(SDM). The expressions of the three spatial panel measurement models constructed in this 
paper are as follows: 

Spatial lag model (SLM): 

),0(~, 2
nINXwYY σεεβρ ++=  (9) 

Spatial error model (SEM): 

),0(~ 2
nINwXY σεεµλµµβ ，， +=+=  (10) 

Spatial Dubin model (SDM): 

),0(~, 2
nINwXXwYY σεεςβρ +++=  (11) 

Spatial effect decomposition (partial differential equation): 
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In the formulas, Y  is the explained variable (agricultural green development level), 

ikX  is the Kth explanatory variable, w  is the spatial weight matrix, ρ  is the spatial 
autoregression coefficient of the explained variable, λ  is the spatial regression coefficient 
of the error term, 61−ς  is the spatial regression coefficient of the error term, 61−β  is the 
spatial regression coefficient of the explanatory variable, α is the constant term, and ε is 
the random error term. In partial differential equations, the mean value of each element 
on the diagonal of the matrix on the right side of the equation represents the direct effect 

of the kth explanatory variable ikX , while the mean value ∑∑
= =

n

i

n

j
kijw

n 1 1
2

1 ς  of other ele-

ments not on the diagonal is an indirect effect. 
In addition, when 00 ≠= ρς ， , the SDM model will degenerate into SLM; when 

0=+ ρβς , the SDM model will degenerate into SEM. 
(2) Construction of spatial weight matrix 
The spatial weight matrix can reflect the correlation degree between spatial units, 

and it is very important to select it appropriately for the study of the spatial spillover effect 
between agricultural science and technology innovation and agricultural green develop-
ment. Since agricultural science and technology innovation activities will inevitably be 
affected by a variety of other nongeographical proximity factors, and since there is a spa-
tial correlation between the economic development levels of various provinces, science 
and technology innovation activities in underdeveloped provinces have little impact on 
developed provinces, while scientific and technological innovation activities of developed 
provinces have a great impact on the space of neighboring provinces. Therefore, this arti-
cle adopts the spatial economic matrix (hereinafter referred to as the “economic matrix”) 
for quantification. The setting formula is: 
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3.3. Variable Selection and Data Sources 
3.3.1. Variable Selection 

The explained variable in this article is the level of agricultural green development, 
which is calculated using the gray correlation method. The core explanatory variable of 
this article is agricultural science and technology innovation. As far as its process is con-
cerned, agricultural science and technology innovation is the result of the interaction and 
coordination among relevant elements, such as science, technology and organization. It 
progresses through basic research, applied research and the demonstration and extension 
of agricultural scientific research. Therefore, this article uses agricultural technology re-
search and development and agricultural technology application to measure the level of 
agricultural technology innovation, specifically expressed as the number of agricultural 
patent authorizations and agricultural technology market turnover. 

With reference to related research results, in this study, the following control varia-
bles were added: fiscal support for agriculture (FSA), expressed as the proportion of local 
financial expenditure on agriculture, forestry and water affairs in the sown area of crops 
(unit: yuan/hm2); agricultural machinery input intensity (MII), expressed as the propor-
tion of the total power of agricultural machinery in the total sown area of crops (unit: 
kW/hm2); the agricultural disaster rate (ADR), expressed as the proportion of the affected 
area of crops in the total sown area of crops (unit: %); crop planting structure (CPS), ex-
pressed as the proportion of the planted area of food crops in the planted area of crops, 
excluding the planted area of food crops (unit: %); multiple cropping index (MCI), ex-
pressed as the proportion of the total planted area of crops in the cultivated area (unit: %). 

3.3.2. Data Source 
Based on the operability of the data, we selected panel data from 30 provinces (cities, 

districts) in China (excluding Tibet, Taiwan, Hong Kong and Macau) from 2006 to 2019 as 
the empirical research sample, with an observation value of 420. Except for agricultural 
patent data, basic data were obtained from the China Statistical Yearbook, China Fiscal 
Yearbook, China Rural Statistical Yearbook and the statistical yearbooks of various prov-
inces and cities. The agricultural patent data were obtained from the patent database of 
the State Intellectual Property Office of China. The classification numbers representing 
agricultural patents were selected from the International Patent Classification System 
(IPC) to obtain relevant statistics on the number of agricultural invention patents and util-
ity models granted. In order to eliminate problems such as heteroscedasticity in the re-
gression process, logarithmic processing was performed on the relevant variables. The 
specific descriptive statistical results are shown in Table 4. 

Table 4. Variable description and descriptive statistical results. 

Type Variable Variable Definition Average 
Standard  
Deviation Minimum Maximum 

Explained variable lnGad Agricultural green development level value 3.8192 0.0724 3.6763 4.0270 

Core explanatory varia-
ble 

lnast 

Number of agricultural patents granted 6.2525 1.2669 2.7726 8.8009 
Agricultural technology market turnover 13.3150 1.8573 8.5847 17.8577 

R&D personnel full-time equivalent 10.9618 1.2008 7.0975 13.5964 
Gross agricultural output value 6.9155 1.0493 3.6636 8.5957 

Control variables 

lnfsa Financial expenditure on agriculture, forestry 
and water resources/sown area of crops 

8.9747 1.0775 6.3045 13.4003 

lnmii Total power of agricultural machinery/sown 
area of crops 

1.7776 0.4325 0.7020 2.7314 

lnadr Affected area of crops/sown area of crops 2.7010 0.8450 0.0032 4.2366 

lncps Planting area of food crops/(planting area of 
crops minus planting area of food crops) 

5.3392 0.7771 3.8228 8.1075 

lnmci Sown area of crops/cultivated area 4.7764 0.3077 3.7543 5.3898 
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4. Analysis of Results 
4.1. Analysis of the Results of Measurement and Spatial–Temporal Evolution of Agricultural 
Green Development Level 
Dynamic Analysis of the Measurement Results of Agricultural Green Development 
Level 

In this study, the gray correlation analysis method was used to calculate the level of 
agricultural green development in 30 provinces in China based on the data published in 
the China Statistical Yearbook from 2006 to 2019. Due to limited space, this paper only 
presents data from 2006, 2013 and 2019, as shown in Figure 3. Secondly, seven geograph-
ical regions of China, namely, north China, northeast China, east China, central China, 
south China, southwest China and northwest China (hereinafter referred to as the seven 
regions), were selected as the study regions. MATLAB software was used to analyze the 
temporal variation trend of the agricultural green development level evaluation index in 
the seven regions (excluding Tibet, Taiwan, Hong Kong and Macao) from four dimen-
sions: economic and social development, resource-saving input, resource recycling and 
resource and environment friendliness, as shown in Figures 4–8. 

 
Figure 3. Development level of green agriculture in China. 

As can be seen from Figure 3, the agricultural green development level of 30 prov-
inces in China was generally stable at 0.35–0.60. The average agricultural green develop-
ment level of some provinces, such as Beijing and Fujian, is higher than 0.5, indicating a 
high agricultural green development level. The average value of the agricultural green 
development level in Shanxi and Chongqing is lower than 0.4, indicating that the devel-
opment level of agricultural green in Shanxi and Chongqing is low. A possible reason is 
that Beijing and Fujian have a high level of economic and social development and have 
advanced crop management concepts, which have a positive role in promoting agricul-
tural green development. However, Shanxi and Chongqing lack agricultural technology 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

Be
iji

ng
Ti

an
jin

He
be

i
Sh

an
xi

In
ne

r M
on

go
lia

Li
ao

ni
ng Jil
in

He
ilo

ng
jia

ng
Sh

an
gh

ai
Jia

ng
su

Zh
ej

ia
ng

An
hu

i
Fu

jia
n

Jia
ng

xi
Sh

an
do

ng
He

na
n

Hu
be

i
Hu

na
n

G
ua

ng
do

ng
G

ua
ng

xi
Ha

in
an

 C
ho

ng
qi

ng
Si

ch
ua

n
 G

ui
zh

ou
Yu

nn
an

Sh
aa

nx
i

G
an

su
Q

in
gh

ai
N

in
gx

ia
Xi

nj
ia

ng

De
ve

lo
pm

en
t l

ev
el

 o
f A

gr
ic

ul
tu

ra
l g

re
en

province

Development level of green agriculture in China

2006

2013

2019



Appl. Sci. 2022, 12, 845 14 of 29 
 

promotion and have insufficient agricultural industrialization infrastructure, and capital 
investment cannot introduce large-scale green development compound talent, which is 
not conducive to agricultural green development in central and western provinces and 
cities. 

 
Figure 4. Time series trend of development level of green agriculture. 
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Figure 5. Time series trend of economic and social development indicators of green agriculture. 

 
Figure 6. Time series trend of green agricultural resource-saving input indicators. 
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Figure 7. Time series trend of green agricultural resource recycling indicators. 

 
Figure 8. Time series change trend of environmentally friendly indicators of green agricultural re-
sources. 
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As can be seen from Figures 4–8, the development level of green agriculture in east 
China and northwest China showed a fluctuating downward trend from 2006 to 2019, 
while southwest China showed a fluctuating upward trend. South China, north China, 
northeast China and Central China fluctuated between years, but the change was not 
large. Specifically, the highest level of agricultural green development is currently in east 
China, which has strong agricultural technological innovation capabilities and a high level 
of economic and social development. However, due to the fluctuating and decreasing 
trend of its resource-saving input indicators and resource recycling indicators, the overall 
value of the green agricultural development level shows a fluctuating downward trend. 
Among them, the resource-saving input indicators had a downward trend from 2006 to 
2016, indicating that its fertilizers, pesticides, agricultural mulch film and agricultural wa-
ter intensity were not effectively controlled, but it did rebound in 2016–2019, which may 
be due to the activeness of east China. Responding to important instructions on the insist-
ence on green development, we must adhere to the basic national policy of saving re-
sources and protecting the environment put forward by the Fifth Plenary Session of the 
18th Central Committee, which strictly controls the intensity of the use of chemical ferti-
lizers and pesticides to effectively improve resource utilization. The resource recycling 
index was relatively stable from 2006 to 2011, declined slightly in 2012 and increased from 
2012 to 2014. This may be due to the proposal of the 18th National Congress of the Com-
munist Party of China to “vigorously promote the construction of ecological civilization” 
in east China. The district began to focus on green development and circular development; 
the continuous decline from 2014 to 2019 was due to the rapid decline in the multiple 
cropping index during this period. 

The lowest level of agricultural green development is in southwest China. Its agri-
cultural technology innovation ability is weak, and its economic and social development 
level is low. However, due to the fluctuating and rising trend of its resource recycling 
index and resource/environmentally friendly index, the overall value of the agricultural 
green development level showed an upward trend in volatility. The index of resource 
recycling began to increase significantly in 2012, which may be due to the suggestion of 
“accelerating the construction of resource-conserving and environmentally friendly soci-
ety and improving the level of ecological civilization” put forward in the 12th Five-Year 
Plan. The utilization rate of resources (fertilizer and pesticide) and water-saving irrigation 
coefficient in southwest China have been effectively improved. The decline in 2017 was 
caused by the rapid decline of the multiple cropping index. The resource/environmentally 
friendly index showed a fluctuating upward trend in 2006–2015, peaked in 2015, and de-
clined in 2015–2019, mainly due to the large interannual fluctuations in the afforestation 
area. South China, north China, northeast China, central China and northwest China have 
an intermediate green agricultural development level, among which northwest China has 
the largest fluctuation and the lowest social development level. Additionally, because the 
fluctuation of the resource-saving input index is less than the fluctuation of the resource 
recycling index, the development level of green agriculture as a whole shows a small fluc-
tuating downward trend. The index of resource-saving input started to decline in 2011, 
indicating that the resource factors of land input per hectare in northwest China were not 
reasonably controlled but rebounded in 2016. This may be due to the policy proposed by 
the Ministry of Agriculture in 2015, with the strategic goal of “one control, two reductions 
and three basics”, which stimulated the northwest district to begin to implement resource 
reduction strategies. The index of resource recycling increased from 2006 to 2011, de-
creased slightly in 2012, and increased from 2012 to 2015. This may be due to the active 
implementation of “strengthening the construction of ecological civilization system” pro-
posed by the 18th National Congress of the Communist Party of China in 2012 in north-
west China, which effectively improved the utilization rate of resources. The decrease 
from 2015 to 2019 is due to the decrease in the multiple cropping index during this period. 
The fluctuation is relatively gentle in south China, north China, northeast China and cen-
tral China—especially in south China, where the resource-saving input index is always 
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the highest, which may be due to the suggestion of “strengthening resource management” 
put forward in the “eleventh Five-Year Plan”, after which south China began to 
strengthen the protection and management of various natural resources. 

4.2. Analysis of the Spatial Spillover Effect of Agricultural Science and Technology Innovation 
on Agricultural Green Development 
4.2.1. Spatial Autocorrelation Analysis of Agricultural Science and Technology Innova-
tion and Agricultural Green Development 

(1) Global spatial autocorrelation analysis 
The overall Moran’s I index of agricultural science and technology innovation and 

the agricultural green development level from 2006 to 2019 was calculated using Equa-
tions (3)–(6), as shown in Tables 5 and 6. As can be seen from Table 5, the Moran’s I indexes 
of agricultural technology research and development and agricultural technology appli-
cation in China from 2006 to 2019 are both positive, and both passed the significance test, 
indicating that the agricultural science and technology innovation among provinces in 
China presents a positive spatial correlation and that there is a spatial agglomeration phe-
nomenon. Specifically, the value of Moran’s I for agricultural technology research and 
development and agricultural technology application fluctuated and declined over time. 
The value of agricultural technology research and development fell from 0.233 in 2006 to 
0.115 in 2019, and the value of agricultural technology application fell from 0.316 in 2006 
to 0.106 in 2019, indicating that the spatial agglomeration effect of China’s agricultural 
technological innovation gradually weakened and that the spatial difference increased. In 
reality, eastern developed regions with rapid economic and social development will 
greatly improve the level of agricultural science and technology innovation by increasing 
technology investment and improving the innovation system, which will further widen 
the regional gap between high and low innovation levels of agricultural science and tech-
nology and produce the “Matthew effect”, in which the strong get stronger and the weak 
get weaker. This is a possible reason for the increase in spatial differences in agricultural 
science and technology innovation levels. 

As can be seen from Table 6, Moran’s I index of the agricultural green development 
level also passed the significance test, indicating that the agricultural green development 
level is not randomly distributed in space but presents a significant positive spatial corre-
lation. In general, the Moran’s I value increased from 0.264 in 2006 to 0.352 in 2019, indi-
cating that the spatial agglomeration effect of the agricultural green development level 
was enhanced, but there was some interannual fluctuation, and the overall spatial pattern 
of agricultural green development had not yet reached a steady state. Through global spa-
tial autocorrelation, it can be found that the basic assumption of sample independence in 
traditional research is inconsistent with reality, so the spatial effect should be included in 
the econometric regression model of agricultural green development. 

Table 5. Moran’s I test results of global Moran’s index for agricultural technology development and 
agricultural technology application. 

Years 
Agricultural Technology R&D Application of Agricultural Technology 

Moran’s I Z Statistics p-Value Moran’s I Z Statistics p-Value 
2006 0.233 *** 2.525 ≤0.01 0.316 *** 3.354 ≤0.01 
2007 0.211 ** 2.327 ≤0.1 0.222 *** 2.466 ≤0.01 
2008 0.220 *** 2.408 ≤0.01 0.215 *** 2.407 ≤0.01 
2009 0.173 ** 1.968 ≤0.05 0.221 *** 2.445 ≤0.01 
2010 0.192 ** 2.147 ≤0.05 0.243 *** 2.657 ≤0.01 
2011 0.163 ** 1.893 ≤0.05 0.307 *** 3.284 ≤0.01 
2012 0.147 ** 1.747 ≤0.05 0.304 *** 3.236 ≤0.01 
2013 0.248 *** 2.737 ≤0.01 0.278 *** 3.019 ≤0.01 
2014 0.220 *** 2.483 ≤0.01 0.203 ** 2.274 >0.1 
2015 0.207 *** 2.359 ≤0.01 0.207 ** 2.330 ≤0.1 
2016 0.109 * 1.371 ≤0.1 0.201 ** 2.246 >0.1 
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2017 0.107 * 1.351 ≤0.1 0.128 * 1.549 ≤0.1 
2018 0.112 * 1.406 ≤0.1 0.124 * 1.517 ≤0.1 
2019 0.115 * 1.433 ≤0.1 0.106 * 1.346 ≤0.1 

Note: ***, **, and * represent significance levels of 1%, 5% and 10% in turn; the same applies below. 

Table 6. Moran’s I test results of the global Moran index for the development level of green agricul-
ture. 

Years Moran’s I Z Statistics p-Value Years Moran’s I Z Statistics p-Value 
2006 0.264 *** 2.818 ≤0.01 2013 0.286 *** 3.015 ≤0.01 
2007 0.285 *** 3.010 ≤0.01 2014 0.266 *** 2.826 ≤0.01 
2008 0.234 *** 2.527 ≤0.01 2015 0.217 *** 2.382 ≤0.01 
2009 0.298 *** 3.135 ≤0.01 2016 0.107 * 1.349 ≤0.1 
2010 0.289 *** 3.053 ≤0.01 2017 0.261 *** 2.835 ≤0.01 
2011 0.323 *** 3.376 ≤0.01 2018 0.306 *** 3.267 ≤0.01 
2012 0.296 *** 3.123 ≤0.01 2019 0.352 *** 3.651 ≤0.01 

Note: ***, * represent significance levels of 1%, and 10% in turn. 

(2) Local spatial autocorrelation analysis 
Moran scatter plots of agricultural technology R&D, agricultural technology applica-

tion and agricultural green development in 2006 and 2019 are shown in Figures 9–11. It 
can be seen that the values in the Moran scatter plots of agricultural technology research 
and development, agricultural technology application and the agricultural green devel-
opment level of each provincial unit in China are almost entirely distributed in the first 
and third quadrants, while few provinces are in the second and fourth quadrants. This 
finding shows that the level of agricultural science and technology innovation and the 
development level of green agriculture in China’s provinces during the study period were 
mainly high-value agglomeration (HH) and low-value agglomeration (LL), with low-
value collapse (LH) and high-value bulge (HL) as supplementary spatial distribution fea-
tures. That is, provinces with higher levels of agricultural technological innovation and 
green agriculture have neighboring provinces with higher levels, and provinces with 
lower levels of agricultural technological innovation and green agriculture have neigh-
boring provinces with lower levels. The test results mean that the level of agricultural 
technological innovation and agricultural green development will show a certain degree 
of technology spillover and diffusion effects in reality. Therefore, it is necessary to incor-
porate spatial spillover characteristics into the analysis of the impact of agricultural tech-
nological innovation on green agriculture. 
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Figure 9. Moran scatter plot of agricultural technology research and development in 2006 and 2019. 

 

 

Figure 10. Moran scatter plot of agricultural technology application in 2006 and 2019. 
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Moran scatterplot (Moran's I = 0.316)
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Moran scatterplot (Moran's I = 0.106)
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Figure 11. Moran scatter diagram of green agriculture development in 2006 and 2019. 

4.2.2. Spatial Panel Measurement Model Inspection and Selection 
(1) Panel data stationarity test 
Before the quantitative analysis of the influence mechanism of agricultural techno-

logical innovation on agricultural green development, the sequence stability of each vari-
able must be tested first, and the unit root is generally used to judge whether it is stable. 
In this study, the LLC test method was used for the homogeneous panel hypothesis, and 
the Fisher test method was used for the heterogeneous panel hypothesis. The test results 
are shown in Table 7. It can be seen that each variable rejects the null hypothesis of the 
existence of unit roots using the three statistical test methods (p-value < 0.05), which indi-
cates that the panel data used in this article have good stability. 

Table 7. Unit root test of each variable. 

Variable 
Agricultural Technology R&D Application of Agricultural Technology 

LLC Fisher-ADF Fisher-PP LLC Fisher-ADF Fisher-PP 
InGad −5.581 *** 121.438 *** 90.619 *** −5.581 *** 121.438 *** 90.619 *** 

Inat −3.517 *** 120.151 *** 136.382 *** −5.280 *** 143.264 *** 227.995 *** 
Infsa −1.647 ** 140.164 *** 179.808 *** −1.647 ** 140.164 *** 179.808 *** 
Inmii −3.385 *** 140.730 *** 227.857 *** −3.385 *** 140.730 *** 227.857 *** 
Inadr −3.282 *** 138.931 *** 255.860 *** −3.282 *** 138.931 *** 255.860 *** 
Incps −9.266 *** 88.812 *** 110.232 *** −9.266 *** 88.812 *** 110.232 *** 
Inmci −1.858 ** 102.278 *** 105.064 *** −1.858 ** 102.278 *** 105.064 *** 

Note: ***, **, represent significance levels of 1%, 5% in turn. 

(2) Panel model inspection and selection 
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Based on the stability test of panel data, the spatial Hausman test was used to deter-
mine whether random effects were present. The null hypothesis was rejected at a signifi-
cance level of 1%. Therefore, the fixed-effect model should be adopted as the spatial panel 
econometric model. First, OLS regression analysis was carried out, and the LM test was 
performed on the residual term of OLS to determine whether LM-lag and LM-error test 
values rejected the null hypothesis. If none of them reject the original hypothesis, the OLS 
result is kept. If LM-lag rejects the null hypothesis, the spatial lag model is selected; if LM-
error rejects the null hypothesis, the spatial error model is selected; if both LM-error and 
LM-lag reject the null hypothesis, the robust LM test is performed to further determine its 
significance. Secondly, the saliency of the robust LM-error and robust LM-lag was com-
pared. If both are significant, the spatial Dubin model is selected. If the robust LM-lag is 
significant and the robust LM-error is not significant, it indicates that the spatial lag model 
and spatial error model may exist simultaneously, in which case, the spatial Durbin model 
is preferred. Similarly, if robust LM-lag is not significant and the robust LM-error is sig-
nificant, the spatial Dubin model is also preferred. In this case, the spatial Durbin model 
needs to be further tested by performing the LR test and Wald test to check whether it will 
degenerate into a spatial lag model or a spatial error model. If the null hypothesis is re-
jected by LR and the Wald test at a significance level of 1%, the spatial Durbin model can 
be selected. 

Because different spatial panel econometric models are applicable to different spatial 
weight matrices, spatial panel econometric models applicable to the economic matrix 
should be considered when using spatial econometric analysis to analyze the spatial spill-
over effect of agricultural science and technology innovation on green agricultural devel-
opment, as shown in Tables 8–10. As can be seen from Table 8, under the economic matrix, 
the LM-lag test, LM-error test and robust LM-lag test all pass the 1% significance level 
test, while the robust LM-error test fails the 10% significance level test. These results show 
that the spatial lag model and spatial error model may exist simultaneously, so the spatial 
Dubin model is preferred for studying the impact of agricultural science and technological 
innovation on agricultural green development. 

Table 8. LM test of regression results between agricultural science and technology innovation and 
green agricultural development under economic matrix. 

LM Test 
Agricultural Technology R&D Application of Agricultural Technology 

LM Value p-Value LM Value p-Value 
LM-lag test 110.743 ***  ≤0.01 104.314 ***  ≤0.01 

LM-error test 94.167 ***  ≤0.01 97.720 ***  ≤0.01 
Robust LM-lag test 18.179 *** ≤0.01 6.975 *** ≤0.01 

Robust LM-error test 1.602 >0.1 0.382 >0.1 
Note: *** represent significance levels of 1% in turn. 

The LM test result can preliminarily indicate that the spatial Dubin model (SDM) 
should be used under the economic matrix, in addition to the LR and Wald test, as shown 
in Tables 9 and 10 and the test results are significant at the 1% significance level. The as-
sumptions of 0=ς  and 0=+ ρβς  are rejected, indicating that it will not degenerate 
into a spatial lag model or a spatial error model, and the spatial Dubin model should be 
selected for analysis. 

Table 9. LR test of the regression results of agricultural technological innovation and green agricul-
tural development under the economic matrix. 

LR Test 
Agricultural Technology R&D Application of Agricultural Technology 

LR chi2(6) Prob > chi2  LR chi2(6) Prob > chi2  
LRtest sdm_a slm_a 83.47 *** ≤0.0001 95.95 *** ≤0.0001 
LRtest sdm_a sem_a 82.73 *** ≤0.0001 94.39 *** ≤0.0001 

Note: *** represent significance levels of 1% in turn. 
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Table 10. Wald test of the regression results of agricultural science and technology innovation and 
green agricultural development under the economic matrix. 

Wald Test 
Agricultural Technology R&D Application of Agricultural Technology 

chi2(6) Prob > chi2  chi2(6) Prob > chi2  
test sdm slm 56.36 *** ≤0.0001 95.00 *** ≤0.0001 

testnl sdm sem 56.27 *** ≤0.0001 96.86 *** ≤0.0001 
Note: *** represent significance levels of 1% in turn. 

4.2.3. Analysis of Spatial Panel Measurement Results Based on Economic Matrix 
Combining the results of the Hausman test, the LM test, the robust LM test, the LR 

test and the Wald test, we can see that under the condition of the economic matrix, the 
fixed-effect spatial Dubin model (SDM) should be used to study the impact of agricultural 
technological innovation on agricultural green development. On this basis, agricultural 
technological innovation and green agricultural development from the three fixed ef-
fects—time fixation, individual fixation and double fixation—were further analyzed, and 
its spatial effects were decomposed (Tables 11–13). The regression results show that re-
gardless of whether the core explanatory variable is agricultural technology research and 
development or agricultural technology application, the goodness-of-fit R2 value under 
the fixed time effect is the largest. Therefore, the spatial Dubin model under the fixed time 
effect was selected to analyze the impact of agricultural technology innovation on green 
agriculture and the spatial spillover effect of development. 

According to Table 11, the main body regression results and spatial lag term regres-
sion results of the spatial Durbin model under the economic matrix show that, on the one 
hand, agricultural science and technology innovation has a significant promoting effect 
on agricultural green development in this province. Specifically, agricultural technology 
R&D and agricultural technology application are both positively correlated with green 
agricultural development at a significance level of 1%, and the regression coefficients are 
0.0367 and 0.0128, respectively, indicating that each one-unit increase in the two variables 
of agricultural technology R&D and agricultural technology application will have a posi-
tive effect of 0.0367 and 0.0128 percentage points, respectively, on agricultural green de-
velopment in this province. On the other hand, the agricultural science and technology 
innovation in neighboring provinces has a positive effect on agricultural green develop-
ment in this province. Specifically, agricultural technology R&D and agricultural technol-
ogy application in neighboring provinces are positively correlated with agricultural green 
development in the province at a significance level of 5%, and the regression coefficients 
are 0.0217 and 0.0359, respectively, indicating that each one-unit increase in the two vari-
ables of agricultural technology R&D and agricultural technology application in neigh-
boring provinces will have a positive effect of 0.0217 and 0.0359 percentage points, respec-
tively. This also provides a basis for further establishing the spatial spillover effect of ag-
ricultural science and technology innovation on agricultural green development through 
partial differential equations. 

Table 11. Spatial panel econometric regression results of agricultural science and technology inno-
vation on green agricultural development under the economic matrix. 

Variable 
Agricultural Technology R&D Application of Agricultural Technology 

Time Fixed  
Effect 

Individual Fixed Ef-
fect 

Double Fixed  
Effect 

Time Fixed  
Effect 

Individual  
Fixed Effect 

Double Fixed Effect 

Inast 0.0367 *** 0.0116 *** 0.0176 *** 0.0128 *** 0.0110 *** 0.0107 *** 
(9.80) (3.00) (4.13) (8.04) (5.96) (5.32) 

Infsa 
0.0328 *** 0.0004 −0.0042 0.0270 *** 0.0016 0.0002 

(7.40) (0.05) (−0.49) (7.73) (0.23) (0.02) 

Inmii 
0.0089 0.0375 *** 0.0486 *** 0.0319 *** 0.0213 * 0.0421 *** 
(1.16) (3.34) (4.44) (3.43) (1.94) (3.91) 

Inadr 
−0.0020 −0.0023 −0.0021 −0.0103 ** −0.0004 −0.0019 
(−0.46) (−1.11) (−1.05) (−1.07) (−0.18) (−0.94) 



Appl. Sci. 2022, 12, 845 24 of 29 
 

Incps 
0.0013 −0.0252 *** −0.0247 *** 0.0016 −0.0249 *** −0.0302 *** 
(0.30) (−3.67) (−3.72) (1.58) (−3.75) (−4.85) 

Inmci 
−0.0122 0.0308 *** 0.0354 *** 0.0119 0.0380 *** 0.0382 *** 
(−0.99) (2.61) (2.86) (0.34) (3.26) (3.22) 

w * Inast 
0.0217 ** −0.0361 *** −0.0014 0.0359 *** −0.0150 *** −0.0111 ** 

(1.78) (−6.28) (−0.12) (−4.20) (−5.63) (−2.10) 

w * Infsa 
−0.0031 −0.0475 *** −0.0624 *** −0.0316 ** −0.0518 *** −0.0592 *** 
(−0.28) (−5.61) (−3.04) (−4.58) (−6.21) (−2.92) 

w * Inmii 
0.0843 *** 0.2480 *** 0.275 *** 0.1084 *** 0.1822 *** 0.2631 *** 

(5.25) (9.10) (9.24) (6.01) (7.29) (9.06) 

w * Inadr 
0.0282 *** −0.0017 −0.0038 0.0402 *** 0.0017 −0.0068 

(2.65) (−0.39) (−0.79) (−1.73) (0.40) (−1.45) 

w * Incps 
0.0082 −0.0701 *** −0.0573 *** −0.0291 ** −0.0577 *** −0.0614 *** 
(0.70) (−4.49) (−3.69) (−0.56) (−3.76) (−4.19) 

w * Inmci 
0.1300 *** 0.0895 *** 0.1006 *** 0.0482 0.0472 * 0.0713 ** 

(4.50) (3.56) (3.24) (−1.16) (1.93) (2.34) 

sigma2 0.0027 *** 0.0005 *** 0.0004 *** 0.0028 *** 0.0005 *** 0.0005 *** 
(14.49) (14.49) (14.40) (14.47) (14.49) (14.48) 

N 420 420 420 420 420 420 
R2 0.5428 0.1595 0.1871 0.4847 0.1196 0.1477 

Log-likelihood  641.8840 1005.2727 1027.9040 619.7385 1007.9326 1038.3224 
Note: Z statistics are in parentheses; ***, **, * represent significance levels of 1%, 5% and 10% in 
turn. 

The indirect effect reflects the cumulative spatial spillover effect of all regions in the 
sample, and its size reflects the spillover degree of changes in explanatory variables to 
neighboring provinces. It can be seen from Tables 12 and 13 that the spatial spillover ef-
fects of agricultural technology R&D and agricultural technology application are 0.0213 
and 0.0314, respectively, and both passed the 10% significance level test, indicating that 
the improvement in the agricultural science and technology innovation level in this prov-
ince will promote agricultural green development in neighboring provinces through a 
positive spillover effect. 

The reason is that, on the one hand, the policy measures and strategic behaviors 
adopted by neighboring provinces in the agricultural science and technology investment 
and innovation support system for economic development cause them to imitate, learn 
from and compete with each other. Specifically, the investment of R&D funds, the invest-
ment of technical personnel and the construction of agricultural research institutes will 
spread to neighboring provinces through demonstration effects. On the other hand, with 
the continuous strengthening of regional economic integration, the regional links become 
closer, which is conducive to the construction of the upstream–midstream–downstream 
agricultural industrial chain combining regional specialization and division of labor co-
operation, and then promote the sharing of agricultural science and technology innova-
tion resources and knowledge between provinces. The results show that there is a positive 
correlation between agricultural technology innovation and agricultural green develop-
ment in neighboring provinces, namely, the spatial spillover effect. For example, the 
Northeast Regional Agricultural Science and Technology Innovation Alliance was estab-
lished in 2017, which is aimed at integrating agricultural science and technology innova-
tion resources in northeast China and promoting sustainable agricultural development in 
northeast China through collaborative innovation among different regions. On the whole, 
the spatial spillover effect of agricultural technology application is 2.6 times the direct 
effect, accounting for about 72.35% of the total effect, which indicates that from the spatial 
perspective, multilateral coordination and strengthening of agricultural technology appli-
cation between the province and neighboring provinces will greatly promote the devel-
opment level of green agriculture in the province. The key factor is the spatial spillover 
effect from the application of agricultural technology in neighboring provinces.  
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Table 12. Decomposition results of the spatial effect of agricultural technology R&D on agricultural 
green development under the economic matrix. 

Variable Direct Effect Indirect Effect Total Effect 
Inatr 0.0368 *** 0.0213 * 0.0581 *** 
Infsa 0.0326 *** −0.0039 0.0287 *** 
Inmii 0.0095 0.0850 *** 0.0945 *** 
Inadr −0.0022 0.0282 *** 0.0261 ** 
Incps 0.0012 0.0073 0.0085 
Inmci −0.0124 0.1291 *** 0.1167 *** 

Note: ***, **, and * represent significance levels of 1%, 5% and 10% in turn. 

Table 13. Decomposition results of the spatial effect of agricultural technology application on agri-
cultural green development under the economic matrix. 

Note: ***, **, and * represent significance levels of 1%, 5% and 10% in turn. 

In addition, when agricultural technology research and development is the core ex-
planatory variable, the spatial spillover effect of financial support to agriculture is −0.0039, 
which fails the significance test, indicating that with agricultural technology research and 
development, financial support for agriculture has not formed a significant inhibitory ef-
fect on neighboring provinces. When the application of agricultural technology is taken 
as the core explanatory variable, the spatial spillover effect of financial support for agri-
culture is −0.0326, which is −118% of its direct effect. If financial support for agriculture in 
a province increases by 1%, the ratio of agricultural green development change in neigh-
boring provinces to agricultural green development change in its own province is about 
1:−0.85, indicating that with the application of agricultural technology, financial support 
for agriculture will produce large negative spillover to its neighboring provinces. In fact, 
the government implements a fiscal support agriculture policy to provide certain subsi-
dies to farmers. While promoting agricultural green development in the province, it will 
also distort market price factors, which will affect farmers’ production behavior (resource 
utilization, resource input, etc.). This results in the waste of resources, ecological damage 
and, due to the large gap in the fiscal policy of supporting agriculture between provinces, 
further restricted agricultural green development in neighboring provinces. 

Regardless of whether the core explanatory variable is agricultural technology re-
search and development or agricultural technology application, the spatial spillover effect 
of agricultural machinery input is positive, and it passed the 1% significance level test, 
which shows that the input of agricultural machinery will produce considerable positive 
spillover to its neighboring provinces. This is because the improvement of agricultural 
mechanization will bring about the improvement of green agricultural production effi-
ciency while freeing up the labor force. When the province raises the production efficiency 
through agricultural machinery input, due to its large effect, neighboring provinces will 
adopt the mode of “watching and learning” to promote the improvement of their own 
green agricultural production efficiency. 

4.2.4. Robustness Test of Spatial Panel Econometric Model 
In order to verify the reliability of the analysis results under the economic matrix, the 

full-time equivalent of R&D personnel and the total agricultural output value of each 
province from 2006 to 2019 were used as the substitution variables of agricultural patent 
authorization and agricultural technology market transaction volume, and a robustness 

Variable Direct Effect Indirect Effect Total Effect 
Inata 0.0120 *** 0.0314 *** 0.0434 *** 
Infsa 0.0276 *** −0.0326 *** −0.0049 
Inmii 0.0302 *** 0.0965 *** 0.1266 *** 
Inadr −0.0115 *** 0.0381 *** 0.0266 ** 
Incps 0.0022 −0.0277 ** −0.0255 * 
Inmci 0.0109 0.0422 0.0531 * 
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test was performed by replacing core explanatory variables. The robustness test was also 
combined with the results of the Hausman test, the LM test, the robust LM test, the LR 
test and the Wald test. Under the economic matrix, the fixed-effect spatial Dubin model 
(SDM) should be used to study the impact of agricultural technology innovation on agri-
cultural green development. A regression analysis of agricultural science and technology 
innovation and green agricultural development was carried out using three fixed effects, 
namely, time fixation, individual fixation and double fixation, and their spatial effects 
were decomposed (as shown in Tables 14–16). The regression results show that the R2 
value indicating the goodness of fit of the spatial Dubin model under the time fixation 
effect was the largest. Therefore, the spatial Dubin model with the fixed time effect was 
selected to analyze the spatial spillover effect of agricultural science and technology inno-
vation on agricultural green development. 

According to Table 14, the main body regression results and spatial lag term regres-
sion results of the spatial Durbin model under the economic matrix show that: on the one 
hand, agricultural science and technology innovation has a significant promoting effect 
on agricultural green development in this province. Specifically, both the full-time equiv-
alent of R&D personnel and total agricultural output value are positively correlated with 
green agricultural development at a significance level of 1%, and the regression coeffi-
cients are 0.0240 and 0.0495, respectively, indicating that each one-unit increase in the two 
variables of the full-time equivalent of R&D personnel and total agricultural output value 
will have a positive effect of 0.0232 and 0.0379 percentage points in terms of agricultural 
green development in this province, respectively. On the other hand, agricultural science 
and technology innovation in neighboring provinces has a positive effect on agricultural 
green development in this province. Specifically, both the full-time equivalent and total 
agricultural output value of R&D personnel in neighboring provinces are positively cor-
related with agricultural green development in this province at a significance level of 5%, 
and the regression coefficients are 0.0374 and 0.0390, respectively, indicating that each 
one-unit increase in the two variables of full-time equivalent and total agricultural output 
value of R&D personnel in neighboring provinces will have a positive effect of 0.0374 and 
0.0390 percentage points, respectively, in terms of agricultural green development in this 
province. 

Tables 15 and 16 show the spatial effect decomposition results of the spatial Dubin 
model under the economic matrix. The results show that the spatial spillover effects of the 
full-time equivalent of R&D personnel and the total agricultural output value are 0.0336 
and 0.0402, respectively, and the direct effects are 0.0235 and 0.0498; both passed the 5% 
significance level test, indicating that the improvement of the province’s agricultural sci-
ence and technology innovation level will not only significantly promote agricultural 
green development in the province but also promote agricultural green development in 
neighboring provinces through positive spillover effects, which is similar to the conclu-
sions of the above analysis. The results are consistent, indicating that the analysis in this 
paper has a high degree of credibility. 

Table 14. The spatial panel econometric regression results of agricultural science and technology 
innovation on agricultural green development under the economic matrix. 

Variable 
Full-Time Equivalent of R&D Personnel Gross Agricultural Output 

Time Fixed  
Effect 

Individual Fixed Ef-
fect 

Double Fixed  
Effect 

Time Fixed  
Effect 

Individual Fixed Ef-
fect 

Double Fixed Effect 

Inast 
0.0240 *** −0.0068 −0.0073 0.0495 *** 0.0311 *** 0.0262 *** 

(7.66) (−1.04) (−1.14) (9.42) (3.25) (2.83) 

Infsa 
0.0336 *** 0.0036 −0.0018 0.0933 *** −0.0024 −0.0007 

(7.13) (0.47) (−0.20) (12.99) (−0.32) (−0.08) 

Inmii 
0.0155 * 0.0224 * 0.0432 *** −0.0057 0.0163 0.0377 *** 
(1.87) (1.92) (3.70) (−0.69) (1.40) (3.25) 

Inadr 
−0.0077 * −0.0016 −0.0031 −0.0080 * 0.0002 −0.0018 
(−1.76) (−0.76) (−1.49) (−1.88) (0.07) (−0.85) 



Appl. Sci. 2022, 12, 845 27 of 29 
 

Incps 
−0.0005 −0.0272 *** −0.0336 *** 0.0163 *** −0.0206 *** −0.0261 *** 
(−0.11) (−3.82) (−5.00) (3.86) (−2.92) (−3.90) 

Inmci 
−0.0151 0.0382 *** 0.0358 *** 0.0032 0.0133 0.0213 
(−1.09) (3.13) (2.81) (0.26) (0.93) (1.53) 

w * Inast 
0.0374 *** −0.0128 −0.0164 0.0390 ** −0.0072 0.0158 

(3.87) (−0.86) (−0.93) (2.29) (−0.41) (0.66) 

w * Infsa 
−0.0004 −0.0477 *** −0.0671 *** 0.0574 ** −0.0586 *** −0.0573 *** 
(−0.03) (−4.37) (−3.19) (2.34) (−5.67) (−2.73) 

w * Inmii 
0.0974 *** 0.1807 *** 0.2589 *** 0.0603 *** 0.1813 *** 0.2536 *** 

(5.86) (6.83) (7.97) (3.64) (7.05) (8.09) 

w * Inadr 
0.0346 *** 0.0046 −0.0051 0.0194 * 0.0053 −0.0038 

(3.23) (1.04) (−1.04) (1.90) (1.22) (−0.77) 

w * Incps 
−0.0055 −0.0693 *** −0.0727 *** 0.0242 * −0.0550 *** −0.0569 *** 
(−0.43) (−4.19) (−4.65) (1.84) (−3.33) (−3.60) 

w * Inmci 
0.0706 ** 0.0524 ** 0.0657 ** 0.0143 *** 0.0493 0.0750 ** 

(2.03) (2.04) (1.93) (5.59) (1.60) (2.16) 

sigma2 0.0029 *** 0.0005 *** 0.0004 *** 0.0028 *** 0.0005 *** 0.0004 *** 
(14.48) (14.49) (14.42) (14.49) (14.49) (14.37) 

N 420 420 420 420 420 420 
R2 0.5197 0.0495 0.0593 0.5612 0.0225 0.0636 

Log-likelihood  627.2725 987.2612 1019.5348 638.0121 991.8409 1022.8780 
Note: ***, **, and * represent significance levels of 1%, 5% and 10% in turn. 

Table 15. Decomposition results of the spatial effect of the full-time equivalent of R&D personnel 
on agricultural green development under the economic matrix. 

Variable Direct Effect Indirect Effect Total Effect 
Inrd 0.0235 *** 0.0336 *** 0.0571 *** 
Infsa 0.0332 *** −0.0034 0.0298 *** 
Inmii 0.0148 * 0.0917 *** 0.1065 *** 
Inadr −0.0084 * 0.0334 *** 0.0250 ** 
Incps −0.0005 −0.0060 −0.0066 
Inmci −0.0162 0.0671 ** 0.0509 

Note: ***, **, and * represent significance levels of 1%, 5% and 10% in turn. 

Table 16. Decomposition results of the spatial effect of the total agricultural output value on agri-
cultural green development under the economic matrix. 

Note: ***, **, and * represent significance levels of 1%, 5% and 10% in turn. 

5. Conclusions and Policy Implications 
Firstly, from the perspective of spatial spillover, this paper reveals the impact mech-

anism of scientific and technological agricultural innovation on agricultural green devel-
opment and comprehensively evaluates the development level of green agriculture in 30 
provinces in China from 2006 to 2019. On this basis, the economic matrix was selected as 
the spatial weight matrix. This paper explores the spatial spillover effect of scientific and 
technological agricultural innovation on agricultural green development from two dimen-
sions, namely, agricultural technology R&D and agricultural technology application. The 
robustness of the results was tested by replacing the core explanatory variables. Finally, it 
puts forward specific countermeasures and suggestions to improve the level of agricul-
tural green development with scientific and technological agricultural innovation. The 
main conclusions are as follows. First, the level of agricultural development in various 
regions of China is still in an unbalanced state, with notable differences between them. 
Second, there is a significant positive global spatial autocorrelation between scientific and 

Variable Direct Effect Indirect Effect Total Effect 
Info 0.0498 *** 0.0402 ** 0.0899 *** 
Infsa 0.0934 *** 0.0591 ** 0.1525 *** 
Inmii −0.0048 0.0625 *** 0.0578 *** 
Inadr −0.0081 * 0.0197 * 0.0116 
Incps 0.0164 *** 0.0239 * 0.0402 *** 
Inmci 0.0037 0.1454 *** 0.1491 *** 
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technological agricultural innovation and the development level of green agriculture in 
terms of spatial distribution, but this global spatial relationship has not yet reached a 
steady state, and there is some fluctuation between years. It is necessary to include spatial 
spillover in the analysis of the effect of scientific and technological agricultural innovation 
on green agriculture. Third, scientific and technological agricultural innovation will pro-
mote the development of green agriculture in neighboring provinces through the positive 
spillover effect, and both agricultural technology R&D and agricultural technology appli-
cation stages will have large positive spillover to their neighboring provinces. 

Based on the above conclusions, the following policy implications are proposed. It is 
necessary to reduce barriers to the flow of agricultural innovation elements and products, 
improve the flow efficiency and vigorously promote the spatial spillover effect of scientific 
and technological agricultural innovation in agricultural green development so as to 
achieve the ultimate goal of sustainable development. On the one hand, we should seek 
to break down interregional institutional barriers and local protectionism, solve the con-
tradictions and problems with the current systems and policies and stimulate the leading 
role of the market. For different types of agricultural innovation elements and high-tech 
agricultural products, policies should focus on adaptively guiding the harmonious and 
orderly flow, gradually increasing the scope and region of their spatial spillover and nar-
rowing the gap of agricultural green development level between regions. On the other 
hand, the market mechanism of innovation factors and product flow should play a leading 
role in spatial spillover. For example, we should strive to build a cross-regional market, 
improve the market mechanism of factor price, accelerate the flow and diffusion of agri-
cultural technology in space, improve the synergy and complementarity of high-tech 
product production among regions and comprehensively and efficiently improve the 
green development level of agriculture in various regions through the spatial spillover of 
scientific and technological agricultural innovation. 

Limited by the availability of data, the evaluation index system of the agricultural 
green development level presented in this paper also has certain limitations. With the im-
provement of national statistical data, we can try to select new evaluation indexes to meas-
ure the agricultural green development level of each region in the future. For example, 
the core variable can be added to the fund investment amount of scientific and technolog-
ical agricultural innovation, or the total agricultural output value can be further refined 
into the agricultural output value created by scientific and technological agricultural in-
novation so as to achieve more reasonable and accurate measurement and evaluation. 
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