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Abstract: Moderate performance in terms of intelligibility and naturalness can be obtained using pre-
viously established silent speech interface (SSI) methods. Nevertheless, a common problem associated
with SSI has involved deficiencies in estimating the spectrum details, which results in synthesized
speech signals that are rough, harsh, and unclear. In this study, harmonic enhancement (HE), was
used during postprocessing to alleviate this problem by emphasizing the spectral fine structure of
speech signals. To improve the subjective quality of synthesized speech, the difference between
synthesized and actual speech was established by calculating the distance in the perceptual domains
instead of using the conventional mean square error (MSE). Two deep neural networks (DNNs) were
employed to separately estimate the speech spectra and the filter coefficients of HE, connected in a
cascading manner. The DNNs were trained to incrementally and iteratively minimize both the MSE
and the perceptual distance (PD). A feasibility test showed that the perceptual evaluation of speech
quality (PESQ) and the short-time objective intelligibility measure (STOI) were improved by 17.8
and 2.9%, respectively, compared with previous methods. Subjective listening tests revealed that
the proposed method yielded perceptually preferred results compared with that of the conventional
MSE-based method.

Keywords: silent speech interface; ultrasonic Doppler; deep neural networks; harmonic enhancement

1. Introduction

Silent speech interface (SSI) techniques [1,2] have been proposed to cope with specific
situations where voice information should be communicated without the need for actual
human vocalization. SSI is also useful for persons with speaking impairment who have
suffered permanent vocal damage after an accident or following treatment for laryngeal
cancer. These patients, with the help of SSI technology, can produce their own voice
by mimicking vocalization. The SSI technique enables voice communication through
articulatory movements, rather than by the voice itself, even when voice communication is
impossible due to background noise. Techniques associated with SSI also allow persons
to speak to one another in a public space, such as a library or conference room without
disturbing others. Moreover, it can be useful in situations where others should not be
audibly exposed to private information.

A straightforward way to implement SSI is to synthesize voices using a text-to-speech
synthesizer (TTS) that accepts text transcription obtained by an automatic speech recognizer
(ASR). The features for ASR are derived from the input signals of SSI. In this approach,
the intelligibility of the synthesized speech signals is highly affected by the accuracy of the
underlying ASR. Moreover, speaker-specific voice characteristics are determined by the
underlying TTS.

An alternative way is to directly synthesize voices using the features derived from
the input signals of SSI, without using ASR and TTS. SSI is achieved by estimating the
mapping rules of the feature parameters derived from the non-acoustic modalities of
corresponding voice signals. The non-acoustic modalities adopted for a SSI should be
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highly correlated with the corresponding audio speech signals and not affected by high
levels of ambient audio interference [3]. Various types of modalities satisfying these
conditions have been adopted in previously developed SSI methods, such as the Doppler
frequency shifts caused by GHz microwaves [4–8], the ultrasound images (UI) of a vocal
tract [9–11], the visual shape of the mouth [12–16], acoustic Doppler sonic signals [17–21],
and signals recorded by a non-audible microphone (NAM) [22,23], or an electromyogram
(EMG) [24–31]. Among them, the Doppler-based methods have several advantages over
other methods. The problems associated with contact sensing in the EMG- and NAM-based
methods can be avoided by non-contact sensing. The Doppler-based techniques are free
from image processing-related problems such as inaccuracy in the tracking of regions of
the mouth.

The underlying assumption of the Doppler-based SSI methods is that the primary
sources of Doppler frequency shifts are vocal vibrations of the body surfaces that cause
sounds. A sinusoidal signal with a fixed frequency is incident to a speaker’s mouth and
neck regions, and the Doppler shifts of the returned signals are used to synthesize the voice.
Our previous study [19] showed that the Doppler-based SSI method using an ultrasonic
wave (40 kHz) could be implemented using relatively small and simple hardware by
comparison with the use of GHz microwaves and the overall quality of the synthesized
speech was superior to other SSI methods and modalities.

The main objective of the present study was to improve the quality of the speech
synthesized using the ultrasonic Doppler signal (UDS)-based SSI method. In particular,
the perceptual aspects of the reproduced speech were the major concerns of designing
the speech estimation rules. In most previous SSI studies [13,21,22,24,25,27,30], the speech
signals were represented as Mel-cepstral coefficients (MCCs), which approximated the
speech spectrum in the perceptual domain [32]. The objective functions to be minimized in
the training stage of those studies was given by the Mel-cepstral distance (MCD). Since the
MCC is computed based on human auditory systems, perceptual aspects were considered
to some extent in the SSI techniques that were designed to minimize the MCD. In most SSI
schemes, however, the differences perceived by the human ear were not directly taken into
consideration in construction of the speech estimation rules. Instead, the speech estimation
rules were constructed by minimizing the mean squared errors (MSE) between the original
and estimated MCCs. This resulted in reproduced speech signals that were less similar to
original speech from a perceptual perspective.

Since the reproduced speech from SSI is received by a human ear, it is highly desirable
to adopt a human auditory-based distance measure as an objective function. The useful-
ness of the human auditory-based distance metric has already been verified in various
speech processing fields that include speech coding [33], speech enhancement [34], speech
recognition [35], speech synthesis [36], and speech quality evaluation [37]. In the proposed
SSI method, the speech estimation rules were constructed by minimizing the perceptual
differences between the estimated spectra and that of target speech. The perceptual distance
was computed in a manner similar to the procedure used to obtain a perceptual evaluation
of speech quality (PESQ) [37], which is widely used in speech quality evaluation. And
hence, it can be expected that the perceptual qualities of the reproduced speech signals are
improved by employing the perceptual distance. In our previous study [19], perceptual
aspects were not considered in construction of the speech estimation rules, only the MSE
criterion was employed.

Another drawback of the estimation rules adopted in current SSI schemes was that
the spectral fine structure was not well estimated, and only an approximated spectrum
was obtained. Since the degree of voicing in the vowel- and voiced-consonant regions is
closely related to the spectral fine structure, a deficiency in the harmonic spectral structure
seriously degrades the intelligibility and naturalness of the reproduced speech, particularly
in the voiced regions. To alleviate this problem, both the fundamental frequency ( f0) and
the voicing state (voiced/unvoiced) have been estimated from a non-acoustic modality to
produce a quasi-periodic source signal [22,27,38]. The quality of the voiced regions was
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partially improved by combining the estimated source signals with a spectral envelope
represented by the MCC. However, clear improvements in reproduced speech have not
been guaranteed [22,27,30,38]. This was due to severe blurring artifacts of the estimated
speech spectrum even though periodic sources were applied [27]. The inaccuracies of f0
estimation and of voiced/unvoiced (V/UV) decisions when using a non-acoustic modality
has also been a major reasons for degrading the naturalness of synthesized speech.

In the present study, harmonic enhancement (HE) techniques were adopted to improve
the intelligibility and naturalness of synthesized speech. Our previous studies associated
with the UDS-based speech enhancement scheme showed that a moderate degree of pitch
estimation error was obtained when the pitch periods were predicted using an artificial
neural network (ANN) with the features derived from UDS [18]. The perceptual quality of
the reproduced speech was improved by HE when a moderate degree of pitch estimation
error was maintained [18]. In the subsequent section, we quantitatively analyze the errors
of pitch estimation and V/UV decisions for each modality in order to verify the usefulness
of non-acoustic pitch estimation. A fixed enhancement factor was adopted in the previous
study [18]. In the present study we found, however, that adjusting the enhancement of
the harmonic components according to the voicing strength improves the HE. Therefore,
the filter coefficients of the HE were determined by UDS in the proposed method. In the
training step, two cascade-connected estimators, one for the speech spectrum and one
for the HE filter coefficients, were alternatively established to reduce the unique objective
function. Such a process can compensate for the estimation errors from one step to another,
which thereby reduces the overall error.

The remainder of the paper is organized as follows. First, Section 2 explains the
procedure of the baseline SSI system and the limitations. Possible solutions for the problems
are explained and the accuracies of the pitch estimation and V/UV decisions are also
presented in Section 2. The proposed method is described in Section 3, which includes
construction of the speech estimation rules and the HE filter. Experimental results are
shown in Section 4. Finally, conclusions are drawn in Section 5.

2. Baseline UDS-Based SSI
2.1. Estimating the Speech Spectrum

When the ultrasonic tone with a frequency fc is reflected on an articulating face,
Doppler frequency shifts that are potentially caused by the movements of articulatory
organs appear in the reflected signals. Assuming that M objects are engaged with the
Doppler frequency shift, the instantaneous velocity of the m-th object at time t is then given
by vm(t), and the reflected signal is given by

R(t) =
M

∑
m=1

ATkm cos(φm + ΨT),

φm = 2π fc

[
t +

2
vs

∫ t

0
vm(τ)dτ

]
+ Ψm (1)

where km and Ψm are the attenuation coefficient and phase shift of the m-th object at fre-
quency fc, respectively. AT and ΨT are the amplitude and phase of the transmitted sinusoid,
and vs is the speed of sound. The principle of the ultrasound-based speech estimator is
that the variables (km and Ψm) associated with the Doppler frequency shifts are highly
correlated with the underlying speech signals. A block diagram of a baseline UDS-based
SSI with deep neural networks (DNN) is shown in Figure 1 where the training procedure
and the synthesis procedure are presented at the top and the bottom, respectively. The first
step of UDS-based speech estimation is to extract the features from the received ultrasonic
signal (US). Our previous study [18] showed that compared with other parameters, the mel-
frequency filter bank energies of a demodulated US signal yielded a superior performance
in prediction of speech parameters. The bandwidth of the demodulated ultrasonic signal
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was 2 kHz, and was determined according to the maximum frequency of articulatory
movements. The resultant number of mel-bands was 16.

A supervised learning framework was adopted to estimate the relationship between
the input UDS and the output speech. In the training stage, a regression DNN model was
trained from a training corpus, that consisted of pairs of audio and ultrasound signals.
Speech represented by the log magnitude spectra was the target output of the DNN. In the
estimation stage, the feature parameters derived from the ultrasound signals were inputted
to the trained DNN. The short-time estimated speech signal was obtained by inverse Fourier
transform using the output of the DNN, which was the estimated speech spectrum, and the
random phase spectrum. Finally, continuous waveforms were obtained by concatenating
the short-time estimated speech signals. using the OverLap and Addition (OLA) method.

A back-propagation algorithm is typically used to train a DNN. The objective function
is given by a mean square error between the estimated log magnitude spectrum and that of
original speech, as follows:

E =
1
N

N

∑
n=1

P

∑
p=1

{
Fp(W, xn)−Yp,n

}2
(2)

where Fp(W, x) is the p-th output of the DNN with the weights W where the input UDS
features x are given. Yp,n denotes the p-th frequency bin of the log-spectral feature at frame
index n. A stochastic gradient descent algorithm was performed in mini-batches with
multiple epochs to improve the learning convergence. An updated estimate of the weights
W with a learning rate λ was computed iteratively as follows:

Wn+1 = Wn − λ5W E (3)

The DNN captures the acoustic context information along the time axis by adopting
multiple frames of ultrasonic signals over time as DNN input [39]. In the present study,
the number of neighboring frames was heuristically determined to be 5 by maximizing the
performance in terms of speech estimation.

Figure 1. Block diagram of the baseline ultrasonic SSI system. (Top): Training procedure. (Bottom):
Synthesis procedure.

2.2. Harmonic Enhancement

The speech production principle dictates that a speech signal is generated by exciting
a vocal tract transfer function via source signals that correspond to the spectral envelope
and to the fine structure, respectively, in the frequency domain. The spectral envelope is
typically represented using the MCCs, that are predicted from the non-acoustic signals
in most SSI systems. The source signals originate either from white noise (for unvoiced
regions) or from impulse train signals (for voiced regions). Artificially generated signals,
such as white noise [12,25,30], an impulse train with a constant pitch period [12], and an
impulse train with randomly perturbed pitch periods [12] were adopted as source signals
in previous SSI methods. Such artificially generated source signals do not originate from
natural speech, which leads to reproduced speech signals that sound unnatural.
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In the present study, we adopted a method for predicting the entire speech spectra
(not only the spectral envelope), which avoided the problems associated with the use of
an artificial source signal. The experimental results, however, showed that only spectral
envelopes were estimated even when the target output was set as the entire speech spectra.
An example of the predicted speech spectrum is shown in Figure 2. This result was
commonly observed in most voiced regions. Using such an estimated spectra to synthesize
the speech signals resulted in unclear, rough, and unnatural qualities, as experienced in
previous studies that used the artificial source signals.

Version January 9, 2022 submitted to Appl. Sci. 7 of 21

Fig. 2. Examples of original (bold line) and the predicted (dotted line) speech spectra.

Table 1. Pitch estimation accuracy for each modality.

Modality FPE µ [Hz] FPR σ [Hz] GPE Rate (%)

Vision 48.82 39.95 73.6

EMG 60.19 34.13 88.5

UDS 27.39 39.33 45.6

3. Proposed UDS-based SSI226

3.1. Joint minimization using iterative learning227

A block diagram of the proposed SSI method is shown in Fig. 3. The major difference from the228

baseline SSI shown in Fig. 1 is that the objective function to be minimized is given by not only the MSE229

but also the perceptual distance. In this study, the magnitude spectrum, the HE filter coefficients, and230

the pitch period were predicted from the features derived from the UDS. To estimate the pitch period,231

we adopted the approach explained in the previous section. Let FY and FΓ denote the prediction232

rules for the magnitude spectrum Y and the HE filter coefficients Γ, respectively, and then the optimal233

prediction rules for the MSE-based methods, F ∗
Y, F ∗

Γ are given by234

F ∗
Y = arg min

FY
DMSE(Y, Ŷ),

F ∗
Γ = arg min

FΓ
DMSE(Γ, Γ̂) (9)

where Ŷ = FY(X) and Γ̂ = FΓ(X). X = {xn}N
n=1 is the set of the UDS features where N is235

the total number of the features for constructing the prediction rules. Y and Γ are the sets of the236

magnitude spectra and the HE filter coefficients, respectively, which are obtained from the speech237

signals. DMSE(X, Y) denotes the MSE between X and Y. Hence, equation (9) indicates that the238

prediction rules for two parameters are independently obtained by minimizing each MSE. In the239

proposed method, construction of the two prediction rules was achieved by jointly minimizing a240

unique distance measurement as shown in Fig. 3.241

F ∗
Y, F ∗

Y = arg min
FY , FΓ

DPD(Y, Ŷ, Γ, Γ̂) (10)

where DPD is the perceptual distance measure that was explained in the subsequent section.242

Simultaneous minimization of F ∗
Y and F ∗

Γ cannot be achieved with a closed-form solution, and an243

Figure 2. Examples of original (bold line) and the predicted (dotted line) speech spectra.

To improve the quality of the reproduced speech signals without the use of artificially
generated source signals, harmonic enhancement (HE) [40] was employed in the present
study. The main objective of employing HE is to increases the natural quality and clarity of
synthesized speech. This can be achieved by emphasizing the periodicity of speech that is
typically observed in the voiced regions. The harmonic-enhanced signal ỹ(t) is given by

ỹ(t) = y(t) +
K

∑
k=−K

γk · y(t− P(t)− k) (4)

where {γk}K
k=−K denotes the coefficients of HE and 2K + 1 is the number of taps of the HE

filter. By changing γk, it is possible to adjust the voicing strength. P(t) is the pitch period at
time t. The HE technique adjusts the periodicity of the speech signals that have already
been synthesized without using artificial source signals. The usefulness of HE was verified
in the previous US-based SSI method [18].

Although it was apparent that the HE method allows for pitch error [18], a reliable
estimation of the pitch period is essential for HE. Evaluation of the performance of pitch
estimation and voiced/unvoiced decisions for the various modalities are described in the
subsequent section. The accuracy of the ultrasonic signal was compared with that of other
modalities so that the usefulness of HE adopted in the US-based SSI system was verified.

2.3. Performance of Pitch Estimation and V/UV Decisions

In most of the current pitch estimation methods, the pitch period is estimated from the
audible speech that is not available in the SSI systems [32,41]. The pitch estimation methods
using non-audible signals were investigated in the previous SSI studies in which EMG
was used [22,27,38]. V/UV decisions using EMG were also proposed in at least one other
study [38]. In these studies, the quality of the reproduced speech signals using impulse
trains with the estimated pitch periods was investigated. However, neither the quantitative
analysis of the pitch estimation accuracy nor the V/UV decision errors were sufficiently
discussed in the previous studies.
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In the present study, experiments were performed to verify the possibility of pitch
estimation and V/UV decisions using lip images, EMG, and ultrasonic signal. A pitch
estimation method using non-acoustic signals was proposed in our pervious study [18],
where a DNN was trained using a set of the features derived from the non-acoustic signals
and the ground truth pitch periods that are detected by audible speech. This method
was similar to the previous DNN-based pitch estimation method [41] in which a DNN
provided the likelihood of each of the candidate pitch periods, and a sequence of the
optimal pitch periods was obtained via a Viterbi-trellis search. In the original work [41],
spectral feature vectors derived from noisy speech were inputted to a DNN. In the present
study, however, feature vectors derived from the non-acoustic signals were inputted to
a DNN. All necessary parameters for pitch estimation such as the number of candidate
pitch periods, the weights for the posterior probability, and the transition probability were
independently determined for each modality so that the overall accuracy was maximized.
A DNN was also employed to implement V/UV decisions given by two output nodes,
and each output node corresponded to either the voiced frame or the unvoiced frame.

The performance of pitch estimation and V/UV decision-making was evaluated for
each modality by using a validation dataset that was constructed from the three subjects
(two males and one female). Each subject pronounced 60 isolated Korean words 10 times.
This resulted in a total of 25,232 stimuli that split into 17,904 stimuli for training and 7328
stimuli for the actual test. Although the samples for each modality were not recorded
simultaneously (because of changes in the shapes of the mouth region by attaching the
EMG electrodes), the differences in speech signals among the modalities were minimized
by using the common utterance set and asking the subjects to pronounce each word in
a consistent manner. The performance of pitch estimation was evaluated using the two
standard metrics: the gross pitch error (GPE) rate and the fine pitch error (FPE) [42].
The GPE frames are defined as voiced frames where the error between the estimated pitch
period and the ground truth is greater than 0.625 ms. The GPE rate is then given by

GPErate =
NGPE

Nv
(5)

where NGPE and Nv denote the number of GPE frames and voiced frames, respectively.
The FPE is represented by using the mean (µFPE) and the standard deviation (σFPE) that
reflect the bias in the f0 estimation and the accuracy, respectively.

µFPE =
1

Nv

Nv

∑
i=1

εi (6)

σFPE =

√√√√ 1
Nv

Nv

∑
i=1

(εi − µFPE)2 (7)

εi =
∣∣∣ f̂ i

0 − f i
0

∣∣∣, (8)

where f̂ i
0 and f i

0 denote the estimate and the ground truth of f0, respectively, at the i-th
frame in the voiced frames.

The experimental results are summarized in Table 1. Although the performance of
UDS-based pitch estimation is not as high as the speech-based pitch estimation (typically,
GPErate < 20% for clean speech signal [42]), the superiority of the UDS signal in terms of
pitch estimation is clearly found for all metrics. Such results suggest that UDS provides
more useful information for pitch estimation. The relationship between the accuracy
of the pitch estimation and the quality improvements gained by HE was not analyzed
quantitatively. Nevertheless, a high degree of accuracy for the UDS-based pitch estimation
would be helpful in improving the quality of the reproduced speech signals when the HE
technique is adopted.
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Similar trends were observed in the V/UV decisions, as shown in Table 2. For the
voiced frames, there was no remarkable difference in overall accuracy among the three
modalities. However, the results clearly showed that more reliable detection of the un-
voiced frames can be achieved by the UDS signal. The V/UV information is an important
parameter that determines whether to apply the harmonic enhancement technique to a
given speech frame. In other words, an incorrect decision in the unvoiced regions po-
tentially leads to an unnecessary harmonic emphasis on many unvoiced regions, which
degrades the overall quality of the reproduced speech signals. The results indicate the
artifacts caused by inadequate harmonic emphasis can be reduced to some extent, by using
the UDS-based V/UV decisions.

Table 1. Pitch estimation accuracy for each modality.

Modality FPE µ [Hz] FPR σ [Hz] GPE Rate (%)

Vision 48.82 39.95 73.6
EMG 60.19 34.13 88.5
e UDS 27.39 39.33 45.6

Table 2. Voiced/unvoiced detection accuracy for each modality.

Modality
Voiced Frames (%) Unvoiced Frames (%)

Precision Recall Accuracy Precision Recall Accuracy

Vision 84.7 95.4 90.1 74.6 43.7 59.2
EMG 78.8 99.9 89.4 17.0 0.01 8.5
UDS 87.7 88.5 88.1 76.4 74.9 75.7

3. Proposed UDS-Based SSI
3.1. Joint Minimization Using Iterative Learning

A block diagram of the proposed SSI method is shown in Figure 3. The major difference
from the baseline SSI shown in Figure 1 is that the objective function to be minimized is
given by not only the MSE but also the perceptual distance. In this study, the magnitude
spectrum, the HE filter coefficients, and the pitch period were predicted from the features
derived from the UDS. To estimate the pitch period, we adopted the approach explained
in the previous section. Let FY and FΓ denote the prediction rules for the magnitude
spectrum Y and the HE filter coefficients Γ, respectively, and then the optimal prediction
rules for the MSE-based methods, F ∗Y, F ∗Γ are given by

F ∗Y = arg min
FY

DMSE(Y, Ŷ),

F ∗Γ = arg min
FΓ

DMSE(Γ, Γ̂) (9)

where Ŷ = FY(X) and Γ̂ = FΓ(X). X = {xn}N
n=1 is the set of the UDS features where N is

the total number of the features for constructing the prediction rules. Y and Γ are the sets of
the magnitude spectra and the HE filter coefficients, respectively, which are obtained from
the speech signals. DMSE(X, Y) denotes the MSE between X and Y. Hence, Equation (9)
indicates that the prediction rules for two parameters are independently obtained by
minimizing each MSE. In the proposed method, construction of the two prediction rules
was achieved by jointly minimizing a unique distance measurement as shown in Figure 3.

F ∗Y, F ∗Y = arg min
FY , FΓ

DPD(Y, Ŷ, Γ, Γ̂) (10)

where DPD is the perceptual distance measure that was explained in the subsequent section.
Simultaneous minimization of F ∗Y and F ∗Γ cannot be achieved with a closed-form solution,
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and an iterative method was employed in this study, wherein each prediction rule was
iteratively updated to minimize the objective function. Beginning with the initial rules F (0)

Y

and F (0)
Γ , the conversion rules for each parameter at the n-th iteration are given by

F (i)
Y = arg min

FY
DPD

{
Y,FY(X), Γ,F (i−1)

Γ (X)
}

F (i)
Γ = arg min

FΓ
DPD

{
Y,F (i)

Y (X), Γ,FΓ(X)
}

(11)

The process is repeated until some convergence threshold is reached. One of the
advantages gained by a method that uses such an iterative construction is that it can
compensate for the estimation errors at one step or another, thereby further reducing the
overall estimation error.

Figure 3. Block diagram of the proposed ultrasonic SSI system.

3.2. Perceptual Distance

In the previous SSI methods, the speech parameters were obtained by minimizing the
mean squared error (MSE). Although the resultant speech parameters approximated those
of the original speech signals, there was no guarantee that the reproduced speech signals
would be perceived as the original speech. In the present study, the conventional MSE-
based objective function was modified by incorporating both a symmetrical disturbance
D(s) and an asymmetrical disturbance, D(a) [34]

DPD =
1
N ∑

n

(
wMDMSE,n + wsD(s)

n + waD(a)
n

)
(12)

where DMSE(n) is the MSE of the n-th spectrum

DMSE,n =
1
M

M−1

∑
m=0

1
σ2

m

(
log
|Pm,n|2
|P̂m,n|2

)2

(13)

where |Pm,n|2 and |P̂m,n|2 are, respectively, the original and predicted power spectra where
the indexes, m and n denote frequency and frame, respectively. σm is the standard deviation
of |Pm|2 and M is the number of frequency bins. In (12), wM, ws, and wa are weighting
factors for the MSE, and the symmetrical and asymmetrical disturbances, respectively.
The symmetrical disturbance reflects the absolute difference between the converted and tar-
get loudness spectra when auditory masking effects are account for. When the symmetrical
disturbance is applied to a SSI, it can be regarded as a distance function between the esti-
mated and target speech represented in a domain that reflects the human auditory system.
There are two types of difference patterns in a SSI, one where the target value is greater
than the estimated value and vice-versa. Such difference patterns cannot be reflected in
distance metrics such as the MSE or the the symmetrical disturbance. Whereas the signs
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of the loudness differences are considered in the asymmetrical disturbance, the negative
differences (under-estimation case) and positive differences (over-estimation case) are
perceived differently due to the masking effects. By using the asymmetrical disturbance,
the differences between the estimated and target speech signals can be described in more
detail, which can lead to an improvement in the SSI performance.

The calculation of symmetrical and asymmetrical disturbances reflects the human
auditory system and is composed of several steps, as follows [34]:

(1) Perceptual domain transformation: The target and converted loudness spectra
sn = [S0,n, . . . , SQ−1,n]

T and ŝn = [Ŝ0,n, . . . , ŜQ−1,n]
T , which are perceptually closer to

human listening are obtained as follows,

sn = Ts[H(bt) · pn], ŝn = Ts[H(bt) · p̂n] (14)

where Q is the number of Bark bands, H(bt) is a Bark transformation matrix that
converts the power spectra pn = [P0,n, . . . , PM−1,n], p̂n = [P̂0,n, . . . , P̂M−1,n] into the
Bark spectra bn = [B0,n, . . . , BQ−1,n] and b̂n = [B̂0,n, . . . , B̂Q−1,n], respectively. Ts[·] is
a mapping function that converts each band of the Bark spectrum to a sone loudness
scale. A detailed description of this function is found in [34].

(2) Disturbances computation: A center-clipping operator over the absolute difference
between the loudness spectra was applied to compute the symmetrical disturbance
vector as follows,

d(s)
n = max(|ŝn − sn| −mn, 0) (15)

where mn = 0.25 ·min(ŝn, sn) is a clipping factor and | · |, min(·), and max(·) are
applied element-wise. The designation 0 is a zero-filled vector of length Q. The asym-
metrical disturbance vector is obtained as d(a)

n = d(s)
n � rn, where � denotes an

element-wise multiplication and rn is a vector of asymmetry ratios the components of
which are computed from the Bark spectra.

Rn,q =
( B̂q,n + ε

Bq,n + ε

)λ
(16)

For the speech enhancement task, the constants ε and λ were set to 50 and 1.2, respec-
tively [34]. In the present study, experiments were performed to optimally determine
the two constants, ε and λ, minimizing minimize the overall PD. The experimen-
tal results show that the same values adopted in [34] also yielded the minimum
DPD. The symmetrical and asymmetrical disturbance terms in (12) are given by the
weighted sum of each disturbance vector,

D(s)
n = ||wb||

1
2
1 · ||wb � d(s)

n ||2
D(a)

n = ||wb � d(a)
n ||1 = wT

b · d
(a)
n (17)

where the components of the weight vector wb is proportional to the width of the
Bard bands, as explained in [37].

3.3. Estimation of the Prediction Rules

A DNN was used to build the prediction rules FY and FΓ, which map the features de-
rived from the UDS to the magnitude spectrum of the speech signal and the filter coefficients
of HE, respectively. The optimum prediction rules were obtained by minimizing the PD
between the original power spectra pn and the predicted power spectra p̂n. The predicted
power spectrum is given by

p̂n = ŷn �H(he)(Pn, Γn) (18)
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where ŷn = [Ŷ0,n, . . . , ŶM−1,n] denotes the magnitude spectra of the predicted speech.
H(he)(P, Γ) is the magnitude response of the HE filter for a given pitch period P and the
HE filter coefficients Γ = {γk}K

k=−K, which are given by

H(he)(ν; P, Γ) =

∣∣∣∣∣1 + K

∑
k=−K

γk exp {jπν(P + k)}
∣∣∣∣∣ (19)

where ν is the normalized frequency index, that ranges from 0 to 0.5. With WY and WΓ as
the DNN weights of the predictors FY and FΓ, respectively, the updated estimate of the
DNN weights for each predictor can be computed iteratively, and are given by

W(n+1)
Y = W(n)

Y − λY∇WY DPD

W(n+1)
Γ = W(n)

Γ − λΓ∇WΓ DPD (20)

where λY and λΓ are the learning rates for the weights WY and WΓ, respectively.

3.4. Speech Synthesis

As the final step of the UDS-based SSI system, an audible speech signal is synthesized
using the speech parameters predicted from the UDS features. An approach based on
a linear prediction (LP) model was adopted in the previous studies, where a voice was
generated by filtering the excitation source through an all-pole filter that reflects the vocal
tract transfer function [32]. Typical feature variables that represent the vocal tract transfer
function are MCC [21,22,24,25,27,30] and LPC [18,28]. In the LP-based synthesis approach,
it is necessary to build the prediction rules for an excitation source, which is represented
either by the periodic impulse train (for voiced speech) or by white Guassian noise (for
unvoiced speech).

Since the magnitude spectra of the speech signals were predicted in this study, an ap-
proach using short-time Fourier transform (STFT)-based synthesis was adopted. Continu-
ous waveforms were obtained by concatenating the windowed short-time speech signals
obtained by inverse Fourier transform. Since the phase spectrum was unavailable, it was
necessary to determine how to produce the phase spectrum. There were two possible ways
to generate the phase spectra; using a random phase and a method of the least square
error estimation of modified short time Fourier transform magnitude (LSEE-MSTFTM) [43].
The latter was achieved by iteratively minimizing the squared error between the STFT of
the continuous reproduced signal and the predicted magnitude spectrum. We compared
results from the two approaches, based on the quality of the reproduced speech signals.
The findings indicated that the performance of the LSE-based phase estimation was highly
affected by the prediction errors of the magnitude spectra. This means that the quality of
the LSE-based phase estimation method was remarkably superior to the use of a random
phase when the DNN produced the magnitude spectra with small prediction errors. In the
opposite case, however, a phase spectrum was obtained to fit the incorrectly predicted
magnitude spectrum, which resulted in highly distorted voices. As a result, the average
quality in terms of PESQ was almost equal in both approaches. In the present study, the
use of a random phase with advantages in computational complexity was adopted.

4. Evaluation
4.1. Experimental Setup

Two sensors were used to detect the ultrasonic Doppler shifts. One was attached to
the wire frame of the headset microphone, and was used to detect Doppler shifts in the
mouth and cheek area. The other was placed at the front of the throat for detection of
Doppler sonar in the jaw and the neck area. Each sensor was composed of an ultrasonic
transmitter emitting a continuous ultrasonic tone at 40 kHz and a wide band receiver
that acquired signals that ranged from 10 to 65 kHz. An audio microphone was also
used to simultaneously record audio-frequency range signals. The effective radiation area



Appl. Sci. 2022, 12, 827 11 of 20

was 19.9 cm2, which was experimentally computed. Such an area proved to be sufficient
to detect the subject’s articulatory movements. A photograph of the developed sensor
mounted on a subject appears shown in Figure 4.
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Fig. 4. Photograph of the ultrasonic sensors. Left: Mounted on the right cheek. Right: Magnified
sensor portion.
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Figure 4. Photograph of the ultrasonic sensors. (Left): Mounted on the right cheek. (Right):
Magnified sensor portion.

Five subjects participated in the recording, one female speaker and four male speakers
whose ages ranged from 22 to 50. All subjects had no known articulatory problems.
Newspaper articles were used as speaking materials. The properties of the dataset are
summarized in Table 3. The features were extracted from the windowed speech and
from the windowed UDS. A 32 ms length for the Hanning window is commonly used to
compute and extract the feature parameters at 16 ms intervals. The log-magnitude of the
Fourier transform (FT) coefficients was used, and the length of the fast Fourier transform
(FFT) was set at 256. Accordingly, the dimension of the log-power spectral feature vector
was 128. The same FFT length was adopted to compute the UDS feature. Although the
frequency resolution of the speech signal seemed relatively lower than other speech-related
applications such as ASR, TTS, and speech coding, the experimental result showed that
the performance of the DNN-based estimation was not improved with an increase in the
length of the FFT.

The DNN was trained using 60% of the total features in the training stage, and the
remaining features were used for validation (20%) and evaluation (20%). According to the
results obtained by the validation dataset, the best performance was obtained when the
DNN contained three hidden layers, and the number of the nodes in each hidden layer was
set to [1.5× Ni]. (where [x] was the nearest integer value of x) Ni was the number of input
nodes, which was 160 (=16 features/channel × 2 channel × 5 frames). With the exception
of the top layer, the sigmoid activation function was adopted. The momentum constant, α,
of the sigmoid active function was set to 0.7. A linear function was used in the top layer.
The performance of the DNN was expected to improve with dropout regularization [44].
The experimental results also showed clear differences between when a dropout was
adopted and when it was not, particularly for the test data. Hence, dropout regularization
was adopted in the present study where a keep probability of 0.75 was employed.

Three objective measures were applied in the experiments, a Perceptual evaluation
of the speech quality (PESQ) [37], the log-spectral distortion (LSD, in dB), and a short-
time objective intelligibility measure (STOI) [45]. PESQ was calculated by comparing the
reproduced speech with a sample of original reference speech, and it ranged from −0.5 to
4.5. The LSD of a speech signal is defined as

dLSD =
1
N

N−1

∑
n=0

√√√√√ 1
P

P−1

∑
p=0

[
10 · log10

|Ŷp,n|2
|Yp,n|2

]2

(21)

where Yp,n and Ŷp,n are the short-time Fourier transform (STFT) of the original speech
and the reproduced speech, respectively, p is the frequency bin, n is an index of the time
frame and N is the set of frames with speech presence. The STOI [45] was proposed as
a correlation-based method to evaluate the speech intelligibility degradation caused by
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speech enhancement solutions. In the following section, all presented results were obtained
from the evaluation data.

Table 3. Dataset properties.

Property Value

Average number of utterances (per subject) 1062
Average duration of utterances (s) 6.44
Standard deviation of duration (s) 1.33

Maximum duration of utterance (s) 12.26
Minimum duration of utterance (s) 3.23

Average number of phonemes (per subject) 69,982

4.2. Determination of the Weights for Each Disturbance

We first investigated the performance of the predictor for the speech magnitude
spectrum according to the weights for symmetrical and asymmetrical disturbances (ws
and wa in (12)). This provided the necessary information for calculating the PD in future
experiments. The number of the HE filter coefficients was set as 3, and the results appear in
Figure 5. It was clear that the PESQs and STOIs had a decreasing trend as the weight of the
asymmetrical disturbance increased. This was confirmed by the fact that the experimental
correlation coefficients of the PESQs and STOIs with the asymmetrical weight values were
−0.9286 and −0.9467, respectively. An asymmetrical disturbance was imposed on the
PD so that negative differences would be perceived differently from positive ones due to
masking effects [34]. The experimental results, however, showed that no remarkable benefit
was gained by adopting an asymmetrical disturbance. This was somewhat different from
previous studies that employed the PD metric [34,37].

The LSD revealed different trends by increasing the weights of the asymmetrical
disturbance. A weak correlation (=0.5789) with asymmetrical disturbance was observed.
The minimum for the LSD was obtained in cases where the weight of the asymmetrical
disturbance was set as 0.2. The experimental results commonly indicate that a relatively
small value of the asymmetrical disturbance would be helpful to improve the quality
of the reproduced speech signals (higher PESQ, higher STOI and lower LSD). As a con-
sequence, only symmetrical disturbance was used (e.g., ws = 1, wa = 0 in (12)) in the
subsequent experiments.
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Figure 5. Objective evaluation results according to the weights of the asymmetrical disturbance.
(Top): Average PESQs. (Middle): STOIs. (Bottom): LSDs.

4.3. Objective Evaluation Results According to the PD Weights and the Length of the HE Filter

The various results were obtained by changing the weight for the PD term in (12),
ws, while the weight for the MSE was given by wM = 1− ws. We also investigated how
the objective performance was affected according to the length of the HE filter coefficients.
Note that assigning zero to the weight of the PD term corresponds to the conventional
MSE-based prediction rules. In a similar manner, a zero length for the HE filter meant that
HE was not adopted in the SSI system, and, hence, the source signals were generated by
white noise.

The results are presented in Figure 6 where Nk denotes the length of the HE filter
coefficients. A strong correlation (0.9551) between the average PESQ and Nk was observed
in the case of ws = 0. This means that the perceptual quality can be improved by applying
HE even when the perceptual distance is not adopted. The PESQs were further increased
by including the perceptual distance into the DNN loss function. In the case of ws = 0.25,
maximum PESQs were obtained for all Nk. The average PESQ is also proportional to the
length of the HE filter coefficients in this case (ρ = 0.8109). And hence, the highest PESQ
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of 2.108 was achieved when Nk and ws were set as 5 and 0.25, respectively. This was 0.11
higher than in the case of no HE. No further increase was observed when a weight greater
than 0.5 was applied. This trend was common for HE filters of all lengths. When the
relative weight for the PD term exceeded 0.5, the weight for the MSE term was less than 0.5.
This resulted in excessive differences between the predicted spectra and the actual spectra,
even though the resultant predicted spectra perceptually approximated the actual spectra.
The testing of significance (two-way ANOVA) showed that the weight value was a major
factor affecting the PESQ (p = 1.7 × 10−5) and an average Pearson correlation coefficient of
0.8191 was obtained between the PESQs and the weight values. That result indicated that
the performance in terms of PESQ was remarkably improved by employing the PD in the
objective function. However, excessive emphasis on the PD term in the objective function
actually degraded the PESQ, as shown in the PESQ values for ws > 0.5. This means that
improvements in PESQ can be accomplished by not only considering the MSE but the PD
as well.

Figure 6. Objective evaluation results for the various perceptual distance weights and the taps of the
HE filters (Nk). (Top): Average PESQs. (Middle): STOIs. (Bottom): LSDs.
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There was a clear relationship between the STOIs and the perceptual weights, as shown
in the middle of Figure 6. The average STOI values take the form of decreasing curves
with increases in the weights of the perceptual distance. Unlike the PESQ, the STOIs are
not remarkably changed by the length of the HE filter coefficients (p = 0.2302, ρ = 0.4060).
The average STOIs were significantly varied according to the PD weight. The p-value of
the ws factor was 4.61 × 10−10 and the Pearson correlation coefficient of the STOI with the
ws was −0.8930. This indicated that the weight for the PD was the key factor affecting
STOI. It is noteworthy that the maximum STOIs among all perceptual distance weights are
obtained at ws = 0.25, which is same as in the case of the PESQ.

The average correlation between the LSD and the value of the PD weight was 0.8365.
This indicates that the LSD takes the form of increasing curves with increases in the
PD weight. This result was somewhat expected, because LSD is closely related to MSE.
Increasing the weight of the PD means lowering the MSE weight, which results in a larger
spectral distortion. Based on the combined results of the PESQ and LSD, it can be inferred
that lowering the LSD is not a necessary condition for obtaining high-quality reproduced
speech. For example, setting the PD weight as 0.0 yielded the lowest LSD for all Nk. In this
case, however, the lower PESQs (≤2.0) were obtained, regardless of Nk. This means that for
a reasonable level of LSD (e.g., ≤12 dB, as shown in Figure 6), the DNN-based predictor
of PD yielded perceptually preferred results. However, an excessively large LSD (e.g.,
≥12 dB) leads to a decrease in the perceptual quality of the reproduced speech signals.
Such a result was typically observed in the case of Nk = 0, as shown at the top of Figure 6
(average PESQ).

4.4. Comparison with Other Methods

One of the objectives of the present study is to improve the quality of the reproduced
speech signals by maintaining a harmonic structure in the voiced segments. A degree
of harmonicity can be measured by the autocorrelation function, which is computed in
the time domain. In this study, the average autocorrelation value over the voiced frames
was also adopted to evaluate the quality of the reproduced speech signals. The average
autocorrelation of the speech samples y(0), . . . , y(N − 1) is given by

R̄yy =
1

Nv

N f

∑
k=1

w(k)
[ 1

WL

WL

∑
n=1

y(kWR + n)y(kWR + n− Pk)
]

(22)

where Nv, N f , WL, and WR denote the number of the voiced frames, the total number of
frames, the frame length, and the frame interval, respectively. w(k) is given by

w(k) =
{

1 if k-th frame is voiced frame.
0 otherwise.

(23)

Pk is the pitch period for the k-th frame that is estimated by the speech signal. For the
speech signal, the average of R̄yy was obtained as 0.881. This indicates that voiced speech
samples are strongly correlated at pitch intervals.

The performance of the proposed method was compared with other methods that
were designed for estimating speech parameters. The list of the methods for comparison is
shown in Table 4. These methods were already employed in SSI (e.g., Gaussian mixture
model (GMM) [16,21,22,25–27,30], long short term memory (LSTM) [27,46], and multi-layer
perceptron (MLP) [10,24,25,27]). For the methods RNN, LSTM, and MLP (without HE),
the hyperparameters were tuned to minimize the overall costs. The resultant architecture
of the RNN and LSTM consisted of three hidden layers, 160 hidden nodes, and four time
steps. The same dataset was commonly used for all methods to obtain the results.

The results are presented in Table 4. The superiority of the proposed method (MLP
with PD and HE) is remarkable in terms of the average PESQ and STOI. The MLP + PD + HE
is the only method that produces an average PESQ greater than 2.0. The common property
of the methods LR, MLR, GMM is that speech parameters are given by a linear combination
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of some representative vectors (e.g., mean vectors of each Gaussian component). This
resulted in ambiguous and unclear voices, due to the averaging effects. These are the
possible reasons for lowering the PESQ and STOI. Such problems were partially alleviated
by applying the neural networks (RNN, LSTM, MLP), and hence the average PESQ and
STOI were increased. The quality of the reproduced speech signals was further improved
by applying PD. The average LSD, however, was increased in the case where the PD
was adopted. This is due to the fact that the loss function of the MLP + PD method is
given by the weighted sum of the two costs (MSE and PD), resulting in increasing MSE
compared with RNN, LSTM, and MLP methods. Although the average LSDs of the
PD-based methods are greater than those of other methods, perceptually more preferred
results can be achieved by the PD-based methods. This is confirmed by the fact that the
two PD-based methods (MLP + PD and MLP + PD + HE) yielded a higher average PESQ,
compared with other methods.

The feasibility of harmonic enhancement (HE) is also confirmed by the results shown
in Table 4. The average PESQ and STOI of the MLP + PD + HE method are 2.108 and 0.567,
which are the highest among all methods. The average PESQ was increased by 0.107 when
HE was adopted. Such improvements in terms of PESQ are due mostly to the preservation
of a harmonic structure in the voiced segments. This is also confirmed by the autocorrelation
results where the MLP + PD + HE method revealed a remarkably high value compared
with other methods. Although the maximum of the average autocorrelation obtained from
the reproduced speech signals is almost half that from the voiced speech signals, this was
sufficient to increase the average PESQ. The Pearson correlation between the averages
for PESQ and autocorrelation is 0.8857, which is the highest among other evaluation
metrics (0.7783 and 0.2237 for average STOI and LSD, respectively). This indicates that
enhancement of a harmonic structure in the voiced regions sufficiently contributes to
increasing the overall PESQs.

Table 4. Performance comparison of the test set for the different estimation methods.

Method Avg. PESQ Avg. STOI Avg. LSD Avg. R

Linear regression (LR) 1.515 0.424 9.700 0.114
Multivariate linear regression (MLR) 1.551 0.469 9.105 0.135

Gaussian mixture model (GMM) 1.535 0.472 9.484 0.109
Recurrent neural networks (RNN) 1.648 0.538 8.306 0.133
Long short term memory (LSTM) 1.684 0.556 8.063 0.159

Multi-layer perceptron (MLP) 1.786 0.551 9.300 0.160
Multi-layer perceptron (MLP) with PD 1.999 0.553 9.503 0.211

Multi-layer perceptron (MLP) with PD + HE 2.108 0.567 9.590 0.402

The spectra of each reproduced speech signal were visually inspected to verify the
effectiveness of the proposed method in terms of maintaining a harmonic structure in the
voiced regions. An example of the spectra of the original speech, reproduced speech by
the baseline method, and reproduced speech by the proposed method appears in Figure 7.
Note that the PD and the HE filter were not adopted in the baseline method, whereas
the 3-tab HE filter and an objective function with PD (ws = 0.25) were adopted in the
proposed method. In this example, the selected speech segment corresponded to the typical
voiced region in which a harmonic structure was apparent, as shown at the top of Figure 7.
Compared with the baseline method (ws = 0.0 and Nk = 0), the proposed method revealed
a clearer harmonic structure. Such a pattern was evident in the relatively low frequency
regions (≤1.5 kHz in this example), because the human auditory system is most sensitive
to signals in the vicinity of 1 kHz, and the DNN was trained to further reduce errors within
this band. In the baseline method, however, the human auditory system and HE were not
taken into consideration in training the DNN, which resulted in a very weak harmonic
structure even for the voiced regions. Also, the amplitudes of the low band harmonics
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(≤800 Hz in this example) were excessively higher than that of other harmonics. This has
been a major cause of the tonal noise that is often perceived in reproduced speech.

Figure 7. Example of spectra. (Top): Original speech. (Middle): Predicted using baseline method
(ws = 0, Nk = 0). (Bottom): Predicted using PD and He (ws = 0.25, Nk = 3).

In conclusion, the problems associated with a loss of harmonic structure that are
frequently encountered when using conventional SSI methods were partially alleviated by
adopting PD and HE. Problems persisted with the proposed method, however, where the
amplitude of each harmonic was either over- or under-emphasized.

4.5. Subjective Evaluation

An informal listening test was conducted to evaluate the subjective quality of repro-
duced speech signals using the Mean Opinion Score (MOS) test. In this test, 20 listeners
with normal hearing ability participated and were asked to subjectively score the quality of
the reproduced speech signals in terms of intelligibility and naturalness. The quality rating
scale for each factor is Excellent = 5/Good = 4/Fair = 3/Poor = 2/Bad = 1. The data set for
evaluation was composed of a randomly selected 20 pairs of utterances. Quality evaluation
was carried out on the speech signals reproduced by the eight schemes presented in Table 4.
Note that in the MLP-based methods with the PD and HE, ws and Nk were chosen so
that the average PESQ was maximized according to the objective results. The order of the
stimuli synthesized by each method was randomly permuted. Each subject was allowed
to listen to the stimuli as many times as needed before decision. The test stimuli were
presented through a headphone in a quiet room.

The results in Figure 8 show the average MOSs for each method. Similar to the results
of PESQ, the highest MOS was obtained by the approach using both MSE and PD with
HE (MLP + PD + HE). The maximum MOS scores were obtained by the proposed method
(MMP + PD + HE) both in terms of intelligibility and naturalness. Only the MLP + PD +
HE method yielded an average MOS score greater than 3.0. The listeners also indicated
that both intelligibility and naturalness were superior to the other methods. In terms of
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naturalness, the relatively low MOS scores of the three linear estimation-based methods
(LR, MLR, and GMM) are mainly due to the averaging effects of the estimation scheme,
which resulted in ambiguous and unclear voices. The quality improvements were achieved
in part, by applying the NN-based methods. Applying the PD and HE further improved
the quality of the reproduced speech signals. The listeners indicated the speech signals
synthesized by the MLP + PD + HE method were clearer and more natural than other
methods. A possible explanation for such MOS improvements over the conventional DNN-
based methods is that a certain degree of harmonic structure is maintained in the voiced
regions of the synthesized speech signals.

Figure 8. Average MOS scores with error bars for each method. (Left): Intelligibility. (Right): Naturalness.

The listeners also indicated that the proposed SSI method yielded noisy speech, al-
though the overall quality was improved over the baseline method (in case of ws = 0,
Nk = 0). This was due mainly to the usage of a random phase in the synthesizing procedure.
But the reproduced speech signals continued to sound noisy when a least square-based
phase estimation method [43] was adopted. Accordingly, it is highly desirable to ap-
ply a more reliable phase estimation scheme to construct the prediction rules for speech
parameters.

5. Conclusions

Conventional SSI methods suffer from a deficiency in the estimation of spectrum
details, which often results in a degradation of the quality of reproduced speech signals.
In the SSI system presented herein, research efforts were dedicated not only to estimating
the spectral envelope, but also to preserving the harmonic structure, particularly for the
voiced regions of speech. To this end, harmonic enhancement was employed. This was
different from the previous method with harmonic enhancement in that the coefficients
of the harmonic enhancement filter were arranged in a manner that would minimize the
distance from the original speech. The whole spectrum was obtained through a DNN,
which was trained to minimize the distance. Another unique aspect of the proposed method
is the adoption of an objective function that includes both MSE and perceptual distance.
The perceptual distance was computed similar to the method used to calculate the PESQ.

The effectiveness of the proposed method was confirmed in experiments, which
generated both objective and subjective results that were superior to those of previous
methods. There is room, however, for further improvement. For example, the pitch
period used for harmonic enhancement was estimated using an open-loop optimization
framework. Since the quality of the reproduced speech is more important than the accuracy
of pitch estimation, a closed loop optimization method that iteratively minimizes the
perceptual difference between actual speech signals and those that are reproduced would
be helpful in improving the quality of the synthesized speech signals. Our future studies
will focus on these issues.
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