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Abstract: The static problem of a layered isotropic elastic body is a very useful research subject in
relation to the analysis and design of foundation works. Due to the complexity of the problem,
there is no analytical solution to the problem so far. This study provides an efficient analytical
approach to accurately calculate the displacement and stress fields of the soil. The constraints of
bedrock on soil, different soil layer thickness and the shear stress of the foundation on soil were all
taken into account in the analysis. In this study, each layer is regarded as an isotropic elastomer with
infinite width, and the layers are in complete contact. By using conformal mapping, each layer is
mapped to a unit circle, and the two complex potential functions are expanded into Taylor series with
unknown coefficients. These unknown coefficients are obtained by satisfying boundary conditions
and continuity conditions. The boundary and continuity conditions were verified in this paper.
As a validation step, we compared the analytical results for the settlement with the results of the
ANSYS numerical simulations and found good agreement. Parametric analyses were also carried
out to investigate the influence of different distribution forms of base pressure on surface settlement,
and the effects of layered properties on the surface settlement and stress field.

Keywords: strip foundation; layered soil; bedrock; stress and displacement; complex variable solution

1. Introduction

In many places, it is common to see compressible soil overlying rigid bedrock. In this
case, the stress and displacement of soil are obviously different from that of a semi-infinite
body medium [1]. Natural soils tend to be horizontally layered during deposition, the den-
sity and hardness of each layer are generally different, and the deformation characteristics
may vary greatly [2]. When the stress in the soil is too large, the deformation of the soil
will cause unacceptable settlement of the building and even the instability of the entire soil.
Therefore, an accurate calculation of soil stress and displacement is an important basis for
the stability analysis of building foundations and geotechnical structures [3].

Finite element method can provide useful solutions to many complex geological
conditions. However, extensive computational time is required, especially when complete
parametric analyses need to be performed [4]. Analytical solutions provide an efficient and
quick approach to gain insight into the nature of the problem [5]; in addition, they enable
analyses of a wide range of parameter values so that the physics of the problem can be
better understood [4]. In the past, researchers mainly used the integral transformation
method to analyze the elastic static problems of layered soil. Burmister [6] provided the
integral expression of stress and displacement of two layers of soil under a flexible circular
foundation based on the integral transformation method, and also established an empirical
formula for surface settlement when both layers of soil consist of incompressible materials.
In many studies in the literature, the soil surface is subjected to a circular uniformly
distributed load, which is considered a spatial axisymmetric problem. Both layers of soil
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are linear elastomers and in complete contact. The second layer of soil was infinitely deep.
Then, smooth contact [7] and three-layer [8] soil with complete contact were considered.
Because only the integral transformation equations of stress and displacement could be
derived by the integral transformation method, many numerical methods were proposed
to solve the integral equations. Barovich et al. [9] studied the stress field of two-layer
elastomer under elliptical distributed load, in which the second-layer elastomer was a
semi-infinite body, and presented a numerical value of the stress on the axis of symmetry.
Chen [10] identified the shortcomings of this method, that is, the integral converges slowly
or does not even converge at the boundary. Chen [10] improved the method to solve the
problem of the stress field and displacement field of three-layer soil under circular and
rectangular loads. However, the subsoil was still semi-infinite, which means this method
was not suitable for bedrock at the bottom of the soil. Since then, many scholars have used
the integral transformation method to study the layered material problem, but the bottom
layer was assumed to be a semi-infinite body [11–28].

When there is bedrock under the soil, it is very difficult to obtain an analytical solution
regarding the stress and displacement due to the constraint of the bedrock on the soil.
At present, only Lu et al. [1] have obtained an explicit analytical expression for the stress
and displacement of single-layer finite thickness soil under the action of a strip foundation
by a complex variable method. In this paper, the solution in [1] is extended to layered
soil, and the complex variable method [29] is used to solve the stress and displacement of
multi-layer soil above bedrock under the action of a strip shallow foundation. Under the
action of a strip foundation, the soil is subjected to a strip-distributed load. It is assumed
that the distributed load does not change along the direction perpendicular to the surface;
thus, the problem solved in this paper is a plane strain problem [1]. In this paper, each layer
of soil is regarded as an isotropic linear elastic body with finite thickness, and the layers
are in complete contact with each other. Each layer of soil is mapped into a unit circle
by using a conformal transformation tool in the complex variable method, and the two
complex potential functions of each layer of soil can be expanded into a Taylor series.
According to the stress boundary condition of the surface, the displacement boundary
condition of the soil bottom, and the stress and displacement continuity conditions on the
contact surface, the equation for solving the complex potential function coefficients can be
obtained, and through the complex potential function, the exact solution for the stress and
displacement at any point in the soil can be obtained. Differently to the integral transfor-
mation method, for any given load, this method can directly provide an explicit expression
of the stress and displacement in each layer of soil. At the same time, the corresponding
FORTRAN program compiled in this paper is characterized by fast calculation speed and
high calculation accuracy, which are of great benefit to engineering applications.

2. Problem Statement and Method Presentation

This paper deals with the case of complete contact between layers of multi-layer soil
and complete constraint with bedrock below it. When the soil surface is subjected to
distributed load, the deformation of bedrock is considered to be negligible compared with
the deformation of soil, that is, the displacement component on the interface between the
soil and bedrock is equal to zero. Figure 1a shows a problem in which the upper boundary is
the stress boundary condition, the lower boundary is the displacement boundary condition,
and the contact surface of each layer is the stress and displacement continuity condition.

In Figure 1a, the four end points (A, C, D, F) of each layer of soil are points at infinity.
t is any point on the contact surface. There is a vector relation about t:

−−−→
O2O1 +

−−→
O1t =

−−→
O2t (1)
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As shown in Figure 1, the j-th layer (j = 1,2,· · · ,n) soil is mapped to the inner domain
of the unit circle in the ζ j plane. The mapping function is:

zj = ωj
(
ζ j
)
=

Hj

π
ln

(
1 + ζ j

1− ζ j

)
(2)

where zj is any point in the j-th layer soil, zj = xj + iyj, i =
√
−1; Hj is the thickness of

the j-th layer soil. ζj is the point where zj maps to the image plane. ζj = ρje
iθj , ρj = 1

corresponds to the upper and lower boundaries in the j-th layer soil, and σj is used to
denote ζj at this time.
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Figure 1. The multi-layer soil above the bedrock is mapped on to the inner domain of the unit circle
in the image plane: (a) multi-layer soil subjected to strip load and (b) each layer is mapped to the
inner domain of the unit circle in the image plane.

As shown in Figure 1, in the ζ1 plane, the circumference of the unit circle (σ1 = 1)
corresponds to the upper and lower boundaries of the first layer of soil. A1, B1, C1, D1,
E1, F1 are mapped to A′1, B′1, C′1, D′1, E′1, F′1, respectively. The upper boundary (A1B1C1) is

mapped to the upper semicircle (
_

A′1B′1C′1). The lower boundary (D1E1F1) is mapped to the

lower semicircle (
_

D′1E′1F′1). The coordinate origin (O1) is mapped to the center of the unit
circle (O′1) of the ζ1 plane. On the upper and lower boundaries, all points of x1 → +∞ are
mapped to the same point (σ1 = 1) of the ζ1 plane, and all points of x1 → −∞ are mapped
to the same point (σ1 = −1) of the ζ1 plane. The coordinate axes x1 and y1 are mapped to
ξ1 and η1 axes. The points a and b are mapped to a′ and b′. The rest of the layers can be
deduced by analogy.
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By substituting Equation (2) into Equation (1), the relationship between θ1 and θ2 at
the same point t on the contact surface of the 1st layer and the 2nd layer can be obtained:

θ2 = arccos
(

T1
2 − 1

T1
2 + 1

)
(3)

where T1 = (−sinθ1/(1− cosθ1))
H1/H2 .

In the same way, on the contact surface of the j-th layer and the j + 1-th layer:

θj+1 = arccos

(
Tj

2 − 1
Tj

2 + 1

)
(4)

where Tj+1 =
(
−sinθj/

(
1− cosθj

))Hj/Hj+1 , j = 1, 2, . . . , n− 1.
σj,x, σj,y and τj,xy are the horizontal normal stress, vertical normal stress and shear

stress of the j-th layer soil, respectively, and uj and vj are the horizontal displacement and
vertical displacement of the j-th layer soil, respectively. The three stress components σj,x,
σj,y, τj,xy and two displacement components uj, vj of point zj can be expressed as [21]:{

σj,x + σj,y = 4Re
(

ϕ′1,j(zj)
)

σj,z = µj
(
σj,x + σj,y

) (5)

σj,y − σj,x + 2iτj,xy = 2
[
zj ϕ

′′
1,j(zj) + ψ′1,j(zj)

]
(6)

uj + ivj =
1

2Gj

[
κj ϕ1,j(zj)− zj ϕ′1,j(zj)− ψ1,j(zj)

]
(7)

where κj = 3− 4µj, and Re[ . . . ] means to take the real part of [ . . . ], the imaginary part
represented by Im[ . . . ] will also be involved later. Gj and µj are the shear modulus and
Poisson’s ratio of the j-th layer soil, respectively. The single valued analytic functions of the
j-th layer are ϕ1,j

(
zj
)

and ψ1,j
(
zj
)
. The superscripts (.)’ and (.)” denote the first and second

derivatives of (.) with respect to zj.
For the problem analyzed in this paper, the stress boundary conditions can be obtained

from Equations (5) and (6):

2Re[ϕ1,1(z1)] + z1 ϕ′′ 1,1(z1) + ψ′1,1(z1) =


0, x1 ∈ (x1a, ∞)
p(x1) + iq(x1), x1 ∈ [x1b, x1a]
0, x1 ∈ (−∞, x1b)

(8)

where z1 is the point on the boundary of A1B1C1, px(x1) is the horizontal load and py(x1)
is the vertical load.

The continuity condition of displacement and stress on the contact surface between
the lower boundary of the j-th layer and the upper boundary of the j + 1-th layer can be
obtained from Equations (5)–(7).

1
Gj

[
κj ϕ1,j(zj)− zj ϕ′1,j(zj)− ψ1,j(zj)

]
=

1
Gj+1

[
κj+1 ϕ1,j+1(zj+1)− zj+1 ϕ′1,j+1(zj+1)− ψ1,j+1(zj+1)

]
(9)

2Re
[
ϕ1,j(zj)

]
+ zj ϕ

′′
1,j(zj) + ψ′1,j(zj) = 2Re

[
ϕ1,j+1(zj+1)

]
+ zj+1 ϕ′′ 1,j+1(zj+1) + ψ′1,j+1(zj+1) (10)

In Equations (9) and (10), j = 1, 2, . . . , n− 1. zj and zj+1 are the same point on the
contact surface, where zj is on DjEjFj, and zj+1 is on AjBjCj.
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Assuming that the bottom boundary is completely constrained, i.e., the horizontal and
vertical displacements are equal to zero, the displacement boundary condition on DnEnFn
can be obtained from Equation (7):

κn ϕ1,n(zn)− zn ϕ′1,n(zn)− ψ1,n(zn) = 0 (11)

Substituting Equation (2) into ϕ1,j
(
zj
)

and ψ1,j
(
zj
)
, we can obtain ϕj

(
ζ j
)

and ψj
(
ζ j
)
.

In the unit circle, they can be expressed as follows:
ϕj(ζ j) =

∞
∑

k=0
aj,kζk

j

ψj(ζ j) =
∞
∑

k=0
bj,kζk

j

(j = 1, 2, . . . , n) (12)

where aj,k and bj,k are the complex coefficients to be solved:{
aj,k = aj,k,R + iaj,k,I
bj,k = bj,k,R + ibj,k,I

(13)

In Equation (13), aj,k,R and aj,k,I are the real part and imaginary part of aj,k respectively;
bj,k,R and bj,k,I are the real part and imaginary part of bj,k respectively. This can be solved by
Equations (8)–(11).

On the boundary, ζ j is denoted by σj, Equations (8)–(11) in the image plane can be
rewritten as

2Re
[

ϕ′1(σ1)

ω′1(σ1)

]
+

ω1(σ1)

[ω′1(σ1)]
2

[
ϕ′′ 1(σ1)−

ω′′ 1(σ1)ϕ′1(σ1)

ω′1(σ1)

]
+

ψ′1(σ1)

ω′1(σ1)
=


0, θ1 ∈ [0, θ1a′)
p(x1) + iq(x1), θ1 ∈ [θ1a′ , θ1b′ ]
0, θ1 ∈ (θ1b′ , π]

(14)

1
Gj

[
κj ϕj(σj)−

ωj(σj)

ω′ j(σj)
ϕ′ j(σj)− ψj(σj)

]
=

1
Gj+1

[
κj+1 ϕj+1(σj+1)−

ωj+1(σj+1)

ω′ j+1(σj+1)
ϕ′ j+1(σj+1)− ψj+1(σj+1)

] (15)

2Re
[

ϕ′ j(σj)

ω′ j(σj)

]
+

ωj(σj)

[ω′ j(σj)]
2

[
ϕ′′ j(σj)−

ω′′ j(σj)ϕ′ j(σj)

ω′ j(σj)

]
+

ψ′ j(σj)

ω′ j(σj)
=

2Re
[

ϕ′ j+1(σj+1)

ω′ j+1(σj+1)

]
+

ωj+1(σj+1)

[ω′ j+1(σj+1)]
2

[
ϕ′′ j+1(σj+1)−

ω′′ j+1(σj+1)ϕ′ j+1(σj+1)

ω′ j+1(σj+1)

]
+

ψ′ j+1(σj+1)

ω′ j+1(σj+1)

(16)

κn ϕn(σn)−
ωn(σn)

ω′n(σn)
ϕ′n(σn)− ψn(σn) = 0 (17)

In Equation (14)

x1 =
H1

π
ln
(

sin θ1

1− cos θ1

)
(18)

ω1(σ1) =
H1

π
ln
(

sin θ1

1− cos θ1

)
+

H1

2
i, θ1 ∈ [0, π] (19)

In Equations (15) and (16), j = 1, . . . , n− 1: ω
(
σj
)
=

Hj
π ln

( − sin θj
1−cos θj

)
− Hj

2 i, θj ∈ [π, 2π]

ω
(
σj+1

)
=

Hj+1
π ln

(
sin θj+1

1−cos θj+1

)
+

Hj+1
2 i, θj+1 ∈ [0, π]

(20)

In Equation (17)

ωn(σn) =
Hn

π
ln
(
− sin θn

1− cos θn

)
− Hn

2
i, θn ∈ [π, 2π] (21)
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In this paper, the power series method is used to solve ϕj
(
ζ j
)

and ψj
(
ζ j
)
.

3. Solving Process

As shown in Figure 1b, in the image plane, we divide the surface
_

A′1B′1C′1 into three
intervals ([δ, θa′), [θa′ , θb′ ], (θb′ ,π− δ]), and divide them equally into m1,1, m1,2 and m1,3
parts, respectively. Take m1 = m1,1 + m1,2 + m1,3, δ is a small quantity. When θ = 0
or 2π, Equations (12)–(15) are meaningless, so we take δ = 0.01. The contact surface

of two adjacent layers (
_

D′jE
′
jF
′
j and

_

A′j+1B′j+1C′j+1) is divided equally into mj+1 parts

(j = 1, . . . , n − 1).
_

D′nE′nF′n is divided equally into mn+1 parts. Then each node in the
first layer has: 

θ1,s = δ +
θ1a′−δ

m1,1
(s− 1), s = 1, · · · , m1,1

θ1,m1,1+s = θ1a′ +
θ1b′−θ1a′

m1,2
(s− 1), s = 1, · · · , m1,2 + 1

θ1,m1,1+m1,2+1+s = θ1b′ +
π−δ−θ1b′

m1,3
s, s = 1, · · · , m1,3

θ1,m1+1+s = π + δ + π−2δ
m2

(s− 1), s = 1, · · · , m2 + 1
σ1,s = cos θ1,s + i sin θ1,s, s = 1, · · · , m1 + m2 + 2

(22)

where: 
θ1a′ = arccos

(
e

2π
H1

x1a−1

e
2π
H1

x1a+1

)

θ1b′ = arccos

(
e

2π
H1

x1b−1

e
2π
H1

x1b+1

) (23)

Each node in the j-th layer has:
θj,s = δ + π−2δ

mj
(s− 1), s = 1, · · · , mj + 1

θj,mj+1+s = π + δ + π−2δ
mj+1

(s− 1), s = 1, · · · , mj+1 + 1

σj,s = cos θj,s + i sin θj,s, s = 1, · · · , mj + mj+1 + 2

(j = 2, 3, . . . , n− 1) (24)

Each node in the n-th layer has
θn,s = δ + π−2δ

mn
(s− 1), s = 1, · · · , mn + 1

θn,mn+1+s = π + δ + π−2δ
mn+1

(s− 1), s = 1, · · · , mn+1 + 1
σn,s = cos θn,s + i sin θn,s, s = 1, · · · , mn + mn+1 + 2

(25)

By substituting σ1,s(s = 1, . . . , m1 + 1) in Equation (22) into Equation (14),
σ1,s(s = m1 + 1, . . . , m1 + m2 + 1) in Equation (22), σj,s in Equation (24), and
σn,s(s = 1, . . . , mn + 1) in Equation (25) into Equations (15) and (16), and
σn,s(s = mn + 2, . . . , mn+1 + 1) in Equation (25) into Equation (17), we can obtain the infi-
nite linear equations for aj,k, aj,k,bj,k and bj,k (j = 1, . . . , n).

This paper adopts the power series method, ϕj
(
ζ j
)

and ψj
(
ζ j
)

are taken as finite terms,
and the highest powers are nj,1 and nj,2 respectively.

ϕj(ζ j) =
nj,1

∑
k=0

aj,kζk
j

ψj(ζ j) =
nj,2

∑
k=0

bj,kζk
j

(j = 1, 2, . . . , n) (26)



Appl. Sci. 2022, 12, 766 7 of 22

By combining boundary conditions and continuity conditions, a system of linear
equations for aj,k, aj,k, bj,k and bj,k can be obtained

2Re

(n1,1

∑
k=1

c1,ksa1,k

)
+

n1,1

∑
k=1

d1,ksa1,k −
n1,1

∑
k=1

e1,ksa1,k +
n1,2

∑
k=1

f1,ksb1,k = fs (27)

nj,1

∑
k=1

gj,ksaj,k −
nj,1

∑
k=1

hj,ksaj,k −
nj,2

∑
k=1

lj,ksbj,k +
κj
Gj

aj,0 − 1
Gj

bj,0−
nj+1,1

∑
k=1

gj+1,ksaj+1,k +
nj+1,1

∑
k=1

hj+1,ksaj+1,k +
nj+1,2

∑
k=1

lj+1,ksbj+1,k −
κj+1
Gj+1

aj+1,0 +
1

Gj+1
bj+1,0 = 0

(28)

2Re

(
nj,1

∑
k=1

cj,ksaj,k

)
+

nj,1

∑
k=1

dj,ksaj,k −
nj,1

∑
k=1

ej,ksaj,k +
nj,2

∑
k=1

f j,ksbj,k−

2Re

(
nj+1,1

∑
k=1

cj+1,ksaj+1,k

)
−

nj+1,1

∑
k=1

dj+1,ksaj+1,k +
nj+1,1

∑
k=1

ej+1,ksaj+1,k −
nj+1,2

∑
k=1

f j+1,ksbj+1,k = 0
(29)

nn,1

∑
k=1

gn,ksan,k −
nn,1

∑
k=1

hn,ksan,k −
nn,2

∑
k=1

ln,ksbn,k +
κn

Gn
an,0 −

1
Gn

bn,0 = 0 (30)

In Equation (27), s = 1, . . . , m1 + 1. In Equations (28) and (29), for the j-th layer
s = mj + 2, mj + 3, . . . , mj + mj+1 + 2, for the j + 1-th layer s = mj+1 + 1, mj+1, . . . , 1
(j = 1, . . . , n− 1). In Equation (30), s = mn + 2, . . . , mn + mn+1 + 2. The coefficients cj,ks,
dj,ks, ej,ks, f j,ks, gj,ks, hj,ks, lj,ks, f j in Equations (27)–(30) are provided in Appendix A.

Equations (31) and (32) can be obtained from the real and imaginary parts of Equation (27).

n1,1

∑
k=1

Re[2c1,ks + d1,ks − e1,ks]a1,k,R +
n1,1

∑
k=1

Im[−2c1,ks − d1,ks + e1,ks]a1,k,I+

n1,2

∑
k=1

Re[ f1,ks]b1,k,R −
n1,2

∑
k=1

Im[ f1,ks]b1,k,I = Re[ fs]
(31)

n1,1

∑
k=1

Im[d1,ks − e1,ks]a1,k,R +
n1,1

∑
k=1

Re[d1,ks − e1,ks]a1,k,I+

n1,2

∑
k=1

Im[ f1,ks]b1,k,R +
n1,2

∑
k=1

Re[ f1,ks]b1,k,I = Im[ fs]
(32)

Equations (33) and (34) can be obtained from the real and imaginary parts of Equation (28).

nj,1

∑
k=1

Re
[

gj,ks − hj,ks

]
aj,k,R −

nj,1

∑
k=1

Im
[

gj,ks + hj,ks

]
aj,k,I−

nj,2

∑
k=1

Re
[
lj,ks

]
bj,k,R −

nj,2

∑
k=1

Im
[
lj,ks

]
bj,k,R +

κj
Gj

aj,0,R − 1
Gj

bj,0,R−
nj+1,1

∑
k=1

Re
[

gj+1,ks − hj+1,ks

]
aj+1,k,R +

nj+1,1

∑
k=1

Im
[

gj+1,ks + hj+1,ks

]
aj+1,k,I+

nj+1,2

∑
k=1

Re
[
lj+1,ks

]
bj+1,k,R +

nj+1,2

∑
k=1

Im
[
lj+1,ks

]
bj+1,k,R −

κj+1
Gj+1

aj,0,R + 1
Gj+1

bj+1,0,R = 0

(33)

nj,1

∑
k=1

Im
[

gj,ks − hj,ks

]
aj,k,R +

nj,1

∑
k=1

Re
[

gj,ks + hj,ks

]
aj,k,I−

nj,2

∑
k=1

Im
[
lj,ks

]
bj,k,R +

nj,2

∑
k=1

Re
[
lj,ks

]
bj,k,I +

κj
Gj

aj,0,I +
1

Gj
bj,0,I−

nj+1,1

∑
k=1

Im
[

gj+1,ks − hj+1,ks

]
aj+1,k,R −

nj+1,1

∑
k=1

Re
[

gj+1,ks + hj+1,ks

]
aj+1,k,I+

nj+1,2

∑
k=1

Im
[
lj+1,ks

]
bj+1,k,R −

nj+1,2

∑
k=1

Re
[
lj+1,ks

]
bj+1,k,I −

κj+1
Gj+1

aj+1,0,I − 1
Gj+1

bj+1,0,I = 0

(34)
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Equations (35) and (36) can be obtained from the real and imaginary parts of Equation (29).

nj,1

∑
k=1

Re
[
2cj,ks + dj,ks − ej,ks

]
aj,k,R +

nj,1

∑
k=1

Im
[
−2cj,ks − dj,ks + ej,ks

]
aj,k,I+

nj,2

∑
k=1

Re
[

f j,ks

]
bj,k,R −

nj,2

∑
k=1

Im
[

f j,ks

]
bj,k,I−

nj+1,1

∑
k=1

Re
[
2cj+1,ks + dj+1,ks − ej+1,ks

]
aj+1,k,R −

nj+1,1

∑
k=1

Im
[
−2cj+1,ks − dj+1,ks + ej+1,ks

]
aj+1,k,I−

nj+1,2

∑
k=1

Re
[

f j+1,ks

]
bj+1,k,R +

nj+1,2

∑
k=1

Im
[

f j+1,ks

]
bj+1,k,I = 0

(35)

nj,1

∑
k=1

Im
[
dj,ks − ej,ks

]
aj,k,R +

nj,1

∑
k=1

Re
[
dj,ks − ej,ks

]
aj,k,I+

nj,2

∑
k=1

Im
[

f j,ks

]
bj,k,R +

nj,2

∑
k=1

Re
[

f j,ks

]
bj,k,I−

nj+1,1

∑
k=1

Im
[
dj+1,ks − ej+1,ks

]
aj+1,k,R −

nj+1,1

∑
k=1

Re
[
dj+1,ks − ej+1,ks

]
aj+1,k,I−

nj+1,2

∑
k=1

Im
[

f j+1,ks

]
bj+1,k,R −

nj+1,2

∑
k=1

Re
[

f j+1,ks

]
bj+1,k,I = 0

(36)

Equations (37) and (38) can be obtained from the real and imaginary parts of Equation (30).

nn,1

∑
k=1

Re[gn,ks − hn,ks]an,k,R −
nn,1

∑
k=1

Im[gn,ks + hn,ks]an,k,I−
nn,2

∑
k=1

Re[ln,ks]bn,k,R −
nn,2

∑
k=1

Im[ln,ks]bn,k,R + κn
Gn

an,0,R − 1
Gn

bn,0,R = 0
(37)

nn,1

∑
k=1

Im[gn,ks − hn,ks]an,k,R +
nn,1

∑
k=1

Re[gn,ks + hn,ks]an,k,I−
nn,2

∑
k=1

Im[ln,ks]bn,k,R +
nn,2

∑
k=1

Re[ln,ks]bn,k,I +
κn
Gn

an,0,I +
1

Gn
bn,0,I = 0

(38)

Since aj,0 and bj,0 do not affect the stress, they represent the translation of the rigid
body. If aj,0 or bj,0 is equal to zero, it will not affect the calculation result of displacement,
so in this paper, bj,0 = 0.

The system of linear equations of aj,k,R, aj,k,I, bj,k,R, bj,k,I can be obtained from Equations
(31)–(38).

DX = F (39)

where: X =

(
· · · · · · aj,1,R aj,1,I · · · aj,nj,1,R aj,nj,1,I bj,1,R bj,1,I · · · bj,nj,2,R bj,nj,2,I aj,0,R aj,0,I︸ ︷︷ ︸

2nj,1+2nj,2+2 coefficients in the j−th layer

· · · · · ·
)T

(j = 1, . . . , n), F =
(
Re[ f1] · · ·Re

[
fm1+1

]
Im[ f1] · · · Im

[
fm1+1

]
0 · · · 0

)T. There are
∑n

j=1 2
(
mj + mj+1 + 2

)
terms in matrix F. The elements in coefficient matrix D are

coefficients of Equations (29)–(36) for aj,k,R, aj,k,I, bj,k,R, bj,k,I, and the size is row
∑n

j=1 2
(
mj +mj+1 +2

)
and column ∑n

j=1 2
(
nj,1 +nj,2 +1

)
.

In order to ensure the accuracy of calculation, nj needs to take a large value. After calculation, it is
found that the result obtained by Equation (39) may be very unsatisfactory. In order to obtain satisfactory
results, this paper uses ordinary least squares. Taking ∑n

j=1 2
(
mj +mj+1 +2

)
> ∑n

j=1 2
(
nj,1 +nj,2 +1

)
:

X =
(

DTD
)−1

DTF (40)

The analytic functions ϕj
(
ζj
)

and ψj
(
ζj
)

can be obtained from Equation (40).
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The displacement and stress of any point in the j-th layer can be calculated by Equations (41) and
(42), respectively.

2Gj(uj + ivj) = κjϕj(ζj)−
ωj(ζj)

ω′j(ζj)
ϕ′j(ζj)−ψj(ζj) (41)


σj,y +σj,x = 4Re

[
ϕ′ j(ζj)

ω′ j(ζj)

]
σj,y−σj,x +2iτj,xy = 2

ωj(ζj)

[ω′ j(ζj)]
2

[
ϕ′′ j(ζj)−

ω′′ j(ζj)ϕ
′
j(ζj)

ω′ j(σj)

]
+2

ψ′ j(ζj)

ω′ j(ζj)

(42)

From Equations (41) and (42), we have
uj =

Re
(

κjtj,4−
tj,1
tj,2

tj,5−tj,7

)
2Gj

vj =
Im
(

κjtj,4−
tj,1
tj,2

tj,5−tj,7

)
2Gj

(43)


σj,x = (AAj−BBj)/2
σj,y = (AAj +BBj)/2
τj,xy = CCj/2

(44)

where
AAj = 4Re

[
tj,5/tj,2

]
BBj = 2Re

[
tj,1(tj,6− tj,3tj,5/tj,2)/t2j,2 + tj,8/tj,2

]
CCj = 2Im

[
tj,1(tj,6− tj,3tj,5/tj,2)/t2j,2 + tj,8/tj,2

] (45)

where tj,1 tj,8 are functions of ζj; the details are provided in Appendix B.

4. Analysis and Discussion

In order to ensure accuracy, the values of mj, nj,1, nj,2 in this paper are large, which means
matrix D is too large, thus we took two layers of soil as an example. The example only discusses the
effect of a smooth foundation on soil, which means px(x1) = 0.

4.1. Verification of Boundary Conditions and Continuity Conditions

Taking H1 = 30m, H2 = 20m, µ1 = 0.2, µ2 = 0.3, xa = 2 m, xb = −2 m, δ = 0.01, n1,1 =
n1,2 = n2,1 = n2,2 = 550, m1,1 = m1,3 = 700, m1,2 = 80, m2 = 800, m3 = 600, G1 = 1.0, G2 = 2.0,
py(x1) =−3

(
4− x2

1
)
/8, px(x1) = 0. The unit of py(x1), G1, G2 is not given here. If the unit of py(x1)

is kPa and the unit of G1, G2 is MPa, the unit of stress and displacement are kPa and mm, respectively.
According to the given known conditions, the solution process in Section 3 can be used to calculate

the ϕj
(
ζj
)

and ψj
(
ζj
)

of each layer (j = 1, 2), and then the stress components σ1,y and τ1,xy of the
surface can be obtained by Equation (42). If σ1,y = py(x1), τ1,xy = px(x1) = 0, the stress boundary
condition is satisfied. It can be seen from the calculation that the value of τ1,xy on the surface is very
small, basically equal to zero, and σ1,y is also basically equal to py(x1). Figure 2 shows the distribution
curve of σ1,y and py(x1) at the surface. It can be seen that the vertical stress curve of the surface basically
coincides with the load curve, which indicates that the stress boundary conditions on the surface are
well satisfied.
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Figure 2. Verification of stress boundary conditions.

According to the calculated ϕj
(
ζj
)

and ψj
(
ζj
)
, the displacement and stress of each layer on the

contact surface can also be obtained through Equations (41) and (42), therefore the continuity
condition of the displacement and stress can be verified. Figure 3 shows the verification of the
displacement continuity condition. It can be seen that u1 ≈ u2, v1 ≈ v2, where u1 and v1 are the
x-direction displacement and y-direction displacement of the lower boundary of the first layer of soil,
respectively, while u2 and v2 are the x-direction displacement and y-direction displacement of the
same position of the upper boundary of the second layer of soil, respectively. Figure 4 shows the
verification of the stress continuity condition, which shows that σ1,y ≈ σ2,y, τ1,xy ≈ τ2,xy. It can be seen
from Figures 3 and 4 that the displacement and stress continuity condition can also be satisfied very
well. The maximum displacement in Figure 3 is−0.255 mm, and compared with this, the maximum
displacement of the lower boundary of the second layer is 1.3791294×10−4 mm, which means the
displacement boundary conditions of the lower boundary of the second layer are also very well satisfied.
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4.2. Comparison with Numerical Method

In Section 4.1, the surface stress boundary conditions, the displacement boundary condition of the
lower boundary of the second layer and the stress and displacement continuity conditions between
layers were verified. It was found that the boundary condition and the continuity conditions were very
well satisfied; however, this is not enough to establish that the whole derivation process presented in
this paper is correct. In order to verify the correctness of the whole derivation process, it is necessary to
compare the calculation results of this paper with those of the numerical method. When the results of
the two methods are in good agreement, the whole derivation process and the calculation program
used in this paper are correct.

The schematic diagram of the ANSYS [30] model is shown in Figure 5. The model is divided
into upper and lower soil layers. The width of the upper soil model is 100 m, the thickness is 30 m,
the load action interval is−2m≤ x1 ≤ 2m,y = 0, the element type is plane42, the elastic modulus is
2.4 MPa, the Poisson’s ratio is 0.2, The element size in most areas is 0.5 (shown in Figure 6), and the
element size is 0.05 in the area of−2m≤ x1 ≤ 2m,−10m≤ y≤ 0 (shown in Figure 7),. The width of
the lower soil model is 100 m, the thickness is 20 m, the element type is plane42, the elastic modulus is
5.2 MPa, the Poisson’s ratio is 0.3, and the element size is 0.5. The types of contact elements are targe169
(lower contact surface) and conta171 (upper contact surface). Horizontal displacement constraints are
applied to the left and right sides of the model, and horizontal displacement constraints and vertical
displacement constraints are applied to the bottom of the model. A parabolic distributed load is applied
to the top of the model. The command flow is “f,i,fy,(nx(i)×nx(i)−4.0) ∗ 3/160”. There are 70,849 nodes
and 70,684 elements in the model. Figure 8 shows the ANSYS deformation diagram. Figure 9 shows a
comparison between the analytical solution and numerical solution of the surface settlement. ANSYS
version 15.0 was used in this paper.
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Figure 5. Schematic diagram of ANSYS model.
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4.3. Influence of Base Pressure Distribution on Surface Settlement

As shown in Figure 10a, three types of base pressure distribution under vertical action are
discussed:

(1) The concentration of base pressure is large at the edge: py1(x1) =
(
−3x2

1−12
)
/16;

(2) The concentration of base pressure is large at the center: py2(x1) =−3
(
4− x2

1
)
/8;

(3) Uniform distribution of base pressure: py3(x1) =−1.
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Figure 10. Three types of base pressure distribution and the surface settlement they caused: (a) distribution of base
pressure, (b) surface settlement, and (c) surface settlement near foundation.

In order to compare the influence of load distribution on surface settlement, the resultant
forces of the three types of base pressure distribution are the same, and they are all 4 kPa. The other
parameters are the same as those described in Section 4.1, and the surface settlement that they caused
are shown in Figure 10b,c.

It can be seen from Figure 10 that the surface settlement caused by the three types of base pressure
distribution only shows certain differences near the foundation, and the maximum surface settlement
occurs in the center of the foundation action area. When the load concentration at the center of the
foundation is large, the surface settlement is the largest, followed by uniform distribution, and the
surface settlement is smallest when the load concentration at the edge of the foundation is large. At the
same time, it can be seen from Figure 10c that the surface settlement caused by the first distribution
is approximately a horizontal line in the foundation action area. Only when the strip foundation is
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absolutely rigid and it is subjected to axial compression, can the bottom of the foundation sink evenly.
Therefore, we can infer that the distribution form of the base pressure under the absolutely rigid strip
foundation is close to this distribution form.

4.4. Influence of Layered Soil on Surface Settlement and Additional Stress Distribution in Soil

When H1 = H2 = 30 m, G1 = 1.0 MPa, µ1 = µ2 = 0.2, the distribution of base pressure is
py(x1) =−3

(
4− x2

1
)
/8, and other parameters are the same as those described in Section 4.1. Figure 11

shows the surface settlement curve when G2/G1 is 0.1, 0.5, 1.0, 2.0 and 10.0, respectively.
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Figure 11. Effect of layered soil on surface settlement.

It can be seen from Figure 11 that the smaller the shear modulus ratio G2/G1, the greater
the surface settlement. The influence of the change in G2/G1 on the surface settlement can be divided
into two scenarios: when G2/G1 > 1, the change in G2/G1 has little influence on the surface settlement;
when G2/G1 < 1, the change in G2/G1 has a great influence on the surface settlement.

Figure 12 shows the σ1,x curves (solid line) of the lower boundary of the first layer when G2/G1 is
0.1, 0.5, 1.0, 2.0 and 10.0 and the σ2,x curves (dotted line) of the upper boundary of the second layer
when G2/G1 is 0.1, and 10.0. Figure 13 shows the σ1,y curve on the contact surface, and Figure 14 shows
the τ1,xy curve on the contact surface.
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Figure 14. Effect of layered soil on shear stress at interface.

It can be seen from Figure 12 that with the decrease in the shear modulus ratio G2/G1 of the two
layers of soil, the maximum value of σ1,x (absolute value) of the lower boundary of the first layer of
soil decreases at first and then increases, and the tensile stress occurs. Moreover, with the decrease in
G2/G1, the tensile stress increases. Compared with the first layer, σ2,x on the upper boundary of the
second layer is very small and the change in G2/G1 has little effect on σ2,x. Therefore, this paper only
shows the σ2,x curves when G2/G1 is 0.1, 10.0 respectively.

As can be seen from Figure 13, when the soft soil layer is covered by the hard soil layer (G2/G1 >
1), near x = 0, the σ1,y (absolute value) on the contact surface is larger than that of homogeneous
soil (G2/G1 = 1), but in the distance, it is smaller than that of homogeneous soil, that is, the stress
concentration phenomenon occurs near x = 0. When the hard soil layer covers the soft soil layer
(G2/G1 < 1), the σ1,y on the contact surface is smaller near x = 0 than that of the homogeneous soil
layer, but larger in the distance than that of the homogeneous soil layer, which is known as the stress
diffusion phenomenon. At this time, the vertical normal stress distribution on the contact surface is
relatively uniform, so the vertical deformation of the lower soil will be relatively uniform, but it can be
seen from Figure 12 that the horizontal tensile stress of the lower boundary of the upper soil will be
relatively large.

It can be seen from Figure 14 that with the decrease in G2/G1, the shear stress τ1,xy (absolute
value) on the contact surface gradually decreases. When G2/G1 > 1, the change in G2/G1 has little
effect on the shear stress distribution on the contact surface, while when G2/G1 < 1, the change in
G2/G1 has a greater effect on the shear stress.

Taking the same parameters as described in Section 4.1, since the base pressure is symmetrical
about the y-axis, there are only two normal stress components on the y-axis, and the shear stress
component is 0. Figure 15 shows the variation in the two normal stresses on the y-axis with depth h. At
the surface, the horizontal normal stress is basically equal to the vertical normal stress. With the increase
in h, the horizontal and vertical normal stress decay rapidly, and the decay speed of the horizontal
normal stress is faster than that of the vertical normal stress. The horizontal normal stress at the surface
is about−1.5, and it basically decays to zero at the depth of h = 4 m. At the same time, it can be seen
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that due to the different material properties of the two layers of soil, the horizontal normal stress curve
jumps at h = 30 m (contact surface).
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5. Conclusions

The method proposed in this paper can be used to calculate the stress and displacement of
multi-layer soil above bedrock under the action of a strip foundation. In fact, it is an analytical method,
and the accuracy of its calculation results is related to the number of terms taken by the analytic function.
Through the programming calculation, it was found that when the number of terms of the analytic
function is 550, the accuracy of the calculation results is quite high, which can well meet the stress
boundary condition, displacement boundary condition, and the stress and displacement continuity
conditions. The results are in good agreement with those obtained by the finite element method.

In this paper, the effects of different distribution forms of base pressure and layered soil on the
surface settlement and stress distribution inside the soil were analyzed by numerical examples. The
results show that the surface settlement curves corresponding to the three types of basement pressure
distribution are basically the same, but there are some differences near the foundation action area. When
the distribution of the base pressure reaches the maximum in the center of the base, the displacement is
at its maximum. The displacement caused by uniform distribution takes second place. When the base
pressure is largest on both sides of the base, the displacement is the smallest. In the foundation action
area, the surface settlement curve is approximately a horizontal straight line, which proves that the base
pressure of a vertical sinking rigid foundation is similar to this distribution form.
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For two-layer soil, the surface settlement decreases with the increase in the ratio of shear modulus
(G2/G1), G1 and G2 are the shear modulus of the upper and lower soil, respectively. When the G2/G1
increases:

(1) The maximum horizontal normal stress of the lower boundary of the upper soil first decreases
and then increases, and when G2/G1 reaches a certain value, the tensile stress begins to appear;

(2) The maximum vertical normal stress on the contact surface increases, while the vertical normal
stress decreases at a distance from the foundation;

(3) The shear stress on the contact surface only changes significantly when G2 < G1.

Author Contributions: A.L. conceived and designed the study. X.S. derived the formulas and wrote the programs.
X.S. wrote the paper. H.C. and C.Y. helped with drawing and translation. A.L., H.C. and C.Y. reviewed the edited
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The study is supported by the National Natural Science Foundation of China (Grant no.51974124).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data in the present study are available from the corresponding author upon
reasonable request.

Acknowledgments: We thank the staff at the same laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

For j = 1, . . . ,n, k = 1, . . . ,nj,1:

cj,ks =
π

2H
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k−1
j,s , s = 1, . . . ,mj +mj+1 +2 ; k = 1, . . . ,nj,1 (A1)
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For j = 1, . . . ,n, k = 1, . . . ,nj,2:

fj,ks =
π

2H
k(1−σ2
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For j = 1, . . . ,n, k = 1, . . . ,nj,1:
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1
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1
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σ−k
j,s , s = 1, . . . ,mj +mj+1 +2; k = 1, . . . ,nj,2 (A7)
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fs =


0, s = 1, . . . ,m1,1
py(x1,s)+ ipx(x1,s), s = m1,1 +1, . . . ,m1,1 +m1,2 +1
0, s = m1,1 +m1,2 +2, . . . ,m1,1 +m1,2 +m1,3 +1

x1,s =
H
π ln

(
sinθ1,s

1−cosθ1,s

) (A8)

Appendix B

For j = 1, . . . ,n:
tj,1 = ωj(ζj) (A9)

For the upper boundary of the j-th layer:
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π

[
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(
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2
i

]
, θj ∈ (0,π) (A10)

For the lower boundary of the j-th layer:
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∑
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