[FiFiel applied
o sciences

Article

Multi-Robot Formation Control Based on CVT Algorithm
and Health Optimization Management

Kai Cao 23, Yangquan Chen 23, Song Gao 2%, Hang Zhang ? and Haixin Dang 2

Citation: Cao, K; Chen, Y.; Gao, S.;
Zhang, H.; Dang, H. Multi-Robot
Formation Control Based on CVT
Algorithm and Health Optimization
Management. Appl. Sci. 2022, 12, 755.
https://doi.org/10.3390/app12020755

Academic Editor: Manuel Armada

Received: 4 November 2021
Accepted: 11 January 2022
Published: 12 January 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution  (CC  BY) license
(https://creativecommons.org/license

s/by/4.0/).

1 School of Mechatronic Engineering, Xi’an Technological University, Xi’an 710021, China;
caokai@xatu.edu.cn (K.C.); ychen53@ucmerced.edu (Y.C.)

2 School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China;
ckstory2020@gmail.com (H.Z.); dx002978@gmail.com (H.D.)

3 School of Engineering (MESA-Lab), University of California, Merced, CA 95343, USA

* Correspondence: gaos@xatu.edu.cn; Tel.: +86-029-86173350

Abstract: In view of the low formation redundancy in the traditional rigid formation algorithm and
its difficulty in dynamically adapting to the external environment, this study considers the use of
the CVT (centroidal Voronoi tessellation) algorithm to control multiple robots to form the desired
formation. This method significantly increases the complexity of the multi-robot system, its
structural redundancy, and its internal carrying capacity. First, we used the CVT algorithm to
complete the Voronoi division of the global map, and then changed the centroid position of the
Voronoi cell by adjusting the density function. When the algorithm converged, it could ensure that
the position of the generated point was the centroid of each Voronoi cell and control the robot to
track the position of the generated point to form the desired formation. The use of traditional
formations requires less consideration of the impact of the actual environment on the health of
robots, the overall mission performance of the formation, and the future reliability. We propose a
health optimization management algorithm based on minor changes to the original framework to
minimize the health loss of robots and reduce the impact of environmental restrictions on formation
sites, thereby improving the robustness of the formation system. Simulation and robot formation
experiments proved that the CVT algorithm could control the robots to quickly generate formations,
easily switch formations dynamically, and solve the formation maintenance problem in obstacle
scenarios. Furthermore, the health optimization management algorithm could maximize the life of
unhealthy robots, making the formation more robust when performing tasks in different scenarios.

Keywords: CVT (centroidal Voronoi tessellation); multi-robot; formation control; obstacle

avoidance; health optimization management

1. Introduction

With the continuous development of wireless communication technology, multi-ro-
bot systems have attracted widespread attention in the field of intelligent control and have
been used in scenarios such as resource exploration, forest fire monitoring, map construc-
tion, and disaster rescue. Multi-robot formation control [1-3], as an important branch of
multi-intelligence systems, requires multiple robots to maintain a certain formation and
avoid collisions while performing tasks, while minimizing the impact of environmental
constraints on the multi-robots and influencing them to complete a specific task. Over the
years, a large number of research results have been produced for the multi-robot for-
mation control problem, and a variety of formation control methods represented by the
follower method, the behavior-based control method, the virtual structure method, and
the artificial potential field method have been proposed. These formation methods have
their advantages and disadvantages. For different application scenarios, the above meth-
ods are often used in combination to achieve the desired formation effect.
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The following leader method is one of the earliest solutions for multi-robot formation
control. In [4,5], leader selection is described as an optimization problem; it adjusts the
position of the follower based on the position of the leader, forming the desired formation.
To maintain the required formation shape of spacecraft, Chen Qifeng set up virtual spring
dampers between the spacecraft and realized a formation control method based on the
artificial potential field [6]. In [7,8], based on the principle of the virtual structure method,
the formation control problem is described as a synchronous control problem, and a de-
centralized trajectory tracking controller was designed with the position error as feedback
information to complete the functions of describing behavior and assigning tasks. In the
above-mentioned formation control method, task-oriented, efficient cooperation between
robots is used to improve the efficiency in completing tasks. In order to be more in line
with the actual environment and enhance the robustness and anti-interference ability of
the system, JF Flores Resendiz specified the communication diagram between robots to
make the input speed constrain multiple mobile robots to converge to the desired for-
mation, which improved the overall obstacle avoidance performance of the system. The
amount of feedback was used as the control, based on the differences in neighbor behav-
ior, thereby reducing communication loss and computing cost [9]. Zhou used a distributed
control protocol to solve the problem of multi-mobile-robot formation considering sam-
pling data and time delay [10]. Yao solved the formation control problem of a heteroge-
neous multi-robot system under the premise of considering the robot kinematics uncer-
tainty and communication delay, and used the Lyapunov function to prove the stability
of the adaptive sliding mode controller [11]. Taking into account the complexity of the
robot’s task execution scenarios, Qiu Huaxin designed a distributed formation optimiza-
tion control framework for UAVs based on the hierarchical learning behavior of a pigeon
flock, which transformed the multi-objective optimization problem into a single UAV,
solving the multi-objective optimization problem to achieve stable formation flying in a
complex obstacle environment [12].

In summary, controlling multiple robots to maintain a fixed formation can result in
completing the specified tasks more efficiently, and the formation control should be ex-
tended to a more efficient dynamic mode, that is, provided the robots maintain the corre-
sponding formation as much as possible, to reduce the rigidity of the formation. There-
fore, the question of how to achieve the formation with less energy consumption in a
shorter time has also received considerable attention. Chen Yangquan used the distribu-
tion and neutralization of multi-robot clusters in the diffusion process of toxic substances
as the background, and combined the CVT algorithm with multi-robot control for the first
time [13]. Cortes proposed a discrete-time-based CVT algorithm that can use Euclidean
metrics to achieve coverage of non-convex environments [14]. The algorithm was proved
by solving the coverage of obstacles and exploration problems in non-convex indoor en-
vironments. In [15], a coverage algorithm is defined that is subject to differential con-
straints in a non-convex environment. The algorithm introduces a limited range of sub-
divisions to limit the amount of communication between robots, and the convergence of
the algorithm is verified in simulation. In [16], an adaptive control algorithm is designed
to drive the robot to the weighted centroid of the corresponding Voronoi cell, and finally
the Lyapunov function is used to prove that the robot network can converge to the optimal
configuration.

In the process of using the formation to complete the task, the completion of the over-
all task and the health of the robot are equally important. In past formation use, the user
seldom considered the impact of various harsh environments on the health of the robot
under real conditions. The impact of such environments may degrade the health of the
robot or even cause it to fail to work, which will have a significant impact on the comple-
tion of the task and the performance of the robot[17]. Therefore, in an intelligent and effi-
cient formation control system, these abnormal possibilities must be considered and the
individual situation must be assessed, in order to maximize the formation performance
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and mission completion, and to achieve a higher level of overall mission performance than
non-health-perception systems.

In terms of the impact of individual health-degrading tasks, [18] proposed a task al-
location system based on health management which can predict the impact of various
abnormalities on the task status through dynamic programming and select measures to
mitigate these effects. The authors in [19-21] investigated the impact of different robot
driving capabilities in the team on the coverage task, using online and distributed meth-
ods to learn the changes in the relative driving performances of the robots, which can be
a trade-off between time and the energy consumption of the robot, to ensure that the ro-
bots converged to the best configuration.

In view of the above problems, an efficient and dynamic multi-robot formation algo-
rithm should be developed that can form an efficient dynamic formation with the least
cost and make flexible changes according to the obstacle environment. Most importantly,
the impact of the environment on the health of robots must be taken into account, in order
to be able to make real-time dynamic adjustments to the robots and to improve the per-
formance and robustness of the robot formation.

On this basis, this study combines the CVT (centroidal Voronoi tessellation) algo-
rithm with multi-robot formation control. First, we used the CVT algorithm to complete
the Voronoi division of the task map and designed the controller to control the robot to
track the specified Voronoi cell centroid. When the CVT algorithm converged, it was guar-
anteed that the robots formed the specified desired formation in the specified area accord-
ing to the optimal distribution. Secondly, considering that there are obstacles in the real
environments where robots perform tasks, this study also verified the formation mainte-
nance experiment in an obstacle environment. Under the premise of ensuring the uniform
distribution of the global density function, the density value corresponding to the obstacle
position was reduced to ensure that the centroid was not divided into the obstacle area.
That is, the characteristics of the CVT algorithm were used to realize the repulsive force
field that drives the robot to avoid obstacles. It was necessary to set up additional potential
field functions to complete the collision avoidance and obstacle avoidance control of for-
mation robots, which significantly improved the flexibility and scalability of the algo-
rithm. Finally, the health optimization management algorithm was used to maximize the
endurance of unhealthy robots under the premise of minor changes to the original frame-
work, so that the system could deal better with unforeseen damage such as mechanical
failures and emergencies, making the formation more robust when performing tasks in
different scenarios.

The rest of this article is organized as follows. Section 2 provides the CVT-based
multi-robot formation control algorithm and cost function optimization process, and gives
a proof of the stability of the algorithm. Section 3 introduces the health optimization man-
agement algorithm used in this study and the insertion construction method used when
the robot’s health is exhausted. Section 4 presents the numerical multi-robot formation
simulation and health optimization management optimization under the control of the
algorithm presented in this paper, to verify the effectiveness of the algorithm. In Section
5, the robot platform is verified in a laboratory scenario to illustrate the practicability of
the algorithm presented in this paper. Section 6 presents the conclusions and discusses
future work.

2. Multi-Robot Formation Control
2.1. Problem Description

The aim of the Voronoi tessellation algorithm is to divide the area containing # gen-
eration points into 7 cells, where each cell contains a generation point and other points
in the cell are closest to the generation point of the cell, to ensure that the cost function of
the system reaches the minimum value. Centroid Voronoi tessellation is a special case of
Voronoi tessellation. It sets the density function of the target area, and its generation point
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is the centroid of each Voronoi cell. Firstly, we assume that n virtual wireless sensors with
limited energy are set in the target area. To maximize the service life of the sensor, we
consider a solution where the sensor only interacts with the nearest robot, which can ef-
fectively reduce the power consumption for information transmission and obtain the sur-
rounding environment information faster.

It is assumed that a single robot in a multi-robot system has a position

p€0,ie{l,2,...,n}, n robots move in a bounded interval, and Q€ S’, S? is a two-di-
mensional grid map of the target area. The position of the wireless sensor is expressed as
q.eS 2, i€{l,2,...,n}. Taking the robot position as the generation point of the Voronoi divi-

sion, the Voronoi cell V =A{V,,Vs,...,V,} in region Q is expressed as in Equation (1):

Vi={qeQ|llqg—pill < lg—p,ll,Vj+i} 1)

If the generation point in the Voronoi cell is equal to the centroid of the Voronoi area,
it is called the centroid Voronoi partition (CVT). Figure 1a,b shows the Voronoi division
and centroids, respectively, where the crosses in Figure 1a represent the Voronoi cell cen-
troids and the points and irregularities are shown in Figure 1a,b. The polygons represent
the spawning point and the corresponding Voronoi cell, respectively.

(a) (b)
Figure 1. Schematic diagram of Voronoi cell: (a) VT; (b) CVT.

Let p(gq) be the density function defined in the target region Q. A larger p(q)
value means a higher density of certain attributes or a more special location, which is
usually measured by the sensor network in order to represent the attributes of some areas.
The cost function in the bounded region O is defined as in Equation (2):

"o ,
E(p)=Y E =) [la-pr[r(9)dq @)
i=1 =1y,

The number of wireless sensors is usually limited and discontinuous. Assuming that
the sensor network is evenly distributed in the target area S 2, the cost function in the

bounded area (J can be expressed as in Equation (3):

E(p)=2E =3 Y ]la-pl ra) 3)
i=1 i=l jeb;

In order to ensure that multiple robots maintain a reasonable formation during the
task, this study emphasizes that the formation can reduce the overall energy loss. There-
fore, we transform the formation problem into the tracking problem for the Voronoi in-
terval centroid, and make the robots maintain Voronoi cells with similar quality through
the adjustment of the density function. The mass of the cells can be expressed in a contin-
uous version and a discrete version, as shown in Equations (4) and (5), respectively.
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M, :IP(Q)dq (4)

M, =Z,0(qj) (5)
Assume that the average mass of all cells in area Q) is M . The difference between

the Voronoi cell mass and the average mass is expressed as the difference. When the dif-
ference reaches the minimum, the mass of each cell is approximately equal by default, that
is, the workloads of the robots are approximately equal. The formula for the Voronoi mass
difference is shown in Equation (6):

By =Y Bi= |, M| ©

In summary, in the process of performing multi-robot system tasks, keeping E(p)
and E,(V) to a minimum can minimize the energy loss of information interactions and

maintain the target formation, that is, reasonable formation control can be transformed
into a multi-objective optimization problem.

2.2. Cost Function Optimization

In most application scenarios, the CVT algorithm is used to minimize the cost func-
tion of the system. The mathematical formula of the cost function is shown in Equations

(7) and (8):
Ey(p)=JV’Iq—p,-Izp(q)dq,i=1,2,--.,n )
Ey(p) = ZZMJ*ZHPP]‘ 8

The so-called cost function can also be expressed as the variance or energy function.
The cost function estimates the error between the generated point and the centroid of the
Voronoi cell through the density function of the region. The proof of minimizing the cost
function using the CVT algorithm is as follows:

1.  The position change of the generated point p; is shown in Equation (9):

By (p;+e) —Ev(p) = Jp(q)€{€+2(qu)}dq )

v,

i

2. Simplifying Equation (9) to Equation (10):

Ey (p;+e) —Ev(p) = | p(@e{e+2(p,—a)}dg (10)

Se—

3. Assuming that € in Equation (10) tends to 0, we obtain:

By (p;) =2 f p(q) (p; — ¢@)dg (11)

\4

i

4. Deforming Equation (11) into Equation (12):
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EVJ (p;) =2p; f p(g)dg —2 f ap(g)dq (12)

v,

i

5. If the derivative part is 0, as shown in Equation (13), the solution at this time is the
minimum solution.

[ap(a)dq

} =4 13
P [otada =

At this time, the position of the generated point is the centroid position of the Voronoi
cell, and hence the central Voronoi tessellation can minimize the cost function of the sys-
tem. Applying the CVT algorithm to the multi-robot system can minimize the cost func-
tion. Taking the formation task as an example, multi-robot systems are required to form a
specific formation and maintain a fixed distance between robots. Therefore, the cost func-
tion is composed of the error between the actual distance and the expected distance, as
shown in Equation (14):

E(p):ZZ (lpi=psll = g,-)ZZZE,-(Hp,-*p,-H) (14)

i=1 jeN,

where dj is the set threshold distance between robots i and j and the immediately expected
distance. The distance between the current robots and the expected formation is measured
by the cost function E. When the contemporary price function is 0, the robot forms the
expected formation, and the derivative of E,(x) is calculated as shown in Equation (15):

T

lpi—p;l —dy
" D Py (15)

Equation (15) shows that if the distance between two robots is less than the set thresh-
old distance, the weight value is negative and the distance between the two robots is con-
trolled to increase. When the distance between robots is greater than the set threshold

distance, the weight ®; will control the distance between two machines to shorten. When
the set threshold distance d; =0, the task will be transformed into a group consistency

problem. The task performed by the multi-robot system is transformed into the optimiza-
tion problem of the cost function. The constraint-based formulation derivation can en-
hance the adaptability of the system, and the distribution of the controller can be guaran-
teed by selecting different weights or defining some assumptions. The robots only need
to execute their inputs to ensure the convergence of the system within a limited time.

2.3. Formation Control Algorithm

The CVT algorithm is usually used to solve the optimal distribution of static re-
sources. If the iterative speed of the CVT evolution process is slower than that of the mo-
tion planning algorithm, the algorithm can be used for motion control of multiple robots.
Through the static or dynamic communication topology between robots, the multi-robot
formation uses a consistency algorithm to drive robots to achieve a consistent state. The
desired formation of the robots is composed of the centroids of the Voronoi region divided
by the CVT algorithm. The purpose of the consistency algorithm is to drive all robots to
their corresponding centroids.

Assuming that p, =(x,,¥,) is the actual position of the robotand p; = (x,,y;) is

the desired position of the robot, the robot is driven to the desired position via Equation
(16):
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> g4,
p=t—
28
j=1

where 7 is the number of robots and gij is the parameter in the robot communication to-
pology matrix. The algorithm 1 flow chart is shown in Algorithm 1.

(16)

2.4. System Stability Analysis

Taking the differential car as an example, this study assumes that the wheeled robot
is a rigid body that can rotate freely. Its simplified motion model is shown in Figure 2.

Figure 2. Robot kinematics model.

Algorithm 1: The multi-robot formation control Algorithm 1

Require:
The robot performs SLAM mapping and positioning;
Set the initial area density function po(q).
Procedure:
1: While ((p,—p,) > &) & &O(E(p)) =0
2: Construct a Delaunay triangulation that contains the initial positions of all robots;
Traverse the triangle list;
if Triangles b,c,d have common sides with the current triangle a then

Connect the outer centers of triangles b,c,d to the outer centers of triangles a;

else

end if

3
4
5
6: Calculate the outermost midline of the triangle;
7
8: Store in Voronoi side list;

9:  Construct Voronoi graph grid of region Q;

10: Drive the robot to reach the corresponding centroid;

11: End While

Set C(x, y) as the coordinates of the wheeled robot, and € as the forward direc-
tion angle. The state information of the robot is represented by P = (x,y,@)T and v
and w are the linear velocity and angular velocity of the robot, while 2L is the length
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between two wheels and 2r is the diameter of the wheel. The kinematic state-space
equation can be obtained as shown in Equation (17):

x= vcos(0)
jz = vsin(H) (17)
('9 _v tan(@)

2L

According to the robot kinematics model and the control law, it is necessary to main-
tain zero dynamic control input, j)l. =0, thatis, #; =0. The ideal output result is that
the robot reaches the centroid position of CVT convergence. Considering that the problem
is a tracking problem from the robot position to the CVT centroid position, the Lyapunov
function was used to prove the convergence of the system.

In the proof process, the integral part of the control law is separated to obtain Equa-
tion (18):

pi=u=k,(pi—p;) —kipi @18)
The Lyapunov function is defined as in Equation (19):

Vip) = %kp\\pl-*p;’\\ + %pf (19)
The Lyapunov function is derived to obtain Equation (20):

V(p) =k, (pi= 1) i+ Pub (20)

Replacing the parameter p; in Equation (20) with p; to simplify, gives Equa-
tion (21):

V(p) =-kip?<0 (21)

Therefore, it can be concluded that the Lyapunov function is a semi-negative definite
function. As shown in Equation (21), when the time tends to infinity the system is asymp-

totically stable over a large range, if and only if the inputis 0, i.e., ¥ (p,) =0. According

to the LaSalle principle, if the surface fine diversity is limited the robot will gradually
converge to the centroid of the specified Voronoi cell.

”i:():kp(Pi*Pi*) (22)

3. Health Optimization Management
Problem Description

To improve the health of each robot and enhance the robustness and task completion
of the formation, health degradation should be considered. Ensuring the survivability of
a single robot will often have a significant impact on the task performance and future
reliability of the overall formation, as factors such as low battery, high power consump-
tion rate or unforeseen damage to physical structures can cause the robot to slow down
in speed or task processing. Although these health problems caused by degraded operat-
ing conditions or malfunctions do not need to be dealt with immediately, continued op-
eration will have a significant impact on the mission performance and future reliability of
the robot itself and even on the formation.

In response to the above problems, the formation health optimization management
algorithm was introduced to restrict the speed of the unhealthy robot’s Voronoi cell, in
order to make it move more conservatively, maximizing the endurance of the unhealthy
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robot. This makes the formation system better able to deal with unforeseen damage such
as mechanical failures and emergencies, making it more robust when performing tasks in
different scenarios.

In this algorithm, ; is the control input of robot i. To better describe the health

status of the robot, in response to the above problems, /,(f) is specially introduced,

where /,(f) at time t can be expressed as:
h(t) =h(0)—d.(1)
di(t) = [\ kg giide+ £,(0) (23)
h(H) <0, f, (1) 20,h(), f,,(t) €[0,1]

where /,(0) is the initial health of the robot, d,(t) is the health loss of the robot at each

moment, kd,,» is the usage gain coefficient, and fd,,- (f ) is the negative impact of the ex-

ternal environment on the robot, such as in damage caused by external collisions. Assum-
ing that the health of each robot decreases with the progress of its motion control and
possible external damage, Equation (23) is a function of its control accumulation and any
external damage that may be encountered. Controlling the accumulation means that fast-
moving and turning robots lose their health faster than slow-moving or stationary robots,
which can be simplified to a combination of remaining power and structural health in a
physical sense.

The current health status of a multi-robot formation can be calculated using the av-
erage health level of all robots:

K== 3
W (1)< 0,h" (1) €[0,1]

(24)

Assume that each robot can obtain the overall average health level I (t) ofallrobots
in the entire task area by communicating with neighboring robots within a limited range.
The movement of each robot is controlled by a proportional controller, which is controlled
by the proportional derivative controller of the formation health optimization manage-
ment algorithm:

u )=k, [1+k, (0)]-(p,-p)
e.(t)=h,(t)—h'(t) (25)
k(1) =k, e,(t)+ K, é,(1)

where k;,;(f) represents the gain obtained by the robot changing the mobile formation
health optimization management system, &(f) represents the difference between a robot

and the overall average health level kj,, and kj, represents the gain coefficient of the

formation health optimization management algorithm.

Finally, combining the optimization of robot health management and the flexibility of the
CVT algorithm, the remaining robots re-divide the original area after the robot whose health
value is reduced to zero stops working (the robot cannot continue to work normally due to
energy exhaustion, failure, or the deterioration of the external environment), to minimize the
impact of this type of robot on the formation task.

Based on the traditional CVT construction algorithm, the insertion construction method
was introduced, so that in the original CVT configuration, when the robot number is reduced,
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all the triangles whose circumscribed circle contains new points are recorded, the common
edges that affect the construction of the new triangle are deleted, and then new edges are re-
planned, until all points are inserted. The specific process is shown in Figure 3a—d.

b R &
AVANER VANER: /N B VAN

(a)

Figure 3. Insert construction method: (a) robot P has a health value of zero; (b) delete the public
edge related to P; (c) re-plan neighboring robots; (d) form a new distribution.

The specific control Algorithm 2 steps in this study were as Algorithm 2.

Algorithm 2: CVT-based multi-robot formation control and health optimization management
Algorithm 2
Require:

The initial position of a group of robots P: {pi,, h®, h0);
Boundary information 0Q of task area O, area density function £(¢);
Procedure:
L1 Calculate the centroid of the Voronoi cell {p,}", and {¥;}7, of the robot position P;
2: While ((p,-p) &) &&A(E,(p))#0
3 Calculate d,(¥) and %,(t) for each robot
4 if hi(£)<0then
5 Use the insert construction method to re-form and divide the area
6 end if
7 Calculate 4'(f) and #,(¢) for the entire formation
Drive the robot to the center-of-mass position p;=p;’,(i=1,...n);
Generate a new set of robot positions P:{p; = P
10:

Calculate the new centroid {p;}., and ¥}/, of the robot position set P;

11:  End While

When the formation is moving, the entire formation is recalculated to obtain the dis-
tribution in the environment. While controlling the robot to have the smallest possible
impact on other robots, making the robots in the formation respond better to changes in
the environment and improving the robustness and task execution ability of the formation
in various environments.

4. Experiment and Simulation
4.1. Multi-Robot Formation Control Simulation Experiment

The simulation experiment in this article was performed using the MATLAB simulation
platform under the Windows operating system. In MATLAB, assuming that the robot was a
first-order dynamic model, the size of the designated area was 10 x 10 m?, and it was planned
to control four robots in this area to complete square, diamond and linear formations. A total
of 1000 x 1000 virtual sensors were evenly placed in the area, and the values of the sensors
were fitted to the density function of the CVT algorithm. By modifying the density function,
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the robots were controlled to form the desired formation. It can be seen from Figure 4 that the
initialization positions of the four robots were all near the origin.

o = Robots, + = Goals, Iteration 0
035

03f
025 o

02F

01

0.05 n s n L s
0.15 0.2 025 0.3 035 0.4

Figure 4. Initial positions of robots.

4.1.1. Square Formation Simulation and Results Analysis

First, we initialized the density function to a constant value of 1. As shown in Figure
5a, when the initial density function in the area Q is constant, the Voronoi algorithm is
used to divide the area, and the robot tracks the position of the generated point to com-
plete the square formation. In Figure 5b, the solid lines in different colors represent the
tracking motion trajectories of the robots.

0 = Robots, + = Goals, Cycle2, lteration172

ks e 1000
s s 800
600

o 4« v © & o o v e ©

©

position eror
I
&

cost function
8
8

2000

S

°
5

©

20 40 60 80 100 120 140 160 180 0 20 40 6 80 100 120 140 160 180
lterations Iterations

() (d)

Figure 5. Multi-robot square formation simulation: (a) density function distribution; (b) square for-
mation; (c) position error; (d) cost function.

°
°
o

In the initial stage of the experiment, the positions of the robots were randomly distrib-
uted near the origin, and the cost function value was 6 x 10° at this time. With the iteration of
the CVT algorithm, the generation point tends to the centroid of each Voronoi cell, and the
cost function value gradually decreases. When the number of iterations k = 35, the controller
is affected by the integral saturation and overshoots, and the cost function increases to 2.8 x
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10%. When k =55 or so, by reducing the integral control effect of the controller or separating the
integral control process, the cost function value is gradually reduced. When k = 90, the gener-
ation points of the Voronoi cells reach their respective centroid positions, and the CVT algo-
rithm converges, as shown in Figure 5d. Figure 5c shows the position error between the robot
and its corresponding centroid. In the initial stage of control, the error between the robot and
the generating point is the largest. When the CVT algorithm converges, the position error be-
tween the robot and the generating point eventually tends to zero.

4.1.2. Simulation and Results Analysis for the Diamond Formation

Based on the density function being a constant, by adjusting the density function to a
Gaussian function, the diamond formation of the robot can be completed. The Gaussian func-
tion equation is shown in Equation (26). The density function distribution is shown in Figure
6a, and the formed diamond formation is shown in Figure 6b.

Since the robot first needs to complete the Voronoi division under the constant density
function distribution, the starting positions of the robots were the same as for the square for-
mation. The cost function value at the initial moment was 6.2 x 10%. When the number of iter-
ations of the CVT algorithm k = 30, the controller is affected by the integral saturation to pro-
duce overshoot, and the cost function increases to 3.3 x 103. When the number of iterations is
about 90, the generation points of the Voronoi cells reach their respective centroid positions,
and the CVT algorithm converges under the constant density function distribution. After ad-
justing the density function to a Gaussian distribution, the CVT algorithm finally converged
again when the number of iterations k = 200. The cost function is shown in Figure 6d. Figure
6¢ shows the position error between the robot and its corresponding centroid. When the num-
ber of iterations k = 140, the position of the center of mass changes due to the switching of the
density function. It can be seen that the position error between the robot and the correspond-
ing generating point has increased significantly. When the CVT algorithm reconverges, the
position error tends to zero again.

a(x,y) — exp"’(“(x*Xc)urb(Y*y(-)z) (26)
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Figure 6. Multi-robot diamond formation simulation: (a) density function distribution; (b) diamond
formation; (c) position error; (d) cost function.
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4.1.3. Straight Line Formation Simulation and Results Analysis

On the basis that the density function is a constant, by adjusting the density function
to a V-shaped function, the linear formation of the robot can be completed. The V-shaped
function equation is given in Equation (27). The density function distribution is shown in
Figure 7a, and the resulting linear formation is shown in Figure 7b.

In the linear formation process, the robot still needs to complete the Voronoi division
under the constant density function distribution first. In the iterative process of the CVT
algorithm, the controller is affected by the integral saturation to produce an overshoot.
When the number of iterations k = 30 to 40, the cost function increases from 3.45 x 103 to
3.65 x 10°. After separating the integral control process, the controller tends to a stable
state again, and the cost function value decreases again. When k = 140, the cost function is
3.5 x 103, and the CVT algorithm converges under the constant density function distribu-
tion. At this time, the density function was adjusted to a V-shaped function, and the opti-
mal solution was reached again when the number of iterations k = 180, as shown in Figure
7d. In Figure 7c, when the number of iterations k = 140, the position of the center of mass
changes due to the switching of the density function. It can be seen that the position error
between the robot and the corresponding generating point has increased significantly.
When the CVT algorithm reconverges, the position error tends to zero.

G(X, y) — exp—é(ax+by+c)2 (27)

o = Robots, + = Goals, Cycle7, Iteration215
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Figure 7. Multi-robot linear formation simulation: (a) density function distribution; (b) linear for-
mation; (c) position error; (d) cost function.

4.1.4. Simulation and Results Analysis of Dynamic Formation in Barrier-Free Scenes

In a real scene, there are obstacles in the environment where the robots perform tasks,
so in this study we also verified the formation-maintaining algorithm for multiple robots
in an obstacle scenario. Under the premise of ensuring the uniform distribution of the
global density function, we first used a specific constraint shape to specify the desired
formation and then reduced the density value corresponding to the obstacle’s position to
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ensure that the center of mass was not divided in the obstacle area. That is, the character-
istics of the CVT algorithm were used to realize the repulsive force field that drives the
robot to avoid obstacles, thereby realizing a multi-robot formation in an obstacle scene.

In MATLAB, it was also assumed that the robot was a first-order dynamic model, the
formation scenario map was 30 x 30 m?, 3000 x 3000 virtual sensors were evenly placed on
the map, and the values of the sensors were fitted to the density function of the CVT al-
gorithm. In the process of dynamic formation, we consider constructing virtual constraint
boundaries. Since the density function is always uniformly distributed, the robots are dis-
tributed in a square formation in the area Q, surrounded by the dynamic virtual constraint
boundary.

The density in the scene map was set to be uniformly distributed, and the area Q,
surrounded by the virtual constraint boundary, was evenly divided into four Voronoi
cells using the Voronoi algorithm. Assuming that the movement path of area Q is known,
the control robot completes the tracking of its corresponding center of mass and maintains
a square formation. The formation under the obstacle-free scenario is shown in Figure
8a,b; when the number of iterations k = 75, the position error eventually tends to zero. To
measure the effect of formation maintenance, we assume that the geometric centroid of
the Voronoi algorithm is the center of the formation. The sum of the distances between
the robots and the formation center is shown in Figure 8d, and when the distance tends to

\/5 *[, the formation reaches a stable state, where / is the side length of area Q.

0 = Robots, += Goals, Cycle1, lteration28
0= Robots, + = Goals, Gycle!, lteration285

robott path 30

robotd path 25

0 50 100 150 200 250 300 0 20 40 60 8 100 120 140 160 180 200
lterations Iterations

(c) (d)

Figure 8. Dynamic formation simulation under the obstacle-free scenario: (a) k = 28; (b) k = 285; (c)
position error; (d) formation preservation.

4.1.5. Dynamic Formation Simulation and Results Analysis under Random Obstacle Sce-
narios

When there are obstacles in the scene, by reducing the density of the obstacle area
the Voronoi centroid can be divided into obstacle-free areas, so that the robot can avoid
obstacles in the process of tracking the centroid. The density distribution is shown in Fig-
ure 9a. Figure 9b-e shows the multi-robot formation control under the obstacle map at
different moments; when the number of iterations k is between 10 and 125, the position of
the generating point must be constantly changed to avoid obstacles in the path. The error
also changes accordingly. When the multi-robot system passes through the obstacle area,
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that is, when k = 130, the robots quickly restore the initial formation. Under the action of
the PID controller, the error fluctuation gradually tends to zero. The basis for judging
whether the formation is stable is whether the sum of the distances between the robots

and the formation center tends to \/E *[, as shown in Figure 9g. When the number of

iterations k = 130, the formation-maintaining function value remains at 8.4, that is, the
formation returns to a stable state.
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Figure 9. Dynamic formation simulation under random obstacle scenario: (a) distribution of density
function under random obstacle scenario; (b) k =2; (c) k =57; (d) k = 31; (e) k = 182; (f) position error;
(g) formation preservation function.
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4.1.6. Simulation and Results Analysis of Dynamic Formation in Narrow Passage

Assuming that the obstacles in the scene are large and sparsely distributed, as shown
in Figure 10a, we realize obstacle avoidance by setting the density of the obstacle area to
0 and then dynamically zooming the boundaries of the Voronoi division area to drive the
overall formation to shrink to pass through the narrow-passage terrain. Figure 10f,g
shows the position error and formation maintenance of the system, respectively. When
the sum of the distances between the robots and the center of mass is equal to v/a®+b?,

where a and b are the length and width of the region Q, respectively, the formation re-
mains stable. When the number of iterations reaches k = about 60, the side length of the
area () is contracted, and the robot can track the center of mass more easily. When the four
robots maintain a linear formation up to k = 350, all the robots pass through the narrow
passage. Due to the change of the density function of the position of the robot at this time,
to form the optimal configuration, the position error of the robot fluctuates slightly. At k
=350~400, to form a square formation from a linear formation, there is an adjustment pro-
cess before the regional boundary is adjusted to a square, as shown in Figure 10g. When
the number of iterations k = 580, the robots formed the expected square formation, and the
position error of the robots also tended to zero.

2000 e e 000
1000 . e 2000
S 1000

(a)

0= Robots, + = Goals, Cyclet, Iteration10 0 = Robots, + = Goals, Cycle1, Iteration60

(b)

0= Robots, + = Goals, Cyclet, Iteration321
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Figure 10. Dynamic formation simulation in a narrow channel: (a) density function distribution in
anarrow channel; (b) k= 10; (c) k= 60; (d) k = 321; (e) k = 610; (f) position error; (g) formation preser-
vation function.

4.2. Simulation of Formation Health Optimization Management

The performance of the health optimization management algorithm can be assessed
via the health loss value when the robot group reaches the optimal configuration. In the
implementation of health optimization management algorithms, the goal is to maintain
the health of all robots as much as possible and reduce disproportionate health degrada-
tion. This article proposes and studies four scenarios:

(O None of the robots in the group have any abnormal health behaviors;

(2) The health degradation rate of a single robot increases;

(3 The health value of a single robot at the beginning of the task is lower than other
members of the group;

(®) The health of a single robot decreases suddenly.

These scenarios represent some common expected health problems. Scenario (1) rep-
resents the best-case scenario, in which no robot suffers from abnormal health behaviors,
so the health optimization management algorithm is used to optimize the performance of
each robot. Scenario (2) may occur during a period of engine failure, reducing power effi-
ciency. Scenario (3) may indicate that the battery is not fully charged at the beginning of
the task. Scenario @ may be a small component failure, such as a structural fracture. Un-
der these circumstances, the deterioration of the operational status or failure does not re-
quire immediate recovery, but continued operation may affect the overall future opera-
tional status and performance of the formation.

In these four scenarios, the four robots form a square formation as an example. Dur-
ing the formation, the health degradations described in the above four scenarios may be
encountered. For each scenario, two simulations were performed: one for normal opera-
tion and the other for health optimization management.

4.2.1. All Robots Are Healthy

Figure 11a,b describes the results of the first case, where each robot is initialized with
the same health level, and the health of each robot decreases normally with its movement.
Figure 11a depicts the health of each robot during formation control without health opti-
mization management. When all the robots reach the final configuration, the health of
robot 1 drops more than the rest, reaching the final configuration when hi(t) = 0.26. In
Figure 11b, with optimized health management, the same robot extends its lifespan and
does not reach the final configuration until hi(t) = 0.48, increasing the lifespan by 22%.
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Figure 11. Comparison before and after adding HOM in the first scenario: (a) hi(f) of the robot under
normal conditions; (b) hi(t) of the robot under HOM; (¢) ei(t) under normal conditions; (d) ei(t) under
HOM.

It can be seen from Figure 11c that if there is no health optimization management, the
differences in robot health will diverge over time, while in Figure 11d, the differences are
bounded.

4.2.2. The Initial Power of a Single Robot Is Lower than That of Other Robots, Resulting
in a Decrease in Battery Life

Figure 12a,b describes the results in the second case, where each robot is initialized
with the same health level. Figure 12a depicts the health of each robot during formation
control without health optimization management. When all the robots reach the final con-
figuration, the health of robot 4 drops more than the rest, reaching the final configuration
when hi(t) = 0.04. In Figure 12b, with optimized health management, the same robot ex-
tends its lifespan and does not reach the final configuration until si(t) = 0.38, increasing
the lifespan by 34%.
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Figure 12. Comparison before and after adding HOM in the second scenario: (a) hi(t) of the robot

under normal conditions; (b) ki(t) of the robot under HOM; (c) ei(t) under normal conditions; (d) ei(t)
under HOM.

As can be seen from Figure 12¢, if there is no health optimization management, the
differences in robot health diverge greatly with the passage of time, while in Figure 12d,
the difference is small.

4.2.3. The Failure of a Single Robot Component Caused by the External Environment,
such as a Damaged Wheel That Causes a Sharp Deterioration in the Health of the Robot

Figure 13a,b describes the results of the third case, where each robot is initialized
with the same health level. Figure 13a depicts the health of each robot during formation
control without health optimization management. When all the robots reach the final con-
figuration, the health of robot 4 drops more than the rest, reaching the final configuration
when hi(f) = 0.15. In Figure 13b, with optimized health management, the same robot
extends its lifespan and does not reach the final configuration until hi(t) = 0.4, increas-
ing the lifespan by 25%.
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Figure 13. Comparison before and after adding HOM in the third scenario: (a) hi(t) of robots under
normal conditions; (b) hi(t) of robots under HOM; (c) ei(f) under normal situations; (d) ei(t) under
HOM.
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As can be seen from Figure 13, if there is no health optimization management, the
differences in robot health diverge with time and are large compared with the average
value, while in Figure 13d, the differences are small.

4.2.4. Due to the Abnormal Fault of the Motor of a Single Robot, the Power Consumption
Rate of the Robot Increases

Figure 14a,b describes the results of the fourth case, in which each robot is initialized
with the same health level. Figure 14a depicts the health of each robot during formation
control without health optimization management. When all robots reach the final config-
uration, the health of robot 4 decreases more than the rest, reaching the final configuration
at hi(t)=0.02. In Figure 14b, with health optimization management, the same robot extends
its life and does not reach the final configuration until hi(t) = 0.3, increasing its life by 28%.
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Figure 14. Comparison before and after adding HOM in the fourth scenario: (a) hi(t) of robots under
normal conditions; (b) hi(t) of robots under HOM; (c) ei(f) under normal conditions; (d) ei(t) under
HOM.

As can be seen from Figure 13c, if there is no health optimization management the
differences in robot health will diverge greatly with the passage of time, while in Figure
13d, the differences are small.

In the above four cases, the health optimization management greatly increases the
lifetime of the weakest robot, and the adjustment of the existing framework is very small.
Health optimization management is very important for multi-robot formations to ensure
that the formation can operate for a long period, to reduce health loss, and to ensure the
reliability of robots in the task.

It can be seen from Table 1 that by applying intelligent health balancing to each robot,
the overall health value can be improved by about 20~30%, and the whole robot formation
is more robust to health changes caused by many problems that may reasonably be ex-
pected. The system can deal better with accidental damage caused by collision, mechani-
cal failure, or insufficient maintenance.
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Table 1. Comparison of simulation results in four scenarios before and after adding the HOM algo-

rithm.
hi(t) When The hi(t) When The Percentage Increase in
System Is Stable System Is Stable Svstem Health Val

(Normal Situation) (HOM) ystem Hea atue
Scenario 1 0.26 0.48 22%
Scenario 2 0.04 0.38 34%
Scenario 3 0.15 0.40 25%
Scenario 4 0.02 0.30 28%

4.2.5. Formation Simulation and Results Analysis after Robot Stops Working

When hi(t)<0 due to other reasons, the robot is considered to be unable to work nor-
mally. In order not to affect the overall task of the formation, the insertion construction
method was used to regroup multiple robots and re-divide the task area. Taking the
square formation as an example, as shown in Figure 15a,b, four robots form a square for-
mation before the number of iterations k = 120. After that, when the robot in the lower
right corner cannot work normally due to a fault, and hi(t) <0, as shown in Figure 15e, the
insertion construction method is used to make the other healthy robots adopt a new for-
mation and reconstruct a new division of the new service area.

As shown in Figure 15c, when the number of iterations reaches 280, the remaining
three robots adopt a new formation in the area and realize a new division of the area. The
red plus sign in the figure is the final position of the faulty robot. The position error and
cost function diagrams for this process are shown in Figure 15d,f.

0 = Robos, + = Goals, Cyclet, lteration36 0= Robots, + = Geals, Cyclef, lteration109

(a) (b)

0= Robots, + = Goals, Cycle1, Iteration280
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Figure 15. Robot formation after the introduction of the insert construction method: (a) k = 36; (b) k
=109; (c) k =280; (d) position error; (e) hi(t) of each robot; (f) cost function.

As shown above, when the insertion construction method is introduced into the CVT
it can not only reduce the impact on other robots when there is a faulty robot in the for-
mation but can also compensate for the negative impact of the faulty robot as far as pos-
sible, so that the robots in the formation can better respond to the changes in the environ-
ment, and the formation control can better adapt to the actual situation, improving the
execution and robustness of the robot formation.

5. ROS Robot Experiment
5.1. Multi-Robot Formation Experiment

The experiment in the real scene in this study was based on the TurtleBot3 robot,
which is a mobile robot platform based on the ROS (robot operating system), with low
cost and easy secondary development. Each TurtleBot3 robot can independently establish
a local map of its surrounding environment through the gmapping function package pro-
vided by ROS, which provides SLAM for lidar, so that the robot can establish a grid-based
2D map according to the input and attitude lidar data. Taking the laboratory map as the
designated area Q of the robot formation, we set the condition that there were no obstacles
in this area, as shown in Figure 16a. Four TurtleBot3 robots were randomly placed on the
map. The robot completes its positioning using SLAM technology. The experimental re-
sults are shown in Figure 16b. The experiment was set so that when the Voronoi cost func-
tion reaches the optimal solution, the robot will reach the desired formation position un-
der the density function, that is, the target formation is formed. The difference from the
simulation experiment is that the density function was not initialized to a constant in the
initial stage of the experiment, and the target expected formation was determined first.

(@) (b)

Figure 16. Multi-robot formation experiment environment: (a) real scene; (b) RVIZ scene.

5.1.1. Square Formation Experiment

When the density function was set to a constant, the map was evenly divided into
four generation points, as shown in Figure 17a. Figure 17c shows the initial positions of
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the robots. When the number of iterations k =200, the CVT algorithm converges, as shown
in Figure 17b. At this time, the cost function reaches the minimum value, and the robot
completes the square formation on the map, as shown in Figure 17d.
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Figure 17. Square formation experiment: (a) density function distribution; (b) cost function; (c) ini-
tial position; (d) final position.

5.1.2. Diamond Formation Experiment

Figure 18a shows the Voronoi division under the Gaussian distribution density func-
tion, and Figure 18c shows the initial positions of the robots. Since the extreme point of
the density function is in the central area of the map, the robots gradually approach the
center of the map. Figure 18b shows the cost function when the density function is a
Gaussian distribution. Compared with the uniform distribution, the initial value of the
cost function is small, about 4.5 x 102, because the density value of most areas of the stage
is approximately 0. When the CVT algorithm converges at iterations k = 80, the robot com-
pletes the diamond formation, as shown in Figure 18d.

- . ® BMat_plot oL -0
/voronoi/tesselation Topk|voronolh.func - ovoscron (3] @

o s ¢t @B PLPLPHY € +Q=w B

600
Ivoronci/h fune/data >




Appl. Sci. 2022, 12, 755

24 of 28

(d)

Figure 18. Diamond formation experiment: (a) density function distribution; (b) cost function; (c)
initial position; (d) final position.

5.1.3. Linear Formation Experiment

Figurel9a shows the Voronoi division under the V-shaped density function, and Fig-
ure 19¢ shows the initial positions of the robots. Figure 19b shows the cost function when
the density function is distributed in a V shape. The initial value of the cost function is
about 6.5 x 10*. When the CVT algorithm converges at iterations k = 120, the robots com-
plete the linear formation, as shown in Figure18d.
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Figure 19. Linear formation experiment: (a) density function distribution; (b) cost function; (c) initial
position; (d) final position.

5.2. Multi-Robot Dynamic Formation Experiment

For the dynamic formation scene, the algorithm was also verified using four Turtle-
Bot3 robots. The experimental part mainly includes the dynamic formation in the obstacle-
free scene, the dynamic formation in the random obstacle scene, and the formation trans-
formation experiment. In the dynamic formation experiment in the obstacle-free scene
and the random obstacle scene, the initial position of the robot is in the upper left corner
of the map, as shown by the pentagram in Figure 20a. The target navigation point is lo-
cated in the lower right corner of the map, at the red flag, and the black line is the trajectory
of the multi-robot system. In the formation transformation experiment, the initial position
of the robot is in the lower left corner of the map, shown as the pentagram position in
Figure 20c. The target navigation point is located in the middle and upper part of the map,
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at the red flag position, and the black line in Figure 20c is the trajectory of the multi-robot
system.

(a) (b)

Figure 20. Experimental maps: (a) obstacle-free scene; (b) random obstacle scene; (c) narrow pas-
sage.

5.2.1. Dynamic Formation Experiment in Obstacle-Free Scene

In the obstacle-free scene, the robot is located in the upper left corner of the map at
time ti. When the Voronoi division algorithm converges, the robot reaches the centroid
position of each Voronoi cell, as shown in Figure 21a. At this time, the constraint area Q
is driven to move in the specified direction and the robot is controlled to track the corre-
sponding centroid position, as shown in Figure 21b,c. As shown in Figure 21d, the robot
reaches the specified position at time ta.

(©) (d)

Figure 21. Multi-robot dynamic formation experiment in the obstacle-free scene: (a) t1=0s; (b) f2=
64s;(c)t3=75s; (d) ta=120s.

5.2.2. Dynamic Formation Experiment in Random Obstacle Scene

In the scene with a random distribution of obstacles, similarly, the robot is located in
the upper left corner of the map at time #1. When the Voronoi division algorithm con-
verges, the robot reaches the centroid position of each Voronoi cell, as shown in Figure
22a. At this time, the constraint area Q is driven to move in the specified direction, taking
the two-dimensional grid map information as the input and setting the area density value
whose grid threshold is not 0 to 0, to ensure that the centroid will not be placed in the
obstacle area, as shown in Figure 22b,c. As shown in Figure 22d, the robot reaches the
specified position at time t4.
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(c) (d)

Figure 22. Multi-robot dynamic formation experiment with random obstacles: (a) t1=0s; (b) f2=32
s; (c) 3=80s; (d) t+=102s.

5.2.3. Dynamic Formation Experiment in Narrow Channel Scene

In the narrow channel scenario, the formation needs to be changed to pass through
the obstacles. The robot is located in the lower left corner of the map at time 1. When the
Voronoi division algorithm converges, the robot reaches the centroid position of each Vo-
ronoi cell, as shown in Figure 23a. At time #2, we change the size of the constraint area Q
to transform the robot formation from a square to a straight line, as shown in Figure 23b,c.
Finally, the robot formation reaches the designated position, as shown in Figure 23d.

(d)

Figure 23. Multi-robot dynamic formation experiment in a narrow channel: (a) f1i=0s; (b) t2=48 s;
(c) t3=61s; (d) t+=207s.

6. Summary and Outlook

This paper proposes a multi-robot formation control and health optimization man-
agement method based on the CVT algorithm, which has outstanding advantages com-
pared with the traditional multi-robot formation algorithm.
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(1) The algorithm converges one robot to the center of mass of each Voronoi unit, which
avoids collisions between robots to the greatest extent, making the multi-robots form
the desired formation at the specified position according to the optimal distribution
and proving the related theories.

(2) Taking into account the existence of obstacles in the environment, by reducing the
value of the density function of the obstacle position the robot can avoid the obstacle,
improving the collision avoidance ability of the robot.

(3) The health optimization management algorithm was used to maximize the endur-
ance of unhealthy robots and improve the stability and robustness of the unhealthy
robots under the premise of minor changes in the original framework. At the same
time, the insertion construction method was introduced to make the robots in the
formation more efficient. This enables a better response to changes in the environ-
ment.

(4) In the simulations and experiments, through experimental verification using the
MATLAB simulation platform and the ROS robot platform, it was verified that the
method proposed in this paper can ensure that the robot can form the required for-
mations according to the optimal distribution. In the designated area, the structural
redundancy and internal carrying capacity of the multi-robot system were increased,
and the formation was dynamically switched according to the external environment.
At the same time, the health of the robots was better optimized and managed, which
improves the flexibility and robustness of the formation.

In future work, formation control in more complex obstacle environments will be
considered. When applied to heterogeneous groups with different performance and mo-
tion models, the method proposed in this paper will be more versatile and robust. These
applications will continue to be studied in future work.
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