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Abstract: Federated learning (FL) is a machine learning technique that enables distributed devices
to train a learning model collaboratively without sharing their local data. FL-based systems can
achieve much stronger privacy preservation since the distributed devices deliver only local model
parameters trained with local data to a centralized server. However, there exists a possibility that a
centralized server or attackers infer/extract sensitive private information using the structure and
parameters of local learning models. We propose employing homomorphic encryption (HE) scheme
that can directly perform arithmetic operations on ciphertexts without decryption to protect the
model parameters. Using the HE scheme, the proposed privacy-preserving federated learning (PPFL)
algorithm enables the centralized server to aggregate encrypted local model parameters without
decryption. Furthermore, the proposed algorithm allows each node to use a different HE private
key in the same FL-based system using a distributed cryptosystem. The performance analysis and
evaluation of the proposed PPFL algorithm are conducted in various cloud computing-based FL
service scenarios.

Keywords: privacy preserving; homomorphic encryption; federated learning

1. Introduction

Artificial intelligence (AI) is a technology that enables machines to realize human
learning and reasoning abilities. This technology has been rapidly advancing and playing
a significant role in our daily lives. In AI technology, data acquisition is crucial because
AI technologies require model training using a certain amount of data for reliable AI-
based services, and the performance of AI-based services is considerably affected by the
training data quality. However, there are difficulties in data collection because the data may
contain sensitive private information. In order to overcome these difficulties, federated
learning (FL), in which training is performed without sharing sensitive local data, has
been proposed in [1]. In FL, a centralized server sends a global model for AI learning to
many distributed devices, which return local model parameters to the centralized server
after training the model with local data. The centralized server updates the global model
parameters using the locally trained model parameters from the distributed devices and
sends the updated global model parameters to the distributed devices. This procedure is
repeated until convergence is achieved. FL has the advantage of preventing the leakage
of sensitive private information because it does not require local data sharing. However,
recent research has shown that the local data of distributed devices can be leaked through
the trained local model parameters, and attackers can exploit this loophole to infer sensitive
information on the FL participant in [2,3].

Homomorphic encryption (HE) is a technology that enables arithmetic operations
on ciphertexts without decryption. Aono et al. utilized an HE scheme to protect local
gradients trained with local data in [2]. Using the HE scheme, the centralized server
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can update the global model parameters with the encrypted local gradients based on the
homomorphic operation. Therefore, the distributed devices participating in FL, which
we refer to as clients, do not have to concern about data leakage through local gradients
because they deliver encrypted local gradients to the server. However, the clients must
share the same private key in the FL-based system because homomorphic operations can
only be performed between values encrypted with the same public key. In FL-based systems
where many distributed devices, such as smartphones and Internet of Things (IoT) devices
participate, the same private key for decryption can be distributed to many clients. Suppose
the same private key is shared with many clients. Then, the probability of the private
key being leaked or a malicious participant accessing other participants’ data increases,
which can weaken privacy protections in FL-based systems. As the result, stealing one
client’s private key can nullify the data privacy protection of all clients participating in FL
systems. To overcome this vulnerability, this paper proposes a privacy-preserving federated
learning (PPFL) algorithm that allows a cloud server to update global model parameters by
aggregating local parameters encrypted by different HE keys in the same FL-based system
using homomorphic operations based on a distributed cryptosystem.

This paper is organized as follows. In Section 2, we present related works on FL and
the privacy issues of FL. Section 3 describes the preliminaries for understanding the FL
algorithm and the cryptosystem for homomorphic operations. In Section 4, we describe
the system and attack models for the proposed PPFL algorithm. Next, Section 5 explains
the proposed PPFL algorithm using the distributed cryptosystem based on an additive
homomorphic encryption (AHE) scheme. Afterwards, Section 6 presents a theoretical
analysis of the proposed PPFL algorithm, and Section 7 presents experimental results
to verify the performance of the proposed PPFL scheme. Finally, Section 8 concludes
the paper.

2. Related Work

FL is one possible solution for preserving privacy in the machine learning field because
the clients participating in the training process deliver only local model parameters trained
with local data to a centralized server. McMahan et al. demonstrated the feasibility of FL
by conducting empirical evaluation in various FL scenarios in [1]. Since then, many studies
have been conducted to improve FL performance for learning accuracy, fairness, robustness,
security, and privacy in various environments, such as IoT, edge, and cloud computing
in [4–6]. In [7], a lightweight federated multi-task learning framework was proposed to
provide fairness among participants and robustness against a poisoning attack that reduces
learning accuracy. In [8], an FL framework using device-to-device communication was
proposed to overcome the degradation in energy and learning efficiency due to frequent
uplink transmissions between participants and physically distant central servers.

The studies on FL can be classified according to how they collect and process data for
FL. In a case where the data have the same feature space and a different sample space, it is
classified as horizontal FL, and in a case where the data have a different feature space and
the same sample space, it is classified as vertical FL in [9]. In vertical FL, data alignment
must be performed for vertical data utilization by sharing several different feature spaces.
In this process, privacy is not protected because row data exchange may be required. For
preserving data privacy, HE-based vertical FL algorithms were implemented by utilizing
a trusted third party [4,9–11]. An approach to collaboratively train a high-quality tree
boosting model was proposed to simplify FL-based systems by omitting third parties and
showed that the performance of the proposed scheme was as accurate as the performance
of centralized learning techniques in [12]. Horizontal FL is an algorithm in which multiple
devices train a learning model using local data with the same feature space and share
the trained model data to train a global model, and the scheme presented in [1] was
a representative horizontal FL. The horizontal FL can be implemented without a data
alignment process because it has the same feature space. Although many studies have been
conducted for the development of FL, privacy threats still exist in FL. It was shown that
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sensitive private data could be leaked through the local gradients in [2,13], and participants’
data can be inferred through a generative adversarial network using the global and the
local model parameters in [3].

Several studies have been conducted to solve the privacy issues associated with the
local model parameters in an FL-based system in [2,13–15]. Shokri and Shmatikov proposed
a privacy-preserving deep learning (PPDL) algorithm where several distributed participants
collaborate to train a deep learning model using local data; they established a trade-off
relationship between practicality and security for the number of clients participating in
the training process in [13]. Moreover, Aono et al. suggested a PPDL algorithm that
encrypts local model parameters using HE schemes to protect the local and global model
parameters in [2]. In the algorithm proposed in [2], strict key management is required and
reliable channels for conveying ciphertexts must be established because all participants use
the same private key for HE. In [16], HE-based federated learning was proposed, and its
overhead was analyzed. However, all clients participating in training still use the same key
in the system. In [14], based on Shamir’s t-out-of-n Secret Sharing in [17], they presented
an algorithm that allows the server to perform updates using local model parameters
containing noise that can be canceled out through the cooperation of the participants in
an FL-based system. The scheme proposed in [14] can prevent leakage of local model
parameters due to the noise contained in the local parameter but can be vulnerable to
insider attacks because participants must actively cooperate. Recently, Xu et al. offered a
technique in which participants verify the integrity of the updated results in the system
that updates the global model parameters using the Secret Sharing scheme in [15].

The algorithms using the HE scheme in [2] and Secret Sharing in [14] have shown that
neural networks can be safely trained without personal information leakage in FL scenarios.
In [2], all training process participants owned the same private key, although the distributed
deep learning system using the HE scheme was designed to protect shared data. For this
reason, all channels between participants and servers must be protected using transport
layer security or secure socket layer. However, as the number of participants increases, the
cost to establish secure channels becomes very high. In addition, since the probability of
one participant’s private key being leaked is the same as the probability of all participant’s
private keys being leaked in this system, the risk of private key leakage increases as the
number of participants grows. In the proposed system, each participant can own different
private keys on the same FL-based system. In [14], at least half of the participants must
guarantee their honesty for privacy preservation. If the number of participants in FL is large,
this assumption is reasonable, but there can be a variety of FL scenarios. The proposed
system allows participants to preserve data privacy regardless of the number of honest
participants and can be utilized as a solution to build a flexible PPFL-based system.

This paper presents a PPFL algorithm based on a distributed cryptosystem using
the AHE scheme to protect the local and global model parameters. The participant uses
the HE scheme to encrypt the local model parameters with its private key, and the cloud
server updates the global model parameters with the local model parameter encrypted with
different keys based on the distributed cryptosystem. The proposed PPFL-based system
can achieve robust privacy protection because the proposed algorithm can allow each node
to use a different private key for the HE scheme in the same FL-based system. Furthermore,
a highly flexible FL-based system can be built using our algorithm because clients only
need to encrypt and decrypt model parameters to protect them.

3. Preliminary
3.1. Federated Learning

In FL, multiple distributed servers or devices with local data train a machine learning
model without exchanging local data. Distributed servers or devices share only local model
parameters obtained by training a global learning model delivered from a centralized server
with local data, allowing them to participate in the training process without concern about
data leakage. The centralized server aggregates locally trained model parameters to update
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the global model and delivers the updated global parameters to distributed servers or
devices to perform the training process again. This procedure is repeated until convergence
is achieved.

According to the data distribution characteristics, FL can be categorized into horizontal
federated learning, vertical federated learning, and federated transfer learning in [9].
Horizontal and vertical FL algorithms are applied when local datasets have the same
feature space and different sample spaces and when local datasets have different feature
spaces and the same sample space, respectively. Federated transfer learning is applied to a
scenario where the local datasets have varying features and minimal overlapping samples.
In this case, federated transfer learning utilizes the transfer learning techniques in [18] for
FL-based systems. We consider horizontal FL in this paper. In other words, we assume
that the local datasets have the same feature space and different sample spaces, and we
consider an FL scenario in which many clients, including smartphones and IoT devices,
participate in the training process.

3.2. Homomorphic Encryption

HE is a form of encryption that allows third parties to perform arithmetic operations
directly with ciphertexts, and the HE scheme can be utilized to develop PPML in fields
where data privacy is important. First, partial homomorphic encryption (PHE) capable
of only addition or multiplication was developed. For example, the property of the AHE
scheme, which can only perform addition operations, is represented as follows in [19]:

Dski
(Epki

(m1) · Epki
(m2)) = m1 + m2, (1)

where Dski
(·) is a decryption function using a private key ski, Epki

(·) is an encryption
function using a public key pki, and mi is a plaintext. The cloud server can perform
homomorphic addition operations without decryption using (1). Subsequently, fully ho-
momorphic encryption (FHE) capable of both addition and multiplication operations was
established in [20] to overcome the limitations of PHE, which is challenging to implement
various homomorphic operations in [21]. FHE enables a variety of operations to be imple-
mented using addition and multiplication operations. These HE technologies have led to
the development of PPML algorithms in the cloud and machine learning fields.

3.3. Distributed Homomorphic Cryptosystem

Distributed homomorphic cryptosystem (DHC) is a cryptosystem that can perform
various homomorphic operations using secure multiparty computation (SMC) for imple-
menting various homomorphic operations in a distributed manner. Figure 1 illustrates the
decryption process of DHC. In typical public-key cryptography, parties with public and
private keys perform encryption and decryption for secure communication, respectively.
On the other hand, a private key is divided into several partial private keys in the DHC,
and the partial private keys are distributed to multiple distributed servers. Distributed
servers with partial private keys perform partial decryption using values encrypted with
the public key. The other distributed server can obtain the plaintext by collecting the
partially decrypted ciphertexts. This decryption process enables a variety of homomorphic
operations based on multilateral cooperation.

The functions for the DHC are described as follows:

• Key generation: Function that generates a public-private key pair (pki, ski), i ∈
{1, · · · , Nc} of a user for given two large prime numbers p and q, where Nc is the num-
ber of clients participating in the local training.The public key is calculated by p · q, and
the private key corresponding to the public key is calculated by lcm(p− 1, q− 1)/2,
where lcm(x, y) denotes the least common multiple (LCM) of x and y. Note that the
key size K is p · q. Then, as the selected prime numbers increase, the computational
complexity of cryptosystem increases because the complexity for the exponentiation
operation of encryption and decryption increases [22]. Then, partially private keys
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[psk(1)i , psk(2)i , · · · , psk(Ns)
i ] for distributed servers can be obtained by splitting the

private key ski, where Ns is the number of distributed servers [23]. We select δ that
satisfies δ ≡ 0 mod ski and δ ≡ 1 mod K2 at the same time and select y random num-
bers {a1, a2, . . . , ay} from Z∗skiK2 . Then, we use these values to define the polynomial

p(x) = δ + ∑
y
i=1 aixi. The partial private key psk(j)

i is obtained by calculating the
polynomial p(xj) using a non-zero value xj from Z∗skiK2 .

• Encryption: Function that generates a ciphertext Epki
(m) ∈ Z∗K2 for a plaintext m ∈ ZK,

using a public key pki, where the key size K is p · q. For simplicity, the ciphertext
Epki

(m) can be represented by [m]i;
• Decryption: Function that decrypts a ciphertext [m]i using a private key ski and

returns m;
• Partial decryption: Function that generates a partially decrypted ciphertext by par-

tially decrypting [m]i using a partial private key psk(k)i , k ∈ {1, · · · , Ns − 1}, as shown
in Figure 1. For simplicity, the partially decrypted ciphertext PD

psk(k)i
([m]i) can be

denoted by PDk([m]i);
• Combined decryption: Function that obtains and returns m using (Ns − 1) partially

decrypted ciphertexts PDk([m]i) for ∀k ∈ {1, · · · , Ns− 1} and the partially private key
psk(Ns)

i . Note that a vector PD([m]i) signifies [PD1([m]i), PD2([m]i), · · · , PDNs−1([m]i)]
in Figure 1.

Figure 1. Diagram for encryption, decryption, and partial decryption.

Using the DHC, we have established a PPFL-based system in which the parties can
jointly perform a global model update based on homomorphic operations to preserve the
data privacy of the participants in the FL training process. The proposed PPFL algorithm is
explained in detail in Section 5.

4. System and Attack Models
4.1. System Model

We consider a horizontal FL scenario that operates in a cloud system using SMC.
A large amount of local model parameters is exchanged between the cloud server and
many clients. Our proposed system encrypts the local model parameters using the DHC as
described in Section 3.3 to protect data privacy. When a client first participates in FL, the
certified key generation center generates a private and public key pair for the client. The
private is sent to the client, and the public key is distributed to the client and servers in the
system through a secure channel. In addition, after generating the private key, the certified
key generation center splits the key into as many partial private keys as the number of the
authenticated cloud server and computation provider, and distributes them to the servers
one by one through a secure channel. If the private keys are stolen during the private key
delivery process, the entire system may collapse. In the proposed system, secure channels
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for the private key delivery are built using secure sockets layer or transport layer security
protocol. Since the private key delivery is performed intermittently, the possibility of an
attacker stealing the private key is extremely low in the system. The cloud server and
computation provider collaborate with each other to update the global model using the
model parameters encrypted with different private keys from clients. Once the cloud
server receives a set of model parameters from a client, it adds a random noise encrypted
with the client’s public key to the set of model parameters, partially decrypts it with the
client’s partial private key, and delivers it to the computation provider. The computation
provider server obtains the partial decrypted sets of model parameters for the clients and
decrypts them using the other partial private keys of the clients. Finally, the computation
provider performs the model aggregation and encrypts it with the public key for each
client, and returns it to the cloud server. The cloud server removes the random noise from
the encrypted global model and sends it to each client. The detailed update process is
described in Section 5.3.

Figure 2 depicts a simple system model comprising a key generation center (KGC),
cloud server (CS), computation provider (CP), and multiple clients. The KGC is a trusted
organization that performs authentication procedures for clients and servers and generates
key pairs. The CS is responsible for securely combining the trained parameters on the clients
and can select clients at every iteration for FL. The CP communicates directly with the CS
and provides computational resources for requests of the CS. A single CP or multiple CPs
can exist in the system, and the CPs and the CS perform cooperative encryption described
in Section 3.3. Clients own each private key for decryption and perform local training with
local datasets. In this system model, we make the following assumptions:

• The CS, CP, and the clients may attempt to abuse each others’ data;
• Both the CS and CP are not simultaneously compromised by attackers;
• The CS and the CP do not cooperate to access client information.

Figure 2. System model for privacy-preserving federated learning.

4.2. Attack Model

We consider several attack scenarios in the proposed system in terms of data privacy.
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4.2.1. Single Malicious Entity Attack

• Malicious clients: Clients protect data privacy by encrypting shared parameters using
the HE scheme. In the proposed system where all clients have different private keys,
even if a malicious client can eavesdrop on all channels between the cloud and the
clients, the malicious client cannot access the data because it cannot decrypt the cipher-
texts without the corresponding private key. In addition, even if multiple malicious
clients cooperate, they cannot access other clients’ data without the corresponding
private key;

• Single malicious server: The CS cannot access decrypted values in the proposed
system because it only receives and handles encrypted values. For the CP, local
model parameters can be accessed through combined decryption when partially
decrypted values are delivered from the CS. However, the CS can prevent the CP from
accessing the local model parameters by adding random noise to the encrypted local
model parameters.

4.2.2. Cooperative Attacks by Multiple Malicious Entities

• Malicious clients and CS: If the CS cooperates with malicious clients, it can access
the local model parameters of other clients because the CS can decide which clients
participate in every iteration. For example, the CS can determine the list of participants
with one client and the other malicious clients and calculate the average of encrypted
local model parameters based on the HE scheme to obtain encrypted global model
parameters. Then, the malicious clients can access the local parameters of the honest
client by offsetting the local model parameter of the malicious clients by sharing their
parameters because malicious clients can decrypt the global model parameter from
the CS. This threat can be eliminated by ensuring more than one honest client at each
iteration. In the proposed system, the threat can be eliminated by delivering the sum
of local parameters through the cooperation of two or more honest clients. In addition,
the privacy threat can be kept very low by ensuring the randomness of client selection
through the KGC. When one honest client participates in the learning process, the
conditional probability of all remaining participants being malicious clients can be
expressed as PNc−1

m , where Pm is the ratio of the number of malicious clients to the total
number of clients, and Nc is the number of clients participating in the local training.
Thus, the probability of having access to local parameters of honest clients becomes
very small, despite multiple malicious clients and CS collaborating. For example, even
if half of all clients are malicious and Nc is 20, the probability is less than 2× 10−6.

• Malicious clients and CP: The CP cannot access the client information because ran-
dom noise is added to the client information by the CS. Even if several malicious
clients cooperate with the CP, the CP cannot access the local model parameters because
the CS samples random noise for each client.

• Malicious CS and CP: When the CS and the CP cooperate to access a shared local
model parameter, the client’s information may be leaked. If all the distributed servers
participating in the secure aggregation algorithm of SMC are compromised and co-
operate with each other, there is no way to protect personal information. This paper
assumes that the CS and the CP may be compromised simultaneously but do not
cooperate to access client data. These assumptions are needed for building SMC-based
DHC. To improve security in practice, we can increase the number of CPs participating
in the secure aggregation algorithm, reducing the probability that multiple CPs and
CS are malicious servers that cooperate with each other. In addition, an authentication
procedure for the distributed cloud servers can be performed at the KGC to guarantee
the servers participating in SMC are honest.

5. Privacy Preserving Federated Learning

In the proposed PPFL system, each client participating in the training process encrypts
local model parameters trained with local data, using its own private key to protect the
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trained local model parameters. Thereafter, the clients transmit the encrypted local model
parameters to the CS. The CS updates the global model parameters with the local model
parameters encrypted with different keys by exploiting the partial homomorphic decryption
capabilities of CPs. As a result, the proposed PPFL algorithm ensures data confidentiality
between the CS and the clients, as well as data confidentiality among the clients because
each client has its own private key and does not send the private key to other third parties.
The detailed procedure of the proposed PPFL is described in the following subsections.

5.1. Homomorphic Key Generation and Distribution

As shown in step 1© of Figure 2, individual public-private key pairs (pki, ski) for
i ∈ {1, · · · , Nc} are generated at the KGC and are sent to clients for encryption and decryp-
tion through secure channels, where Nc is the number of clients participating in the training
process of the proposed system. Before the KGC distributes the key pairs, it performs
an authentication procedure for the clients and delivers the public-private key pairs to
authenticated clients. The clients’ public keys for encryption and a list of authenticated
clients are transmitted to the CS and the CP, and the CS utilizes only local model parameters
from authenticated clients. In addition, the partially private keys [psk(1)i , psk(2)i , · · · , psk(K)i ]
generated by the KGC are only sent to the CS and the CPs through secure channels for
cooperative decryption, respectively.

5.2. FL Local Model Training

The CS selects a machine learning model to be trained on the client’s side using local
data. A deep neural network model is selected; however, other machine learning models
can also be used for the proposed PPFL algorithm. The CS determines the percentage of
clients participating in the training process and randomly selects clients to participate in
the actual training process. At the first iteration, the CS encrypts the initial global model
parameters using the selected client’s public keys and sends the encrypted global model
parameters to the clients, as shown in step 2©. In the following iterations, the CS sends the
results of aggregating the local model parameters using homomorphic operations to the
clients without additional encryption because the result of the homomorphic operation is
also an encrypted value. The global model parameter vector encrypted with the public key
of the i-th client ci is represented as [Wg]i, where Wg is a global model vector containing
the global model parameters.

The i-th client decrypts the encrypted global model vector, [Wg]i, using its own private
key and uses the decrypted global model parameters for the local training process. Each
client participating in the proposed PPFL performs the training process using the local
data in a deep neural network initialized with the global model parameters, as shown in
step 3©. After the local training process, the i-th client obtains local model parameters and
proceeds to encrypt a local model vector Wi

l containing the local model parameters using
its own public key. The client sends the encrypted local model vector to the CS for secure
aggregation, as described in step 4©. Note that the local model vector encrypted with the
public key of the i-th client is represented as [Wi

l ]i. After the CS receives the encrypted local
model vector from the clients, the encrypted vectors are used to update the global model
vector through cooperation with the CP.

5.3. Secure Global Model Update with DHC

We propose a secure averaging local model vector algorithm that updates the global
model vector by calculating the average of the local model vectors received from the clients.
The CS utilizes the cooperative decryption scheme to obtain the average local model vector
encrypted with different public keys in the same FL-based system through cooperation
with the CP, as shown in step 5© of Figure 2.

Figure 3 illustrates the procedure of cooperative decryption and secure local model
vector updates. First, the client sends an encrypted local value Epki

(m) to the CS. The CS
adds the encrypted random variable Epki

(r) to the received ciphertext using homomorphic
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addition, where r is a random integer number, and then the CS can obtain Epki
(m + r). The

CS then forwards the ciphertext to the CPs. The (Ns − 1) CPs perform partial decryptions,
and the other CP performs the combined decryption to obtain the sum of the local value
and random noise (m + r). As explained in Figure 3, the CP can calculate the average of
the sum of the local value and random noise (mave + rave) when receiving the sum from
multiple clients. The sum’s average is encrypted and sent back to the CS. Finally, the CS
can remove the average of random values from the sum’s average through homomorphic
addition and obtain the encrypted average local value Epki

(mave) since the CS has the
random values.

Figure 3. Diagram for secure averaging local model vector algorithm.

Algorithm 1 describes the proposed secure averaging local model algorithm where
one CS and one CP exist. In the proposed algorithm, local model parameters encrypted
with different keys are input, and global model parameters encrypted with different keys
are output. The CS and CP have the partial private keys psk(1)i and psk(2)i , respectively. The
detailed procedure of the secure averaging local model vector algorithm is as follows:

1. The CS receives the encrypted local model vectors from the clients participating in the
training process. Note that the local model vector encrypted with the public key of
the i-th client is represented as [Wi

l ]i. Thereafter, the CS generates Nc random vectors
with the same size as the local model vector and encrypts them using the client’s
public key, as shown in lines 2–3 of Algorithm 1;

2. The CS performs homomorphic addition operations with the encrypted local model
vectors using the encrypted random vectors in line 5. The result of homomorphic
addition between [Wi

l ]i and [Ri]i is represented as [Si]i. Then, the CS partially decrypts

the result of the homomorphic addition using the partial private key psk(1)i in line 6.
This process is repeated for Nc local model vectors. Subsequently, the CP sends the
partially decrypted vectors [PD1([S1]1), PD1([S2]2), · · · , PD1([SNc ]Nc)] to the CP, as
shown in lines 8–9;

3. As shown in lines 10–11, the CP partially decrypts the partially decrypted vectors

using the partial private key psk(2)i and obtains [(W1
l + R1), · · · , (WNc

l + RNc)]. After-
wards, the CP adds all the decrypted vectors and divides the sum by the number of
clients Nc to obtain a vector containing the average parameters in line 12. The result
is represented as Wsum;

4. The CP encrypts Wsum using the public keys of the Nc clients in lines 13–15 and sends
the encrypted vectors [[Wsum]1, [Wsum]2, · · · , [Wsum]Nc ] to the CS in line 16;

5. Finally, the CS calculates the encrypted average global model vectors for the clients by
performing the homomorphic addition operation with the encrypted sum of random
noises [∑k −Rk

Nc
]i, as shown in lines 17–19.
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Algorithm 1 Secure averaging local model algorithm

1: Input: [W1
l ]1, [W2

l ]2, . . . , [WNc
l ]Nc .

2: (@CS) generates Nc random vectors R1, R2, . . . , RNc and encrypts the random vectors
3: using the public keys.
4: for i ≤ Nc do
5: (@CS) [Si]i ← [Wi

l ]i · [Ri]i.

6: (@CS) Partially decrypts [Si]i using psk(1)i
7: end for
8: (@CS) Sends partially decrypted vectors [PD1([S1]1), PD1([S2]2), . . . , PD1([SNc ]Nc)]
9: to the CP.

10: (@CP) Partially decrypts the partially decrypted values using psk(2)i and obtains
11: [(W1

l + R1), . . . , (WNc
l + RNc)].

12: (@CP) Calculates Wsum =
∑k Wk

l +∑k Rk
Nc

.
13: for i ≤ Nc do
14: (@CP) Encrypts Wsum using the public key pki.
15: end for
16: (@CP) Sends the encrypted values [[Wsum]1, [Wsum]2, . . . , [Wsum]Nc ] to the CS.
17: for i ≤ Nc do
18: (@CS) [Wg]i ← [Wsum]i · [∑k −Rk

Nc
]i.

19: end for
20: Output: global weight vectors for the clients [[Wg]1, [Wg]2, . . . , [Wg]Nc ].

After updating the global model vector by performing the proposed secure averaging
local model vector algorithm, the CP sends the updated global model vector to the clients
for the next federated round. The clients execute the local training process using the
updated global model vector as shown in Section 5.2 after decrypting the encrypted global
model vector using its own private key. Thereafter, they send the newly trained local model
vector to the CS, and then the CS and CP work together to update the global model vector.
These procedures are repeated until convergence is achieved.

5.4. Data Structure and Protocol

The HE scheme increases data security but has the disadvantage of incurring com-
munication overhead. Especially since the data length after encryption is independent
of the plaintext length to be encrypted, the communication efficiency is significantly re-
duced if only one parameter is encrypted and sent. The proposed system establishes a
data structure that can transfer multiple parameters to alleviate this efficiency degradation.
The data structure for a weight wi consists of a bit representing the sign, a zero bit to
prevent an overflow caused by homomorphic additions, and the remaining bits signifying
the weight’s value. The number of weights included in one ciphertext can be calculated
as D =

⌊
K
Lo

⌋
, where b·c is a round-down operation and Lo is the data length used for

representing weights. Then, the data format to be encrypted can be expressed as follows:
[wLo·(D−1)

D , wLo·(D−2)
D−1 , · · · , w1]. Furthermore, since the secure aggregation operations are

performed in the plaintext space except for the process of adding noise, the proposed
algorithm can be implemented using only homomorphic operations for integer processing.
Therefore, in the proposed system, integer numbers are used for data transmission, and
they are represented as floating-point numbers using a decimal point pre-agreed between
the clients and the servers after decryption.

6. Performance Analysis
6.1. Computational Overhead
6.1.1. Computational Overhead on the Client’s Side

In the proposed PPFL algorithm, additional encryption operations are performed to
protect the trained local model parameters, and extra decryption operations are performed
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to reflect the global model parameters to the learning model on the client’s side. In the PCK
scheme used in the proposed algorithm, the exponentiation operation has a dominant effect
on encryption and decryption. The exponentiation operation gr requires 1.5× Nr multipli-
cations, where g is a generator of order (p− 1)(q− 1)/2, r ∈ ZK is a random number, and
Nr is the length of r in the DHC scheme in [21]. Thus, the computational complexity of the
encryption operation in the proposed PPFL algorithm is given as O(Nr · Nw), where Nw is
the number of elements of the local model vector. Similarly, the computational complexity
of the decryption in the proposed PPFL algorithm is also represented as O(Nr · Nw).

6.1.2. Computational Overhead on the Server’s Side

The computational complexity of the averaging local model parameter algorithm
performed in the conventional FL algorithm can be expressed as O(Nw · Nc). On the other
hand, in the proposed PPFL algorithm, additional encryption, partial decryption, and
homomorphic addition operations are required to perform the proposed secure averaging
local model vector algorithm on the server’s side. The encryption and partial decryp-
tion operations have a dominant impact on the computational complexity because the
exponentiation operation in the encryption and partial decryption requires much more
computation than the other operations. Moreover, as the number of clients and model
parameters increases, the number of encryption and partial decryption operations to be
performed also grows. Thus, the computational complexity of the secure averaging local
model vector algorithm on the server’s side can be represented as O(Nr · Nw · Nc).

6.2. Communication Overhead
6.2.1. Communication Overhead between Clients and the Cloud Server

In an FL scenario involving many clients, the communication overhead has a tremen-
dous impact on performance. If a cryptosystem is utilized to preserve data privacy in
an FL-based system, the communication overhead may be more significant than sending
local parameters as a plaintext. In this paper’s cryptosystem, the length of the ciphertext is
affected only by the key size, regardless of the length of data the client sends to the server,
and the length of data must be less than the key size. Thus, the closer the data length is to
the key size, the less communication overhead is incurred because more information can
be conveyed in one ciphertext. In the cryptosystem, since encryption requires a modular
operation with a dividend K2, the length of the ciphertext becomes K× 2 bits. When the
key size is K bits and the length of data to be transmitted is Ld bits, the transmission data
volume after encryption becomes 2N/Ld times larger. As Ld is closer to K, the transmission
data volume is approximately doubled. In the proposed system, K-bit data representing
multiple local model parameters are generated to reduce the communication overhead.

6.2.2. Communication Overhead between the Cloud Server and the Computation Provider

In order to perform the proposed secure aggregation operation for local model vectors,
we exploit the partial homomorphic decryption capabilities of CPs. The CS sends partially
decrypted ciphertexts to the CP and receives ciphertexts from the CP in the proposed
PPFL-based system. The length of the partially decrypted ciphertext is also 2× K bits
in [21]. As shown in Algorithm 1, the amount of information communicated between the
CS and the CP increases as the number of clients and model parameters increases. Thus, the
communication overhead between the CS and the CP can be represented as O(Nc · Nw) bits.

6.3. Overhead Comparison

Compared with the PPDL system in [2] that used the HE scheme, the proposed tech-
nique requires additional overhead to allow clients to use different private keys. In the
proposed system, a certain degree of computational overhead for cooperative decryption
and encryption processes is added, and the communication overhead is also added for
the data exchanges between the CS and the CPs. The computational and communication
overhead analysis was performed in Sections 6.1.2 and 6.2.2, respectively. The computa-
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tional overhead comparison between the PPDL system and the proposed system is shown
in Section 7.1, and the communication overhead between the CS and the CP is shown in
Table 1.

6.4. Security Analysis

In the proposed algorithm, since model data is protected by the cryptosystem, attackers
cannot access the data even if data are stolen from a communication network. Therefore,
the attackers must break the cryptosystem to access local model data. Even in the case
of insider attacks, attackers have to break the cryptosystem to access the data because
clients have access only to global models and their local models, and servers have access
only to encrypted data. The HE scheme can have a higher security level of cryptosystem
if the key size increases. As the key size increases, the amount of computation required
to break the encryption algorithm or system also increases. For example, it was shown
that if the key sizes are 1024, 2048, 3072, 7680, and 15,360 bits in Paillier’s cryptosystem-
based HE scheme, the security level is given as 80, 112, 128, 192, and 256-bit, respectively
in [24]. However, there exists a trade-off relationship between the security level and
computation/communication overhead because the amount of encryption and decryption
computation and the data length of the ciphertexts also increase. Numerical evaluations
of computation and communication overheads with respect to the key size have been
performed in Section 7.

With a higher security level of the cryptosystem, the proposed scheme can more
robustly resist the attacks described in Section 4.2.

• In the attack model of malicious clients, malicious clients can eavesdrop on the commu-
nication channels, and obtain ciphertexts and partially decrypted ciphertexts. Because
the DHC is semantically secure, as described in [25], an attacker has to break the cryp-
tosystem to obtain private data. If an honest client uses a longer key size, the attacker
will have to use more computational resources to break the victim’s cryptosystem.

• In the attack model of a single malicious server, malicious servers can eavesdrop on the
communication channels, and obtain ciphertexts and partially decrypted ciphertexts.
As in the client attack model, an attacker must break the cryptosystem to obtain private
data. Even though CP acquires the model parameters and performs the combined
decryption to obtain the plaintext, it cannot access private data because the plaintext
includes a random noise added by the CS.

• In the attack model of malicious clients and servers, the malicious entities can coop-
erate; the malicious client may provide a private key to the malicious server. If all
clients use the same private key, the malicious server can access all clients’ private data
because a malicious client can provide the private key to the malicious server. On the
other hand, since the proposed system allows clients to use different private keys in
the same FL-based system, the privacy leakage can be prevented in this attack model.

Based on the observation of the attack models, it is worth noting that the proposed
system provides a much stronger level of security than the state-of-the-art system proposed
in [2] where all clients use the same private key. Even though a client’s cryptosystem
is broken, the data privacy of the other clients in the proposed system is not affected
by the compromised cryptosystem of the victim client because the clients use different
private keys. Suppose that the amount of computational resources required to break the
cryptosystem of the i-th client is Ci

b(K), where K is the key size. If all clients use the
same private key, the computational resource amount to break the system is expressed
as min{C1

b(K), C2
b(K), . . . , CNc

b (K)}. As a result, in this case, if the most vulnerable client
is broken in, the entire system can be easily compromised. On the other hand, the com-
putational resource amount to break the proposed system is given by ∑Nc

i Ci
b(K). As the

number of clients increases, the amount of computational resources needed to attack the
system increases linearly.
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7. Performance Evaluation

In this section, we have developed the proposed algorithm using Python and evaluated
the performance on a workstation (3.6 GHz quad-core processor and 8 GB RAM) in terms
of computation and communication overhead.

7.1. Computational Overhead

Figure 4 shows the running time measured for performing encryption and decryption
according to the key size. In our simulation environment, the key sizes were selected as
1024, 2048, 3072, 7680, and 15,360 bits to achieve 80, 112, 128, 192, and 256-bit security
levels, respectively. For example, the encryption took 11.7, 78.4, and 1552.5 ms for 80,
128, and 265 bit security, respectively, in Figure 4. As the key size increases, the running
times for encryption and decryption increase exponentially because the exponent of the
exponentiation operation in encryption and decryption increases.
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Figure 4. Running time to execute homomorphic encryption and decryption with respect to the
key size.

Figure 5 shows the running times measured for performing the proposed secure
averaging local model algorithm in Algorithm 1 with respect to the number of clients in
the cryptosystem with different key sizes. The convolutional neural network with 105,506
parameters was used for the simulation study, and the data length used for representing
weights was set to 16 bits. As the number of clients increases, the number of homomorphic
operations increases as the number of parameters to protect using the HE scheme increases,
and thus the running time increases linearly. In Figure 5, the running time increases as the
key size increases. In fact, if the key size is larger, the total number of ciphertexts to be
delivered is smaller. However, as shown in Figure 4, the running time of homomorphic
operations increases exponentially as the key size increases. As a result, the total running
time of Algorithm 1 increases as the key size increases. Nevertheless, as the key size
increases, the security level of the system increases. This is because the higher the key size,
the greater the number of cases is required to break the cryptosystem. Thus, because the
computational burden and security gain have a trade-off relationship, we can select an
appropriate key size according to system requirements.
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Figure 5. Running time to execute the proposed secure averaging local model algorithm with respect
to the number of clients in the cryptosystem with different key sizes.

Figure 6 shows the running time for performing the proposed algorithm with respect
to the neural network size of the federated learning. The number of clients was set to 10,
and the data length used for representing weights was set to 16 bits for the simulation study.
As the number of parameters increases, the running time increases because the amount of
information to be processed by the homomorphic operation increases.
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Figure 6. Running time to execute the proposed secure averaging local model algorithm with respect
to the neural network size in the cryptosystem with different key sizes.

We performed simulations to compare the computational overhead of the proposed
PPFL system and the PPDL system proposed in [2]. The key size K is 1024, and the
number of parameters is 105,506 in the simulation environment. In Figure 7, it is seen
that the computation overhead of the proposed system is about 2.3 times greater than
that of the PPDL system. This is because the additional encryption and partial decryption
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processes are performed at the servers to make clients have different keys in the proposed
system. Despite the greater computational overhead of the proposed algorithm, the security
intensity of FL systems is significantly improved because the clients use different private
keys. Therefore, the proposed system can be deployed in a more adversarial environment
where there exist many malicious clients and they are difficult to be identified. In future
work, we will research how to reduce the overhead in PPFL while retaining the same strong
security level.
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Figure 7. Running time to execute the proposed PPFL and the PPDL using the Paillier cryptosystem
with respect to the number of clients.

7.2. Communication Overhead

The communication overhead increases in the proposed PPFL algorithm because the
servers and clients communicate with each other using the encrypted model vectors to
protect the model parameters. Table 1 shows the communication overhead with respect
to the key size when the number of parameters is 105,506, and the data length for one
parameter is 16 bits. The communication overhead remains almost constant regardless of
the key size as shown in Table 1. If the key size increases, the ciphertext length may become
longer, but since the number of parameters included in the ciphertext increases, the key
size has little effect on the communication overhead of the proposed algorithm. In addition,
as the number of clients increases, the communication overhead linearly increases because
the amount of data exchanged between CS and CP increases.

Table 1. Communication overhead (KB).

K (Key Size) 1024 3072 15,360

Client–CS 422.1 422.4 422.4

CS–CP (Nc = 10) 8443 8448 8448

CS–CP (Nc = 100) 84,429 84,480 84,480

8. Conclusions and Future Work

This paper has proposed the PPFL system based on the HE scheme to protect shared
model parameters in an FL-based system. Furthermore, we have proposed a technique for
the secure aggregation of local model parameters encrypted with different keys in the same
FL-based system. In the proposed system, the computational and communication costs
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required to improve security level in FL were theoretically analyzed, and the performance
of the proposed PPFL algorithm in terms of overhead was evaluated via simulations. In the
future, our research focuses on how to further reduce the computation and communication
costs in the proposed PPFL algorithm while retaining privacy preservation of clients, and
also focuses on how to determine an appropriate number of clients participating in FL to
expedite the learning and to reduce latency of FL-based services.
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