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Abstract: Knowledge graph (KG) embedding has been widely studied to obtain low-dimensional
representations for entities and relations. It serves as the basis for downstream tasks, such as
KG completion and relation extraction. Traditional KG embedding techniques usually represent
entities/relations as vectors or tensors, mapping them in different semantic spaces and ignoring
the uncertainties. The affinities between entities and relations are ambiguous when they are not
embedded in the same latent spaces. In this paper, we incorporate a co-embedding model for KG
embedding, which learns low-dimensional representations of both entities and relations in the same
semantic space. To address the issue of neglecting uncertainty for KG components, we propose
a variational auto-encoder that represents KG components as Gaussian distributions. In addition,
compared with previous methods, our method has the advantages of high quality and interpretability.
Our experimental results on several benchmark datasets demonstrate our model’s superiority over
the state-of-the-art baselines.

Keywords: knowledge graph; embedding; variational auto-encoder

1. Introduction

Knowledge graph (KG) embeddings are low-dimensional representations for entites
and relations. This approach can benefit a range of downstream tasks, such as seman-
tic parsing [1,2], knowledge reasoning [3], and question answering [4,5]. Embeddings
are supposed to contain semantic information and should be able to deal with multiple
linguistic relations.

At present, research on knowledge graph embedding occurs mainly along three main
lines. One of these lines of research includes studies based on translation. TransE [6] was
the first model to introduce translation-based embedding, which represents entities and
relationships in the same space, and regards the relationship vector r as the translation
between the head entity vector h and the tail entity vector t, that is, h + r ≈ t. Since transE
cannot handle one-to-many, many-to-one, and many-to-many relationships (1-to-N, N-to-1,
N-to-N), TransH [7] is proposed to enable an entity to have different representations when
involved in various relations. In the TransR model [8], an entity is a complex of multiple
attributes, and different relationships focus on different attributes of the entity. Another
line of research includes studies based on semantic matching. RESCAL [9] obtains its
latent semantics by using a vector to represent each entity. Each relationship is represented
as a matrix that is used to model the interaction of potential relationships. It defines
the scoring function of the triple (h, r, t) as a bilinear function. DistMult [10] simplifies
RESCAL by restricting the relationship matrix to a diagonal matrix, which greatly improves
training efficiency. ComplEx [11] extends DistMult by introducing complex number domain
embedding to better model asymmetric relationships. In ComplEx, the embedding of
entities and relationships no longer exists in real space, but in complex space. The third line
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of research includes studies based on graph convolutional neural networks. ConvE [12]
employs a multi-layer convolutional network, which enables expressive feature learning,
while remaining highly parameter-efficient. Unlike previous works, which focused on
shallow, fast models that can scale to large knowledge graphs, ConvE uses 2D convolution
over embeddings and multiple layers of nonlinear features to model KGs. Subsequently,
the ConvKB [13] model has been used to explore the global relationships among same-
dimensional entries of the entity and relation embeddings. However, neither of them
models the interactions between various positions of entities and relations. R-GCN [14]
is another convolutional network designed for KBs, generalized from GCN [15] for uni-
relational data.

A typical KG embedding technique has two necessary elements: (i) an encoder to
generate KG embeddings and (ii) a scoring function to measure plausibility for each fact.
Entities are usually represented as vectors in low-dimensional space, whereas relations
are represented as an operation between entities, resulting in vectors for translational
operations [6] or matrices for linear transformation [16]. By doing so, the embedding of KG
components can be used to enhance the performance in many downstream tasks. Despite
the success those previous algorithms have achieved, we note that those methods have
the following defects(1) the n-dimensional representation of the KG component can be
regarded as a single point, neglecting the uncertainties for entities and relations; (2) they
represent entities as vectors located in low-dimensional space and relations as an operation
between entities [6,16], thus ignoring the affinities between entities and relations as they
are embedded in different semantic spaces.

To address the issues mentioned above, we propose a co-embedding model for KG,
learning low-dimensional representations for entities and relations in the same semantic
space so that the affinities between them can be effectively captured. Moreover, we intro-
duce a variational auto-encoder to infer the representations of KG components as Gaussian
distributions. The mean of the distributions indicatesthe position in semantic space, and
the variance of the distributions indicates the uncertainty for each KG components.

Compared with previous works that regard relations as an operation between enti-
ties, co-embedding of entities and relations in the same semantic space can improve the
performance of KG representation. For example, in Freebase, the relation ’Perfession’ is
used in (El Lissitzky, Perfession, Architect) and (Vlad. Gardin, Perfession, Screen Writer)
uses two distinct semantic information categories, corresponding to a scientist and a writer,
resulting in the finding that the resulting representations calculated using the two triples
are not the same. The co-embedding model embeds entities and relations at the same
semantic space, thus providing high-quality embeddings for both of them.

In summary, our contributions in this work are as follows:

1. We propose a co-embedding model for knowledge graphs, which learns low-dimensional
representations for KG components, including entities and relations in the same
semantic space, as a result of measuring their affinities effectively.

2. To address the issue of neglecting uncertainty, we introduce a variational auto-encoder
into our model, which represents KG components as Gaussian distributions. The
variational auto-encoder consists of two parts: (1) an inference model to encode KG
components into latent vector spaces, (2) a generative model to reconstruct random
variables from latent embeddings.

3. We conduct experiments on real-world datasets to evaluate the performance of our
model in link prediction. The experimental result demonstrates that our model out-
performs the state-of-the-art baselines.

2. Related Work
2.1. Knowledge Graph Representation

Knowledge representation is a technique that aims at learning low-dimensional repre-
sentations for KG entities and relations, consisting of two critical steps: (1) constructing a
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scoring function measuring plausibility for triples, and (2) embedding KG components in
continuous vector spaces.

TransE [6], the most representative method in KG embedding, represents entities
as vectors and relations as an operations between entities, i.e., h + r ≈ t. The scoring
function is defined as the distance between entities and relations in latent space, written as
fr(h, t) = − ‖ h+ r− t ‖1/2. However, TransE fails to deal with one-to-many, many-to-one,
and many-to-many relations [7,8]. For example, given a relation holding two facts (h, r, t1)
and (h, r, t2), we can infer t1 = t2 even though they are totally different entities. To
overcome the above defects, Z. Wang, J. Zhang, J. Feng, and Z. Chen proposed TransH [7]
to obtain distinct representations for entities when dealing with different relations, by
projecting entity representations onto a hyperplane, resulting in a normal vector. e.g.,
h⊥ = h−w>r · h ·wr, with wr as the normal vector.

TransE and its extensions represent both entities and relations as deterministic points
in vector spaces, ignoring the uncertainty for KG components. To resolve this problem,
some recent works have introduced uncertainty into KG embedding by representing
KG components as distributions, e.g., KG2E [17], proposed by Shizhu He, Kang Liu,
and Guoliang Ji and Jun Zhao, represents both entities and relations as distributions via
Gaussian embedding. Inspired by the previous works, we tackle the embedding problem
for KG by modeling both entities and relations as Gaussian distributions and representing
them in the semantic space to effectively measure the affinities between them.

2.2. Gaussian Embedding

Gaussian embedding [18] is a method to embed word types into the space of Gaussian
distributions, and learn the embeddings directly in that space, which represents words
not as low-dimensional vectors, but as densities over a latent space, directly representing
notions of uncertainty and enabling a richer geometry in the embedded space.

In word representation, embedding an object as a single point can not naturally express
uncertainty about the target concepts with which the input may be associated, and the
relationships between points are normally measured by distances required to obey the
triangle inequality. Point vectors are typically compared via their dot products, cosine-
distance, or Euclean distance, none of which provide asymmetric comparisons between
objects. To overcome the limitations in representing objects as points, Gaussian embedding
is proposed to learn representations in the space of Gaussian distributions, advocating for
density-based distributed embeddings.

In Gaussian embedding, we learn both means and variances from data, representing
them as densities over a latent space instead of low-dimensional vectors. As Gaussians
innately represent uncertainty and have a geometric interpretation as an inclusion between
families of ellipses, our method adopts KL divergence between Gaussian distributions to
measure the relationship between objects, which is straightforward to calculate.

Mapping to a density provides many advantages, including better capturing uncer-
tainty about a representation and its relationships, providing asymmetric comparisons
between objects, which is more effective than dot product or cosine similarity, and which
enables more expressive parameterization of decision boundaries.

2.3. Variational Auto-Encoder

Variational Auto-encoders [19], abbreviated as VAEs, are proposed to learn probability
distributions of data. A typical VAE model is made up of two computational neural
networks, an inference model to encode observations into latent variables and a generative
model to decode from latent deterministic representations to random variables. Given
a dataset X = {xi}N

i=1, the VAE regards data as random numbers generated via two
steps: (1) the latent variable zi is sampled from prior distribution pθ(zi), and (2) the
random variable xi is generated by the conditional distribution pθ(x|z), where θ is the prior
distribution parameter. Using the stochastic gradient variational Bayes (SGVB) estimator
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and reparameterization, we can learn approximate distributions for each data point via
the VAE.

In the VAE, we treat the encoder and decoder as a whole and train them at the same
time. The goal of training is to maximize the evidence lower bound of the likelihood func-
tion. Specifically, we first input random variables (randomly initialized node embedding)
to the encoder, obtain the output, and calculate the encoder error, then we use the output
of the encoder as the input of the decoder and calculate the reconstruction error of the
decoder. The two parts of the errors are added together as the overall error of the network
and propagated backward, thus realizing the simultaneous training of the encoder and
the decoder.

In recent years, the VAE algorithm and its variations have been studied and applied in
many downstream tasks such as semi-supervised classification [20], clustering [21,22], and
image generation [23].

3. Notations and Problems

In this section, we introduce the notation used and define our studied problem.

3.1. Notations

In this paper, we define scalars as normal alphabets (e.g., the output dimension of
latent variables: D), sets as typeface alphabets (e.g., the set of entities: E ), and vectors as
lowercase alphabets (e.g., the representation of head entities: h). A triple in KG is denoted
by τ, whereas it can be written as τ = (h, r, t). Our main notations are shown in Table 1.

Table 1. Main notations in our paper.

Symbol Description

G a knowledge graph
E set of entities
R set of relations
O set of triples

M = |E | size of entities
N = |R| size of relations
W = |O| size of triples

D dimension of latent variables
O ∈ RW×3 observed data for triples

ZE ∈ RM×D latent representation matrix for entities
ZR ∈ RN×D latent representation matrix for relations

Given a knowledge graph G, We represent the set of entities as E and the set of relations
asR, whereas G can be defined as G = (E ,R,O), where O is the set of triples denoted as
τ = (h, r, t), h, t ∈ E and r ∈ R.

3.2. Problem Definition

Using the notation mentioned above, we define the problem of co-embedding in KG
as follows.

Problem 1. The Co-embedding Model for KG Embedding. Given a knowledge graph G = (E ,R,O),
our goal is to learn the representations of KG components, including entities and relations, in the
same semantic space as that of a transformation Ξ.

G Ξ−→ ZE , ZR, (1)

where ZE ∈ RM×D and ZR ∈ RN×D, respectively. The i-th row vector in ZE , written as zEi , is
denoted as the resulting embedding of the i-th entity, and the j-th row vector in ZR written as zRj is
denoted as the resulting embedding of the j-th relation.
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4. Model

To address the issues we mentioned above, we propose the co-embedding model,
learning representations for both entities and relations as Gaussian distributions in the
same semantic space, as Gaussians innately represent uncertainty. To obtain high-quality
Gaussian embeddings for both entities and relations, we introduce VAE into our model,
learning the distributions from training triples in KG via a stochastic gradient variational
Bayes [19] estimator. We introduce the details in the following subsections.

4.1. Variational Lower Bound

For a KG represented as G = (E ,R,O), the embeddings of KG components can be
represented as ZE , ZR in latent spaces. To embed both entities and relations in the same
semantic space, we first define the log-likelihood ofO, notated as the set of triples in KG, as:

log p(O) = log p(H, R, T)

= log p(H) + log p(R) + log p(T)
(2)

where O ∈ RW×3 and H, R, and T are components in O. The log-likelihood of KG
components, represented as log p(H), log p(R), and log p(T), can be derived using the
Bayesian algorithm:

log p(H) = log
D

∑
i=0

{
pθ(H | ZEi ) · pθ(ZEi )

}
= log

D

∑
i=0

{
pθ(ZEi | H) · pθ(H)

}
= log

D

∑
i=0

{
pθ(ZEi | H) ·

pθ(ZEi , H) · qφ(ZEi | H)

qφ(ZEi | H) · pθ(ZEi | H)

}

= qφ(ZE | H) · log
qφ(ZE | H)

pθ(ZE | H)

+ qφ(ZE | H) · log
pθ(ZE, H)

qφ(ZE | H)

= DKL(qφ(ZE | H) ‖ pθ(ZE | H)) + L(θ, φ; E)
≥ L(θ, φ; H)

(3)

The conditional probability qφ(ZE | H) is the variational posterior to approximate the
true posterior p(ZE | H), where the parameter φ is estimated in the inference model. In
Equation (3), the second RHS term L(θ, φ; E) is called the evidence lower bound (ELBO) on
the marginal likelihood of the variables E :

L(θ, φ; H) = Eqφ(ZE |H)

[
− log qφ(ZE | H) + log pθ(H, ZE )

]
= −DKL(qφ(ZE | H) ‖ pθ(ZE ))

+Eqφ(ZE |H)

[
log pθ(H | ZE )

] (4)

where the DKL term denotes the Kullback–Leibler divergence, a measure of how one
probability distribution is different from a second. Respectively, we have:
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L(θ, φ; R) = −DKL(qφ(ZR | R) ‖ pθ(ZR))

+Eqφ(ZR |R)

[
log pθ(R | ZR)

]
L(θ, φ; T) = −DKL(qφ(ZE | T) ‖ pθ(ZE))

+Eqφ(ZE |T)

[
log pθ(T | ZE)

] (5)

Substituting Equations (3)–(5) into Equation (2), the variational lower bound of logO
can be represented with the parameters θ and φ:

log p(O) = log pθ(H) + log pθ(R) + log pθ(T)

≥ L(θ, φ; H) + L(θ, φ;R) + L(θ, φ; T)

= L(θ, φ; O)

(6)

where
L(θ, φ; O) =− DKL(qφ(ZE | H) ‖ pθ(ZE ))

+Eqφ(ZE |H)

[
log pθ(H | ZE )

]
− DKL(qφ(ZR | R) ‖ pθ(ZR))

+Eqφ(ZR |R)

[
log pθ(R | ZR)

]
− DKL(qφ(ZE | T) ‖ pθ(ZE ))

+Eqφ(ZE |T)

[
log pθ(T | ZE )

]
(7)

In Equation (7), the conditional probabilities q(ZE | H), q(ZR | R) and q(ZE | T) can
be regarded as probabilistic encoders to embed real data into latent space. Similarly, the con-
ditional probabilities p(H | ZE ), p(R | ZR) and p(T | ZE ) can be regarded as probabilistic
decoders, producing corresponding data from latent vector representations. To approxi-
mate the real distributions of KG components, we assume that the prior distributions and
the variational posterior distributions are Gaussian distributions.

p(Zi
E ) = N (0, I)

p(Zj
R) = N (0, I)

qφ(Zh
E | H) = N (E, σ2

E · I)
qφ(Zr

R | R) = N (R, σ2
R · I)

qφ(Zt
E | T) = N (E, σ2

E · I)

(8)

Assuming priors and variational posteriors to be Gaussian distributions, the DKL
terms in Equation (7) can be formed computationally. In addition, we adopt the Monte
Carlo gradient estimator to deal with the Eqφ terms:

L(θ, φ; O) =
1
L

L

∑
i=0

W

∑
(hi ,ri ,ti)∈O

(log pθ(ti | ZEti
)

+ log pθ(hi | ZEhi
) + log pθ(ri | ZRri

))

+
1
M

M

∑
ei∈E

D

∑
d=0

(µ2
ei ,d + σ2

ei ,d − log σ2
ei ,d − 1)

+
1
N

N

∑
ri∈R

D

∑
d=0

(µ2
ri ,d + σ2

ri ,d − log σ2
ri ,d − 1),

(9)
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where D is the output dimension of latent variables, L is the sampling number in the Monte
Carlo estimator, and M, N, and W are the number of entities, relations, and triples. We also
adopt the reparameterization trick mentioned in the VAE section to generate samples.

zEhi
= hi + σ2

hi
� ε, with hi ∈ H, ε ∼ N (0, I)

zRri
= ri + σ2

ri
� ε, with ri ∈ R, ε ∼ N (0, I)

zEti
= ti + σ2

ti
� ε, with ti ∈ T, ε ∼ N (0, I)

(10)

4.2. Learning

To optimize the parameters in Equation (9), we apply two neural networks in VAE:
(1) An inference model fφ with parameter φ to map observation data into latent vector
spaces. (2) A generative model gθ with parameter θ to produce random variables from
latent embeddings.

Inference model fφ. To encode KG components to Gaussian embeddings, we apply
two fully-connected layers to map the entities and relations to the means and log-variances
in their resulting Gaussian embeddings. One of the benefits of encoding log-variance
instead of variance is that it enables us to avoiding using activation functions, since the
variance σ2 must be a positive number.

(hi, log σ2
hi
) = fφ1(hi)

(ri, log σ2
ri
) = fφ2(ri)

(ti, log σ2
ti
) = fφ3(ti)

(11)

where φ = [φ1, φ2, φ3] and µ and log σ2 are the means and log-variances of learned Gaussian
embeddings of KG components:

qφ(zEhi
| hi) = N (hi, σ2

hi
· I)

qφ(zRri
| ri) = N (ri, σ2

ri
· I)

qφ(zEti
| ti) = N (ti, σ2

ti
· I)

(12)

We apply the reparameterization trick mentioned in Equation (10) to obtain the deter-
ministic variables ZEh , ZRr , and ZEt , transformed from latent random variables, with a noise
term ε fromN (0, I), which benefit from gradient propagation between the inference model
and the generative model. We compute the loss of the inference model by measuring the
KL divergence between those conditional probabilities and N (0, I).

Generative model gθ . The generative model decodes from deterministic values to
random variables. For example, given resulting embeddings ZE and ZR from a KG
represented as G = (E ,R,O), our goal is to reconstruct random variables for each triple
(hi, ri, ti) ∈ O, where:

pθ(hi, ri, ti | zEhi
, zRri

, zEti
) = gθ(zEhi

, zRri
, zEti

) (13)

The random distributions of those components can be defined as:

pθ1(hi | zEhi
) = N (zhi , σ2

zhi
· I)

pθ2(ri | zRri
) = N (zri , σ2

zhi
· I)

pθ3(ti | zEti
) = N (zti , σ2

zhi
· I)

(14)

where θ = [θ1, θ2, θ3], and the reconstruction loss of the generative model can be measured
based on the binary cross entropy (BCE) between the generative variables and the real data.
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5. Experiment
5.1. Data Sets

In this work, we conducted experiments and evaluated the related methods using
real-world databases of KG, commonly used in previous works: WordNet [24] and Free-
base [25]. WordNet is an extensive lexical database of English. Nouns, verbs, adjectives,
and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a
distinct concept, and with interlinked sysnets employing conceptual-semantic and lexical
relations. Freebase is a large collaborative knowledge base consisting of data compiled
mainly by its community members. It is an online collection of structured data harvested
from many sources, including individual wiki contributions. The most representative
dataset in WorldNet is WN18, and FB15k in Freebase.

In those datasets, WN18 contains 18 relations and 40,943 entities, whereas FB15k
contains 1345 relations and 14,951 entities. However, both of them suffer from test leakage
through inverse relations: a large number of test triples can be obtained simply by inverting
triples in the training set. Therefore, we introduced FB15k-237, a subset of FB15k, in which
reversible relations were removed. Similarly, WN18 was corrected by WN18RR. Therefore,
we selected WN18RR and FB15k-237 as datasets in our experiments.

5.2. Experimental Setup

We compared our models with serveral KG embedding algorithms in our experiments:

1. TransE [6]. TransE was the first model to introduce translation-based embedding,
which interprets relations as the translations operating on entities.

2. DistMult [10]. DistMult is based on the bilinear model, where each relation is rep-
resented by a diagonal rather than a full matrix. DistMult enjoys the same scalable
properties as TransE and it achieves superior performance over TransE.

3. ComplEx [11]. ComplEx extends DistMult by introducing complex-valued embed-
dings so as to better model asymmetric relations. It has been proven that HolE is
subsumed by ComplEx as a special case.

4. ConvE [12]. ConvE is a multi-layer convolutional network model for link prediction
[24] of KGs, and it reports state-of-the-art results for several established datasets.
Unlike previous work which has focused on shallow, fast models that can scale to
large knowledge graphs, ConvE uses 2D convolution over embeddings and multiple
layers of nonlinear features to model KGs.

5. ConvKB [13]. ConvKB applies the global relationships among same-dimensional en-
tries of the entity and relation embeddings, so that ConvKB generalizes the transitional
characteristics in the transition-based embedding models.

6. R-GCN [14]. R-GCN applies graph convolutional networks to relational knowledge
bases, creating a new encoder for link prediction and entity classification tasks.

The experimental results from those baselines were obtained from the codes provided
by the authors. In our method, we made configurations by selecting a learning rate α
among [0.01, 0.05, 0.10] and an output dimension D among [100, 200, 400]. For WN18RR,
the configuration was as follows. The learning rate α was 0.01 and the output dimension D
was 400, with 3000 training iterations using the Adam [27] optimizer. For FB15k-237, the
configuration was as fallows. The learning rate α was 0.10, and the output dimension D
was 200, with 1000 training iterations using the SGD optimizer. We trained the model until
it converged.

5.3. Link Prediction

Link prediction, aiming at predicting the missing KG components for incomplete
triples, is a typical task in KG embedding. e.g., predicting the head entity for a given triple
(∗, r, t) or predicting the tail entity for a given triple (h, r, ∗). Following the protocols in [6],
we evaluated the performance of our model. Given a test triple, we replaced the head or
tail with all available entities and ranked them by measuring the scoring function defined
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in the methods section. Based on the ranking lists, we report the proportion of correct
entities in the top N ranked entities, where N = 1, 3, and 10, denoted as Hits@1, Hits@3,
and Hits@10.

MRR =
1
|M|

M

∑
i=0

1
rank(ei)

MR =
1
|M|

M

∑
i=0

rank(ei)

(15)

We also record the average reciprocal rank of correct entities (denoted as MRR) and
the average rank of correct entities (denoted as MR) for link prediction, where the func-
tion rank(ei) transforms to the rank of ei. A good embedding algorithm should obtain a
relatively low mean rank and a relatively high mean reciprocal rank.

5.4. Results and Analysis

In this subsection, we report the ability of our model to represent uncertainty, and the
experimental results regarding link prediction.

Qualitative Analysis Before evaluating the performance in specific task compared
with other methods, we need to discuss the ability of our model to represent uncertainty in
KG embedding.

In our method, we measure the uncertainty of KG components by the variances
of their embeddings, where an entity/relation with a higher level of uncertainty has a
large covariance. We discuss the relations in FB15k-237 with ‘/education’ as the domain,
providing a (log) determinant and trace of their covariances as shown in Table 2, from
which we have made the following observations:

1. Our method has the ability to measure the uncertainty in KG embedding. The covari-
ance of Gaussian embedding can effectively describe the uncertainties by calculating
the determinants and traces of the covariances.

2. The relations with more semantic information (the number of associated heads and
tails, type of relation) have larger uncertainty. For example, the ’major_field_of_study’
relation has the largest uncertainty, and the ’educational_insitution’ relation has the
smallest uncertainty in those relations.

Table 2. The relations with /education/ as the domain and their determinants and traces of the
corresponding covariances, sorted by descending order of traces.

Relation #Head #Tail Type log (det) Trace

major_field_of_study 225 77 m-n −338.8 38.1
student 183 292 1-n −340.6 34.8

institution 22 222 m-n −376.2 32.8
colors 85 19 m-n −400.9 26.9

fraternities_sororities 20 3 m-1 −406.9 24.9
campuses 13 13 1-1 −411.9 21.3
currency 5 3 m-1 −423.4 19.8

educational_institution 13 13 1-1 −430.6 18.7

6. Results

We compared our method with the state-of-the-art baselines mentioned above, includ-
ing TransE, DisMult, ComplEx, ConvKB, and R-GCN. First of all, the codes in the baseline
we used are provided by other authors. All models were fully trained, and the data sets
used were public. Our models, in both the Hits@3 and Hits@10 metrics for this dataset,
achieved superior results, which proves that the embedding obtained using our proposed
method is of high quality. The experimental results regarding link prediction are shown in
Table 3. We observe that:
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1. The experimental results on FB15k-237 and WN18RR indicate that our method can
learn high-quality representations in KG.

2. Our method outperformed other baselines in terms of the Hits@3 and Hits@10 metrics,
but its performance was poor in terms of mean reciprocal rank and the Hits@1 metric
on WN18RR. This may be because WN18RR contains a large number of entities and
several relations, so most methods can only judge the correctness of a triple but cannot
rank it in the top position.

3. On FB15k-237, our method outperformed other baselines in terms of the Hits@3,
Hits@10, and mean reciprocal rank metrics, and came second in terms of the Hits@1
and mean rank metrics. The improvements observed in FB15k-237 were greater than
those in WN18RR, showing that FB15k-237 contains more relations and thus the
uncertainties in its components are larger than those in WN18RR, which indicates
that our method can learn valid representations with uncertainties in KG.

Table 3. Experimental results for WN18RR and FB15k-237 test sets. Hits@N values are presented as
percentages. The best score is in bold and the second best score is underlined.

WN18 FB15k-237

MR MRR
HITS@N

MR MRR
HITS@N

1 3 10 1 3 10

TransE (Bordes et al., 2013) [6] 2300 0.243 4.27 44.1 53.2 323 0.279 19.8 37.6 44.1
DistMult (Yang et al., 2015) [10] 7000 0.444 41.2 47 50.4 512 0.281 19.9 30.1 44.6

ComplEx (Trouillon et al., 2016) [11] 7882 0.449 40.9 46.9 53 546 0.278 19.4 29.7 45
ConvE (Dettmers et al., 2018) [12] 4464 0.456 41.9 47 53.1 245 0.312 22.5 34.1 49.7
ConvKB (Nguyen et al., 2018) [13] 1295 0.265 5.82 44.5 55.8 216 0.289 19.8 32.4 47.1

R-GCN (Schlichtkrull et al., 2018) [14] 6700 0.123 8 13.7 20.7 600 0.164 10 18.1 30
Our work 1963 0.236 11.4 48.0 57.6 240 0.518 21.8 42.0 52.1

7. Conclusions

In this paper, we propose the co-embedding model to learn the latent representations
of both entities and relations in the same semantic space, embedding them as Gaussian
distributions. To obtain high-quality embeddings, we introduced the variational auto-
encoder, an auto-encoder model consisting of a probabilistic encoder and a probabilistic
decoder, into our model. One of the assets of the technique is that the affinities between
entities and relations can be measured effectively since they are embedded in the same
semantic space, and we also explain the transformation from observation values to latent
representations via the two models using the variational auto-encoder. In our experiments,
we evaluated the performance of the co-embedding model and other baselines on several
benchmark datasets. From these experimental results, we can conclude that our method
can learn high-quality representations of KG components.

In the future, we plan to extend our method by assuming the priors with other distributions
and optimizing the variational lower bounds in an effective way.
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