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Abstract: In this paper, an observer-based robust fault-tolerant predictive control (ORFTPC) strategy
is proposed for Linear Parameter-Varying (LPV) systems subject to input constraints and sensor
failures. The main objective of this work is to establish a real observer based on a virtual observer to
be used to estimate both states and sensor failures of the system. The proposed virtual observer is
employed to improve the observation precision and reduce the impacts of the sensor faults and the
external disturbances in the LPV systems. In addition, a real observer is proposed to overcome the
virtual observer margins and to ensure that all states and sensor faults of the system are properly
estimated, without the need for any fault isolation modules. The proposed solution demonstrates
that, using both observers, a robust fault-tolerant predictive control is established via the Lyapunov
function. Moreover, sufficient stability conditions are derived using the Lyapunov approach for the
convergence of the proposed robust controller. Furthermore, the proposed approach simultaneously
computes the gains of the real observer and the controller from a linear matrix inequality (LMI),
which is deduced from the estimation errors. Finally, the performance of the proposed approach is
investigated by a simulation example of a quarter-vehicle model, and the simulation results under a
sensor fault illustrate the robustness and performance of the proposed method.

Keywords: linear parameter-varying systems (LPV); sensor faults; observers; tolerant predictive
control; input constraints; active vehicle suspension

1. Introduction

Fault-Tolerant Control (FTC) systems are methods developed to deal with possible
faults caused by sensors and/or actuators in terms of reducing the impacts of these faults
and keeping the performance of the system acceptable. These approaches have the ability
to maintain a performance close to the desirable performance while preserving stability
conditions in the presence of several types of faults caused by sensors and/or actuators.
Over the past several decades, several FTC approaches have been introduced and inves-
tigated in the literature, aiming to reduce the faults’ impacts on the total stability and
performance of systems [1–3].

Generally, there are two major classes of FTC methods: active (AFTC) and passive
(PFTC). In the PFTC approach, the FTC system cannot respond in real-time to all fault
events since the controller’s structure and its parameters are formerly set and trained to only
tolerate a specific set of faults [4]. As a result, a PFTC approach cannot adjust its parameters
to deal with the occurrence of faults, in real-time, that are not within the predefined set. On
the other hand, the AFTC methods are mainly developed to deal with the occurrence of
faults by accommodating faults in such a way that the controller updates its parameters
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to reduce the faults’ impacts on the control system [5,6]. As a result, the AFTC adjusts its
structure or parameters based on the estimated faults obtained by the fault detection and
identification (FDI) block, and the proposed AFTC design manipulates the estimated faults
to maintain better performance in terms of stability, robustness, and fault tolerability [7].

Linear Parameter-Varying (LPV) modeling approaches have received considerable
attention over the past three decades in modeling and control areas. This is due to their
efficiency in dealing with tractable mathematical descriptions for relatively complex non-
linear systems. One of the main types of LPV systems is the polytopic form, which allows
the system to be described as a form of a convex combination of sub-models, and these
sub-models are defined by the vertices of a convex polytope. As a result, the sub-models
are combined to form the LPV model of the system by convex weighing functions, result-
ing in the global model of the system. Many nonlinear systems have been successfully
represented by LPV models [8–10].

Recently, many researchers have been attracted by the theory of solving nonlinear
systems subject to faults based on the LPV representations, and many research papers have
been published in the last few years. Li and Zhang [11] investigated robust H-1 filtering for
singular LPV systems subject to time-varying delays, while the states of the system were
estimated but without any FDI purposes. Hamdi et al. [12] proposed an approach to deal
with polytopic models with unknown inputs and used a proportional integral observer
for fault detection and isolation. Wang et al. [13] proposed and investigated an adaptive
fault diagnosis observer-based approach for regular LTI systems to deal with actuator
faults. Although this proposed approach can be easily modified to deal with LPV systems,
unfortunately, the methodology itself can only detect and estimate constant actuator faults.
Lira et al. [14] proposed a technique for LPV systems in which an observer-based approach
is synthesized to estimate polymer electrolyte membrane (PEM) system states while varying
parameters were planned with state variables. The proposed approach’s performance
was also tested for several common fault scenarios that may appear during normal PEM
system operation. Yadigar et al. [15] proposed an approach based on a virtual actuator
for fault-tolerant control of linear systems subject to time-varying additive actuator faults
as well as an external disturbance. The proposed approach assumes that the structure of
the nominal controller is known. Even though this approach was used to synthesize a
controller for LTI systems, it can easily be modified to accommodate LPV systems. In [16,17],
a H-infinity observer-based approach is designed to estimate states and sensor and/or
actuator faults. Based on the synthesized observer, an output feedback fault-tolerant
controller is established to guarantee the stability of a satellite attitude system. Recently,
a novel observer-based approach for robust stable hybrid fault-tolerant predictive control
was proposed by Zahaf et al. to investigate actuator faults in systems [18]. Recently,
the virtual actuator and virtual sensor-based techniques have attracted more attention in
dealing with different types of faults for LPV systems. The authors in [19] proposed an LPV
virtual sensor design for FTC nonlinear systems, in which the nonlinear system is described
as a LPV representation. In this proposed approach, the scheduling parameters for the
controller, plant, and reconfiguration blocks are the same. In another approach proposed
in [20], the input and the output matrices of the LPV model are set to have dependent
parameters while different virtual actuator (VA) and virtual sensor (VS) parameter designs
are allowed depending on whether the faults are total or partial. In addition, several
practitioners have considered the implementation of a bank of reconfiguration blocks [1]
technique in which each fault scenario is considered in the design. The proposed approach,
based on predictive control, has shown good performance in handling actuator faults and
maintaining robust trajectory tracking.

Generally, model predictive control (MPC) is considered to have been one of the most
successful advanced control algorithms in many industrial applications over the past few
decades [21–23]. However, the FTC problem has not been fully investigated for model pre-
dictive control, and the FTC–MPC topic has recently become attractive to many researchers,
with several algorithms being proposed to deal with actuator faults. Zou et al. [24] proposed
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a model predictive fault-tolerant control (MPFTC) methodology optimized and adjusted
by a Genetic algorithm. The proposed methodology was investigated for batch processes
under disturbances and partial actuator faults. Zarch et al. [25] proposed an actuator
fault-tolerance controller based on nonlinear model predictive control systems. In this
approach, the viability theory is used to synthesize the controller. Shi et al. [26] proposed a
robust constrained model predictive fault-tolerant control methodology for systems subject
to uncertainties, unknown disturbances, interval time-varying delays, and partial actuator
failures. Similarly, Sheikhbahaei et al. [27] proposed a new methodology for explicit model
predictive control of linear discrete-time systems under linear constraints and subject to
unknown disturbances, uncertainties, and actuator faults. Zhang et al. [28] proposed and
presented a state-space model predictive fault-tolerant control methodology for batch pro-
cesses subject to unknown disturbances and partial actuator faults. It is worth mentioning
that most of the proposed approaches based on MPC algorithms for nonlinear discrete-time
systems are based on the linearization of systems around operating points, which makes
these approaches less accurate compared with nonlinear methodologies. In addition, it can
be clearly observed that FTC-based MPC problems have not been fully investigated for
LPV discrete-time systems subject to input constraints and sensor/actuator faults.

In this paper, an approach based on a virtual observer is proposed for discrete-time
LPV systems subject to sensor faults. The proposed LPV model is used to simplify the
complexity of the nonlinear system for the fault-tolerant predictive control (FTPC) and,
at the same time, to maintain high accuracy for the controlling procedure. The proposed
virtual observer is similar in theory to the observer presented in [16,17] but incorporated
with the MPC approach. As a result, an extended state-space LPV model is used to
construct a virtual observer, then the formulated virtual observer is used to propose a
real observer. Knowing that the real observer is based on the parameters of the virtual
observer, both proposed observers will be used to formulate the fault-tolerant predictive
control strategy. The proposed methodology has the ability to reduce the influences of
faults in the dynamics of the system and ensure the robust stability of the closed-loop
system. In addition, sufficient stability conditions are proposed, in terms of linear matrix
inequality (LMI) constraints, to ensure the robust stability of the overall closed-loop system
containing system states, and the estimation of error dynamics. Moreover, the gains of
both observers and the fault-tolerant controller are computed by solving the linear matrix
inequalities (LMIs). This paper is structured as follows: the formulation of the LPV as
well as fault representations are presented in Section 2. Section 3 presents both virtual and
real observers to estimate the states and sensor faults at the same time. Based on the LPV
model, an augmented robust observer fault-tolerant predictive control strategy is presented
in Section 4. The simulation results are illustrated in Section 5. Finally, Section 6 concludes
the paper.

Notation. The superscripts AT and A−1 are used to denote the transposition and
inverse of matrix A, respectively. The symbols Fr describe the controller gains matrices
while the terms Lr represent the observer gain matrices. Rn denotes the nth dimensional
Euclidean space. 0n and In are the zero matrix and the identity matrix, respectively.
In addition, the symbol ‖p‖ represents the Euclidean norm of vector p. The term RMS(·)
represents the root mean square function. The symbol * is used to describe the symmetric
part in equations. The term Co{·} denotes a convex hull, where its element “·” refers to the
vertex of the polyhedron. In addition, the matrices Mr, Nr, Xr, Yr, Zr, and Hr are symmetric
positive definite matrices. The expression S ≥ 0 (or S > 0) denotes that the matrix S is
positive semi-definite (or positive definite, respectively). Finally, the symbols Q0, R0 are
the weighting matrices.
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2. Convex Polytopic Model

Consider the following polytopic discrete-time model given by: x(k + 1) = A(θk)x(k) + B(θk)u(k)

y(k) = C(θk)x(k)
(1)

where x(k) ∈ Rnx is the system state, y(k) ∈ Rny is the system output vector, and
u(k) ∈ Rnu is the system input vector. The system matrices can be written in the poly-
topic form as A(θk) = ∑N

r=1 ρr(θk)Ar, B(θk) = ∑N
r=1 ρr(θk)Br, and C(θk) = ∑N

r=1 ρr(θk)Cr,
where ρr(θk) ≥ 0 and ∑N

r=1 ρr(θk) = 1.
The parameters θk, k = 1, 2, . . . , N are bounded in a predefined compact set Θ, i.e.,

θk ∈ Θ ∀ k ∈ N.
Consequently, the possible values of θk are held within a polytope convex Co{ρ1, . . . , ρr}

of r = 2m vertices {ϑ1, . . . , ϑr}. The images of the matrix A(ρ) for each vertex ϑj correspond
to a set {ρ1, . . . , ρr}, while the components of the set {ρ1, . . . , ρr} are known as the extreme
of the polytope [15]. The system in Equation (1) can be represented by a convex interpola-
tion of the vertices Θ and each vertex ϑj of the polytope, which is obvious because of the
linear dependence on θk.

Note that the control action is set in order to satisfy the constraints below:

‖u(k)‖2 ≤ umax (2)

where umax is the maximum value (upper limit) of the control input.
Since the proposed polytopic discrete-time system is subject to both sensor faults and

external disturbances, the real output signal measured by the sensor may be altered when
a sensor fault occurs. The output of the system is then modeled as follows:

y(k) = C(θk)x(k) + fs(k) (3)

where fs ∈ Rny is the vector of additive sensor faults.
Throughout this work, the following Lemmas and assumptions are needed to derive

the main results.

Lemma 1 (Schur complements lemma [29]). Given any real matrices S, R, and Z with S = ST

and Z > 0, then
S− RZ−1RT < 0

If and only if [
S RT

R Z

]
< 0

Assumption 1. Sensor faults fs(k) and the external disturbance ω(k) are bounded, and there
exists a positive scalar δ such that ‖ω(k)‖ < δ.

Remark 1. Note that Assumption 1 ensures that the increments of faults and the disturbances
between two sampling time instants are bounded.

In this paper, only the sensor faults are considered and the model in Equation (1) can
be rewritten as:  x(k + 1) = A(θk)x(k) + B(θk)u(k) + D(θk)ω(k)

y f (k) = Cx(k) + fs(k)
(4)
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where uf ∈ Rnu , x ∈ Rnx , and yf ∈ Rny denote the vector of the faulty control input,
the vector of the faulty system state, and the faulty measurement output vector, respectively.
Note that fs ∈ Rny is assumed to be an additive sensor fault.

3. Design of Observer-Based Control Law

The main objective of this work is to propose a virtual observer to improve the
estimations and provide better accuracy for both fault observation and the system’s states.

First, an augmented system, which is proposed based on the system in Equation (4) and
exposed to an external disturbance, is proposed for designing an observer that can estimate
system state vector x(k) and sensor faults fs(k). The augmented system is defined as: E1η(k + 1) = A(θk)η(k) + B(θk)u(k) + D(θk)ω(k)

y f (k) = E2η(k)
(5)

where

η =

[
x(k)
fs(k)

]
, A(θk) = [A(θk) 0], E1 = [I 0], E2 = [C(θk) I]

Multiplying T1 to both sides of (4), and by using fact (5), i.e., T1E1 + T2E2 = I, where

T1 =

[
Inx

−C

]
and T2 =

[
0nx×ny

Iny

]
, we have:

η(k + 1) = T1A(θk)η(k) + T1B(θk)u(k) + T1Dω(k) + T2E2η(k + 1) (6)

Let us define the following virtual observer:

η̂(k + 1) = T1A(θk)η̂(k) + T1B(θk)u(k) + T1D(θk)ω(k) + T2E2η(k + 1) + L(θk)(y f (k)− E2η̂(k)
)

(7)

where η̂ =

[
x̂(k)
f̂s(k)

]
is the estimation of the system state x(k) and sensor fault signals

fs(k), and L(θk) is the observer gains, which will be obtained later.
To compute these gains, we will consider an augmented system with estimation error

e(k) of the observer in Equation (7) as e(k) = η(k)− η̂(k). Subtracting Equation (7) from
Equation (6), the error dynamic equation is obtained as

e(k + 1) = (T1A− LE2)e + T1Dω(k)

= (T1A(θk)− L(θk)E2)e + T1Dω(k)
(8)

Remark 2. The virtual observer cannot be realized since it includes unreachable information,
i.e., T2E2η(k + 1). Consequently, a real observer based on the virtual observer’s information is
synthesized by eliminating the unknown terms.

Therefore, we define the auxiliary variable V(k) = η̂(k) − T2E2η(k + 1). The real
observer for the system in Equation (4) can be obtained by:

V(k + 1) = A(θk)V(k) + B(θk)u(k) + L(θk)η̂(k)

η̂(k) = V(k) + C(θk)y f (k) (9)

where a new auxiliary variable, V(k), is introduced along with the matrices A(θk), B(θk),
and C(θk), and the gain matrices L(θk) are the observer matrices to be computed later
as follows:
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A(θk) = T1A(θk)− L(θk)E2, B(θk) = T1B(θk), C(θk) = T2E2, and

L(θk) = L(θk) + (T1A(θk)− L(θk)E2)T2

where L(θk) is a time-varying observer gain matrix that depends on θk, which is defined as

L(θk) = ∑N
r=1 ρr(θk)Lr

4. Robust Fault-Tolerant Predictive Control

Next, a fault-tolerant predictive controller based on an observer is designed for LPV
systems subject to disturbances and sensor faults. As the initial part of this work, an ob-
server was constructed to estimate faulty signals of the system subject to an external
disturbance. Next, based on the observer information a fault-tolerant predictive controller
is proposed to guarantee stability and maintain control performance.

Next, the control law in Equation (10) is considered for compensating for the impacts
of the faults in the closed-loop system and that rejects the disturbance’s influence.

u(k) = F(θk)E1η̂(k) (10)

where F is a time-varying gain matrix that depends on θk, and can be defined as

F(θk) =
N
∑
r=

ρr(θk)Fr.

Replacing Equation (10) in Equation (4), we obtain:

x(k + 1) = A(θk)x(k) + B(θk)(F(θk)x(k)− F(θk)E1e(k)) + D(θk)ω(k)

= (A(θk) + B(θk)F(θk))x(k)− B(θk)F(θk)E1e(k) + D(θk)ω(k)
(11)

To obtain the predictive controller, an optimization problem that minimizes the fol-
lowing worst-case quadratic objective function in an infinite horizon is considered [30]:

min︸︷︷︸
uc(k)

maxJ∞(k) (12)

Subject to (6) and ‖u(k)‖2 ≤ umax, where

J∞(k) =
∞

∑
i=0
‖x(k + i)‖2

Q + ‖u(k + i)‖2
R + α2‖ω(k)‖2 (13)

where Q and R are known positive-definite weighting matrices.
Next, sufficient stability conditions, in terms of LMIs, are derived to ensure the stability

of the overall closed-loop system in Equation (5).

Theorem 1. Consider the faulty LPV system in Equation (5). The state-feedback controller given
by Equation (4) will robustly stabilize the system in Equation (6) subjected to external disturbances
and sensor faults if there exist symmetric positive definite matrices Mr, Nr, Xr, Yr, Zr, and
Hr r = 1, . . . , N, and a positive scalar γ that satisfies the following convex optimization problem:

min
γ,Mr , Nr , Xr , Yr , Zr , Hr

γ (14)

Subject to  −1 ∗ ∗
x(k) −Mr ∗
e(k) 0 −Nr

 (15)
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[
−u2

max Yr

YT
r Mr − XT

r − Xr

]
≤ 0 (16)



−Ξ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R
1
2 Yr −γI ∗ ∗ ∗ ∗ ∗ ∗

Q
1
2 Xr 0n −γI ∗ ∗ ∗ ∗ ∗

0 0n 0n − α2 I
γ ∗ ∗ ∗ ∗

0 0n 0n 0n −Ξ2 ∗ ∗ ∗

−R
1
2 YrE1 0n 0n 0n 0n −γI ∗ ∗

ArXr + BrYr −BrYrE1 DrXr 0n 0n 0n −Mj ∗
0n T1ZrAr − HrE2 ZrT1Dr 0n 0n 0n 0n −Nj



< 0 (17)

r, j = 1, . . . , N

where Ξ1 = −Mr + XT
r + Xr and Ξ2 = −Nr + XT

r + Xr.

Additionally, the control gain can be calculated by Fr = YrX−1
r and the gain of the

state observer is obtained by Lr = Z−1
r Hr, r = 1, . . . , N.

Proof of Theorem 1. First, the following Lyapunov function is defined to obtain the stability
conditions:

V(k/k) = xT(k/k)Γ(θk)x(k/k) + eT(k/k)Π(θk)e(k/k) (18)

where Γ(θk) = ∑N
r=1 ρr(θk)Γr with Γr = γM−1

r , and Π(θk) = ∑N
r=1 ρr(θk)Πr with Πr = γN−1

r .
Furthermore, Γ(θk+1) = ∑N

j=1 ρr(θk+1)Γj and Π(θk+1) = ∑N
j=1 ρr(θk+1)Πj and

V(k + i/k) = xT(k + i/k)Γ(θk)x(k + i/k) + eT(k + i/k)Π(θk)e(k + i/k) (19)

For any i ≥ 0, suppose V(k + i/k) satisfies the following stability constraint:

V(k + i + 1/k)−V(k + i/k) ≤ −
[
‖x(k + i/k)‖2

Q + ‖u(k + i
k
)‖

2

R

]
+ α2‖ω(k)‖2 (20)

As it is assumed that summation is up to ∞, i.e., i→ ∞ , x(∞) = 0, summing from
i = 0 to ∞ produces:

J∞(k) ≤ V(k + i/k) (21)

By defining V(k + i/k) ≤ γ, an upper bound on the performance index is obtained as
J∞(k) ≤ γ.

Hence, the first inequality of Equation (20) holds.
Next, we show that the second inequality of Equation (15) holds.

x(k/k)Γ(θk) x(k/k) + e(k/k)Π(θk) e(k/k) ≤ γ (22)

Since the inequality (18) implies that V(ζ(k + j + 1/k)) strictly decreases as j goes to
∞ and V(ζ(k/k)) ≤ γ from (18), we have

1
γ

x(k/k)Γ(θk) x(k/k) +
1
γ

e(k/k)Π(θk) e(k/k) ≤ 1 (23)
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by the Schur complement, we obtain
−1 ∗ ∗

x(k) −γΓ(θk)
−1 ∗

e(k) 0 −γΠ(θk)
−1

 (24)

Substituting Γr = γM−1
r and Πr = γN−1

r into the above inequality, and by applying
the congruence transformation to the resulting inequality with Diag [1, M−1

r , N−1
r ], we

conclude that Equation (15) holds.
Consider the input constraint in Equation (2)

‖u(k + i/k)‖max , max
i

ui(k + i/k) (25)

max
i>0
‖u(k)‖max = max

i>0
‖Fx̂(k)‖max (26)

max
i>0
‖u(k)‖max ≤ ‖F(

1
γ

Γr)
1
2 ‖

2

2
⇔ (27)

u2
max ≤ Γr

1
2 FT FΓr

1
2 (28)

− u2
max + (

1
γ

Γr)
1
2 FT F(

1
γ

Γr)
1
2 ≤ 0 (29)

Using the Schur complement, we obtain:[
−u2

max F

FT − 1
γ Γr

]
≤ 0 (30)

Substituting Γr = γM−1
r and Fr = YrX−1

r followed by multiplying the right by[
I 0
0 Xr

]
and the left by

[
I 0
0 XT

r

]
, we obtain (16).

Now, (17) implies that:

−Ξ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R
1
2 Yr −γI ∗ ∗ ∗ ∗ ∗ ∗

Q
1
2 Xr 0n −γI ∗ ∗ ∗ ∗ ∗

0 0n 0n − α2 I
γ ∗ ∗ ∗ ∗

0 0n 0n 0n −Ξ2 ∗ ∗ ∗

−R
1
2 YrE1 0n 0n 0n 0n −γI ∗ ∗

ArXr + BrYr −BrYrE1 DrXr 0n 0n 0n −Xj ∗
0n T1ZrAr − HrE2 ZrT1Dr 0n 0n 0n 0n −Wj



< 0 (31)

r, j = 1, . . . , N

where Ξ1 = −Mr + XT
r + Xr, Ξ2 = −Nr + XT

r + Xr and the matrices Mr and Nr are
positives. Furthermore, since X > 0, we have

(XT
r −Mr)

T X−1(Xr −Mr) ≥ 0⇒ −Mr + XT
r + Xr ≤ XT

r M−1
r Xr (32)

Consequently,
⇒ −Nr + XT

r + Xr ≤ XT
r N−1

r Xr (33)
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By taking into account Equations (32) and (33), we can state that (17) implies

−Mr
−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R
1
2 Yr −γI ∗ ∗ ∗ ∗ ∗ ∗

Q
1
2 Xr 0n −γI ∗ ∗ ∗ ∗ ∗

0 0n 0n − α2 I
γ ∗ ∗ ∗ ∗

0 0n 0n 0n −Nr
−1 ∗ ∗ ∗

−R
1
2 YrE1 0n 0n 0n 0n −γI ∗ ∗

ArXr + BrYr −BrYrE1 DrXr 0n 0n 0n −Mj ∗
0n T1ZrAr − HrE2 ZrT1Dr 0n 0n 0n 0n −Nj



< 0 (34)

r, j = 1, . . . , N

where Γ(θk) =
N
∑

r=1
ρr(θk)Γr with Γr = γM−1

r , and Π(θk) =
N
∑

r=1
ρr(θk)Πr with Πr = γN−1

r .

Furthermore, Γ(θk+1) =
N
∑

j=1
ρr(θk+1)Γj and Π(θk+1) =

N
∑

j=1
ρr(θk+1)Πj, and by substituting

Yr = FrXr and Hr = ZrLr into Equation (29), pre-multiplying and post-multiplying by
Diag [Xr

−T, I, I, I, Nr
−1, I, I, I], and using the Schur complement, we see that this is

equivalent to:



−Γ(θk) + Q + F(θk)
T RF(θk) ∗ ∗ ∗ ∗

0n −Π(θk) + (−F(θk)E1)
T R(−F(θk)E1) ∗ ∗ ∗

0n 0n −α2 I ∗ ∗

A(θk) + B(θk)F −B(θk)F(θk)E1 D −Γ(θk+1)
−1 ∗

0n T1A(θk)− L(θk)E2 T1D 0n Π(θk)
−1


< 0 (35)

Again, applying the Schur complement to Equation (35):


A(θk) + B(θk)F(θk) 0

−B(θk)F(θk)E1 T1A− LE2

D T1D


T Γ(θk+1) 0

0 Π(θk+1)

 A(θk) + B(θk)F −B(θk)F(θk)E1 D

0 T1A(θk)− L(θk)E2 T1D



+


−Γ(θk) + Q + F(θk)

T RF(θk) ∗ ∗

0n −Π(θk) + (−F(θk)E1)
T R(−F(θk)E1) ∗

0n 0n −α2 I

 < 0 (36)

Then, multiplying the resulting inequality from the left by [x(k) e(k) ω(k)] and from
the right by [x(k) e(k) ω(k)] and taking into account Equations (2) and (3), we have:

V(k + i + 1/k)−V(k + i/k) ≤ −
[
‖x(k + i/k)‖2

Q + ‖u
(

k +
i
k

)
‖

2

R

]
+ µ2‖ω(k)‖2

This will conclude the proof of Theorem 1. �

Next, a closed-loop system is implemented as a polytopic observer-based fault-tolerant
predictive controller for LPV systems subject to sensor faults.
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5. Results and Discussion

In this section, the proposed methodology is considered for a quarter-vehicle active
suspension system and illustrated in Figure 1 [31,32]. The quarter-vehicle suspension
model parameters used in this study are displayed in Table 1.

Table 1. The parameters of the quarter-vehicle suspension system.

Parameters Description Numerical Value

ms The mass of the quarter body 972 (g)
mus Unsprung mass 113.6 (kg)
ks Suspension stiffness coefficient 42,719.6 (N/m)
kus Tyre stiffness coefficient 101,115 (N/m)
cs The damping ratio of the damper 1095 (N*s/m)
cus The damping ratio of the pneumatic tire 14.6 (N*s/m)
Ns The passive suspension stiffness 4271.96 (10% of ks)
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Figure 1. Nonlinear active quarter-car suspension model.

The mathematical model of the quarter-vehicle active suspension system is a nonlinear
system described by the following nonlinear differential equations [27]:

ms
..
zs(t) + cs

( .
zs(t)−

.
zus(t)

)
+ ks(zs(t)− zus(t)) + Ns(zs(t)− zus(t))

3 = −u(t)

mus
..
zus(t) + cs

( .
zus(t)−

.
zs(t)

)
+ ks(zus(t)− zs(t)) + Ns(zus(t)− zs(t))

3

+cus
( .
zus(t)−

.
z0(t)

)
+ kus(zus(t)− z0(t)) = u(t)

(37)

where zus(t) and zs(t) represent the vertical displacements of the unsprung mass and the
vertical displacements of the sprung mass, respectively. The vector zo(t) represents the
road displacements. The active force (control signal) of the suspension system is given by
u(t). The sprung mass, which is also known as the car chassis, is given by ms. The mass of
the wheel assembly, also known as the unsprung mass, is given by mus. The parameters
ks and cs are the spring coefficient and the damping coefficient of the suspension system,
respectively. In addition, the parameters kus and cus are the compressibility and the damping
of the pneumatic tire, respectively. Finally, Ns is the nonlinear stiffness property of the
primary suspension. In this study, more attention was paid to the vertical behavior of the
tire, which is useful in the design and the analysis of the comfort of the passengers and
the road handling of the vehicle. The tire can be modeled by a simple spring kus that is in
parallel with a damper cus. In addition, the stiffness of the spring is considered constant
while its damping ratio is negligible.
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The nonlinear system described in Equation (32) can be modified to have the following
state-space representation:{

x(k + 1) = A(θk)x(k) + B(θk)u(k) + D(θk)ω(k)

y f (k) = C(θk)x(k) + fs(k)
(38)

Note that the tire deflection is the state variable x1(t) = zus(t)− z0(t). The rest of
the state variables are the unsprung mass velocity x2(t) =

.
zus(t), the suspension stroke

x3(t) = zs(t)− zus(t), and the sprung mass velocity x4(t) =
.
zs(t). The disturbance input

that affects the system is represented as ω(t) =
.
z0(t).

Note that the system matrix A can be expressed in polytopic form as:

A(θk) = ∑2
r=1 ρr(θk)Ar (39)

where ρr(θk) arethevertexcoefficientswithasquaresignal α ∈ [α1 α2] and ρ1 = (α2 − α)/(α2 − α1),
ρ2 = (α− α1)/(α2 − α1). The values of the vertex matrices A(θk) are A1 = A|α=α1

and
A2 = A|α=α2

. In this work, we assume that the suspension deflection cannot exceed a
maximum value, and can be constrained by the mechanical structure |zs(t)− zus(t)| < β.
Note that the variable α(t) is given by the expression α(t) = (zs(t)− zus(t))

2 = (x3(t))
2.

As a result, x3(t) ∈ [−β,+β] and α ∈ [0, β2]; that is, α1 = 0 and α2 = β2, and β is a
predefined constant.

Based on Equation (39), the faulty discrete state-space representation in Equation (38)
can be expressed as a polytopic LPV system: x(k + 1) = ∑2

r=1 ρr(θk)(Arx(k) + Bru(k) + Drω(k))

y f (k) = ∑2
r=1 ρr(θk)(Crx(k) + fs(k))

(40)

where the subscript r refers to the corresponding vertex of the polytope, and ρr(θk) is the

vertex coefficient subject to ρr(θk) > 0 and
2
∑

r=1
ρr(θk) = 1.

Considering the LPV model as described in Equation (1) with N = 2 vertices, the nonlinear
system in Equation (31) is described by Equation (35) with the following matrices:

A1 =


0 1 0 0

− kus
mus

cs+cus
mus

ks
mus

cs
mus

0 −1 0 1

0 cs
ms

− ks
ms
− cs

ms

, A2 =


0 1 0 0

− kus
mus

cs+cus
mus

ks−Ns β2

mus
cs

mus

0 −1 0 1

0 cs
ms

− ks+Ns β2

ms
− cs

ms



B1 = B2 =


0
1

mus

0

− 1
ms

, D1 = D2 =


−1
cus
mus

0

0

 with β = 0.2.

Next, the MPC parameters are selected as follows. The weight matrices Q and R of
the cost function, in Equation (12), are set to 115I and 15I, respectively, where I is the
identity matrix with a proper dimension. A constraint is set on the active control force to
limit the power of the hydraulic actuator. Thus, a hard constraint is imposed on the active
suspension such that |u(k)| ≤ umax, and umax = 1500. In addition, the initial state values
of the LPV system are set as follows: x(0) = [0, 0, 0, 0] and for the augmented vector
that includes initial fault η(0) = [0, 0, 0, 0, 0.08]. To test the robustness of the proposed
method, the external disturbance, which is considered as a bump road profile, is expressed
as ω(k) = 0.05 cos(pik) sin(0.26pik). In the vehicle industry, the sensors are frequently
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subjected to strong vibrations that may add disturbances to the readings and cause sensor
failure. Unfortunately, sensors with high vibration resistance are relatively expensive.
In this study, we assumed that faults can be modeled in terms of vibration amplitude and
frequency. So, the faults of the sensors injected into the closed-loop system are given by
fs(k) = 0.3(cos 0.5k + 0.4). Note that suspension deflection is bounded and should not
exceed a maximum value defined by the mechanical structure. The suspension deflection
was bounded as |zs(t)− zus(t)| < zmax, where the maximum suspension deflection value
zmax is 0.04 m.

In this work, a LMI control toolbox in the MATLAB environment was used to solve
the optimization problem in Equations (30)–(34). The results of the system states and their
estimates and the fault with its estimate are illustrated in Figures 2–6, respectively.
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The results indicate that the proposed control methodology can robustly improve the
ride comfort compared with passive FTC methods. The tire deflection and sprung mass
acceleration responses together with their estimated values are plotted in Figures 2 and 3,
respectively. The results in Figure 2 show that the tire deflection response has been con-
siderably reduced despite the fact that the system is subject to real-time sensor faults and
disturbances. The same comment can be made about the sprung mass acceleration results
shown in Figure 3. In addition, the vertical acceleration of the vehicle’s vibration, presented
in Figure 3, is rapidly reduced by the fault-tolerant predictive control strategy while the
actual value has been quickly and accurately estimated. As a result, the system may achieve
lower values of body acceleration over time for the proposed active controller, which is
better than the passive suspension systems proposed in [21] and, as a consequence, this will
ensure better ride comfort.
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Figure 4 illustrates the suspension deflection, which is bounded by a maximum value
of 0.04 m, where the system achieves lower values over time for the closed-loop systems.
In addition, the proposed methodology has reasonably estimated the suspension deflection
values, and the values have never exceeded the maximum value, which is better than the
results presented in [21].

Figure 5 illustrates the control signal u(t), i.e., the actual force applied by the actuator.
Note that the proposed robust predictive methodology considers the failures at the sensor
and reacts by increasing the force needed. As a result, the proposed robust controller has
improved the vehicle’s ride comfort while satisfying all hard constraints, including both
suspension deflection and actuator saturation constraints, even though the system is subject
to an actuator fault.
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Figures 6 and 7 present the fault estimation results, which show that the stability
of the closed-loop system is guaranteed under external disturbances and sensor faults.
The estimation results show that the proposed methodology has excellent estimation
performance and efficiently tolerates sensor faults.
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Table 2 summarises the RMS comparison between the proposed robust approach and
the method discussed in [21]. The comparison describes the RMS errors of the vehicle’s
dynamic responses in terms of the suspension stroke, body acceleration, and tire dynamic
load under random road excitation. Table 2 presents the maximum values reached in
body acceleration, suspension deflection, and tire deflection with the estimated RMS errors.
The results suggest that the proposed robust predictive controller has better performance
than the passive suspension system discussed in [21] when the system is subject to sensor
faults and external disturbances. In addition, the proposed FTPC structure has the ability
to improve the ride quality and road-holding performance under different types of active
suspension constraints and in the presense of external disturbances and sensor failures.

Table 2. RMS comparison of the vehicle’s dynamic responses with sensor faults.

Suspension Types Body Acceleration
(m/s2)

Suspension
Deflection (m) Tire Deflection (m)

Max RMS Max RMS Max RMS
Passive 8.695 2.432 0.0450 0.0102 0.058 3.452 × 10−3

Active FTPC 6.3232 1.317 0.0200 0.0066 0.0025 4.7913 × 10−4

Note that the illustrated performance of the proposed fault predictive controller is due
to the following:

The proposed predictive control structure is well adapted for LPV models such as LPV
representations for automotive suspension systems. In addition, the external disturbances
and faults in the output channel are already considered in the predictive control design
procedures, which means that the controller is designed to meet both the stability of the
vertical motion of the car’s body and the passenger’s isolation from vibrations caused by
rough roads.

The proposed predictive controller has the ability to anticipate any errors caused
by external disturbances and sensor failures, which eventually helps to reduce the im-
pact of these errors while upper limits are imposed on the dynamic force of the motor.
Note that the upper limits are used to avoid discomfort to passengers and damage to the
vehicle’s components.

6. Conclusions

In this work, an observer-based robust fault-tolerant predictive control (ORFTPC)
approach is proposed for quarter-car active suspension systems with input constraints
subject to sensor faults and disturbances. The proposed approach uses two observers:
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a virtual observer is used to reduce the impact of disturbances and sensor failures, and a
real observer is employed to obtain the various states and faults.

In the proposed approach, a Linear Parameter-Varying (LPV) model is used to describe
the nonlinear quarter-car active suspension system and to develop the proposed controller.
Based on the LPV model, an augmented virtual observer was first proposed to improve
the estimation of the system’s states, while a real observer was designed based on the
parameters of the virtual observer to provide a better estimation of both the system’s states
and sensor faults without the use of a fault isolation module. Furthermore, the stability
conditions were derived to ensure the robust stability of the overall closed-loop system.
In addition, both the observer gain and the fault-tolerant controller gain were obtained
by solving a set of linear matrix inequality constraints. The proposed observer-based
controller design was tested on a nonlinear quarter-car active suspension system, and the
results demonstrate its ability to improve the vehicle’s ride comfort in terms of vibration
elimination and fault tolerance. Furthermore, the proposed approach showed its ability
to handle faults and external disturbances while satisfying the applied hard constraints,
such as a suspension deflection limitation and actuator saturation. In conclusion, the simu-
lation results under external disturbances and sensor faults show that the proposed control
method provides improved robustness and performance.
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