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Abstract: Federated learning (FL) allows UAVs to collaboratively train a globally shared machine
learning model while locally preserving their private data. Recently, the FL in edge-aided unmanned
aerial vehicle (UAV) networks has drawn an upsurge of research interest due to a bursting increase
in heterogeneous data acquired by UAVs and the need to build the global model with privacy;
however, a critical issue is how to deal with the non-independent and identically distributed (non-
i.i.d.) nature of heterogeneous data while ensuring the convergence of learning. To effectively address
this challenging issue, this paper proposes a novel and high-performing FL scheme, namely, the
hierarchical FL algorithm, for the edge-aided UAV network, which exploits the edge servers located
in base stations as intermediate aggregators with employing commonly shared data. Experiment
results demonstrate that the proposed hierarchical FL algorithm outperforms several baseline FL
algorithms and exhibits better convergence behavior.

Keywords: unmanned aerial vehicles; edge-aided networks; federated learning; hierarchical learning

1. Introduction
1.1. Motivations

Owing to the recent advances in the Internet of Things (IoT), there has been a bursting
increase in heterogeneous and private data generated from various sensors, mobile phones,
smart home appliances and unmanned aerial vehicles (UAVs) [1]. Particularly, UAVs are
proving to be one of the key enablers in gathering data from applications, such as road
extraction [2], traffic management [3] and remote sensing, due to their mobility and cost
effectiveness [4]. Naturally, therefore, there is a huge demand to construct machine learning
models for such data while keeping the privacy.

Federated learning (FL) is an efficient and promising solution to realize such a goal [5],
and its applications in unmanned aerial vehicle (UAV) networks have attracted significant
attention in both industrial and academic sectors [4]. With the aid of FL, a global machine
learning model can be efficiently trained without the need for each UAV to directly send
its private data to a cloud (or edge) server. This can be realized through the following
four cyclic steps: (i) training a global model locally at each UAV (i.e., local model) with its
own data, (ii) reporting the trained local models of the UAVs to a centralized cloud server,
(iii) aggregating the local models at the cloud server to update the global model, and (iv)
sending the updated global model to the UAVs for training it at the UAVs locally again.
Most of the FL systems use the FedAvg algorithm, which averages the model updates
weighted by the number of samples that they are trained on. Although the FL (without
the need to send the real-time data feed to the cloud server) can reduce the latency and
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bandwidth, the ever-growing size of deep learning (DL) models causes the transmission of
model updates to be a bottleneck of the system [6]. Additionally, in practice, a very critical
issue for the FL in the edge-aided UAV network is how to handle the non-independent and
identically distributed (non-i.i.d.) nature of heterogeneous data acquired by various types
of UAVs while ensuring the convergence of training the global model [7].

1.2. Related Works

Intermediate edge servers that are located in base stations between UAVs and a cloud
server (usually, more close to the UAVs) can help significantly reduce both communica-
tion and computation costs required by the FL [8–10]. Zhang et al. [11] considered a FL
system with a ground fusion center (GFC) acting as an aggregator to deploy the UAV
network in remote locations in order to reduce the communication complexity. On the
other hand, the authors of [12] used the UAVs as a communication link between the users
and edge notes to mitigate the network latency overhead. Zhang et al. [13] proposed using
multi-dimensional contracts to create an incentive mechanism between the UAVs and task
publishers, which can increase the number of UAV providers that collaborate with the FL
system owners. The authors [14] formulated several services: computational offloading,
resource allocation, and optimal UAV location in a mobile edge computing network, while
using the UAVs as both a communication and computational device. Almost all of the
above works involve UAVs as an active part of the network system, but they do not take
data heterogeneity of the generated samples into account. Another important consideration
in UAV networks is that the UAVs are practically constrained by the memory, communica-
tion, computation, and energy consumption. This leads to a low participation rate of the
UAVs, which will eventually affect the performance of the model [15]. Proposed methods
that solve the system heterogeneity issues include using distributed learning to perform
the training process across multiple edge devices [16,17], choosing the proficient devices by
predicting outages and resource information of the critical infrastructure agents [18]. Even
though most of the above-mentioned studies use FL as a base model, they do not consider
extreme non-i.i.d. situations that arise when the deployment structures and generated data
distributions of the UAV networks among different edge servers differ significantly. Several
studies [19–21] have investigated the performance issue of the FL in non-i.i.d environments,
but in the absence of edge servers. Unfortunately, therefore, the results of these works are
not applicable to developing an effective FL algorithm in the edge-aided UAV network.
The authors of [22,23] developed several effective FL algorithms for edge-aided networks.
However, when the number of edge servers is large, which is the most realistic situation in
the edge-aided UAV network, the performance of such algorithms is relatively low (and
thus, might be unsatisfactory in practice) due to the wide divergence of data available at the
edge servers [24]. In addition, some researchers have tried to include the edge servers in
the training process for UAV networks [13,25–28], but the edge servers still do not actively
participate in the aggregation process.

To the best of our knowledge, in the literature, the aforementioned limitations have
not been broken through yet, and developing high-performing FL algorithms for the edge-
aided UAV network that is robust in non-i.i.d. data distributions is still an active area
of research.

1.3. Contributions

The main contributions of our work are two-fold as follows:

• We develop a novel and high-performing FL scheme, namely, the hierarchical FL
algorithm, for the edge-aided UAV network that works well in real-world scenarios
with non-i.i.d data distributions (i.e., highly skewed feature and label distributions).
In this algorithm, we make an innovative idea to employ commonly shared data at the
edge servers to effectively solve the divergence issue caused by the non-i.i.d. nature.
In practice, this idea is realizable since the commonly shared data can be made or
constructed on the edge servers offline by collecting exemplary data samples from
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the UAVs. We also present an effective method to hierarchically aggregate the local
models of both the UAVs and the edge servers for the global model update.

• We present extensive numerical results under various degrees of non-i.i.d data distri-
butions, especially including several extreme situations with label distribution skew
in order to demonstrate the superiority and effectiveness of the proposed hierarchical
FL algorithm, compared to other baseline FL algorithms. From the numerical results,
we also provide useful and insightful guidelines on how the hyperparameters of the
hierarchical FL can be set and used in practical UAV networks with edge servers.

2. System Model and Problem Description

As shown in Figure 1, we consider an edge-aided UAV network that includes one
cloud server, L edge servers located in base stations, and N UAVs. The UAVs are divided
into L groups, and the lth group of UAVs, denoted by Cl with cardinality |Cl | = Cl , is
assigned to the lth edge server.

Shared data

Shared data

Shared data
Shared data

Shared data

Edge 

server 1
Edge 

server 2
Edge 

server 3

Edge 

server 4

Edge 

server N

Cloud server

UAVs

Figure 1. An edge-aided UAV network.

Let n be the total number of data samples across the UAVs, where the ith UAV has a
dataset, denoted as Pi, consisting of ni data samples. The objective of the FL is to minimize
the following (global) loss function:

f (w) =
N

∑
i=1

ni
n

Fi(w) where Fi(w) =
1
ni

∑
j∈Pi

f j(w). (1)

In (1), f (w) denotes the loss function for the global model w, and f j(w) is the loss
function for the jth data sample of the ith UAV.

In the naive FL, the training process begins with the central cloud server sending the
global model w to the UAVs [5]. Then, at each step t, the ith UAV trains the global model w
locally, which results in a local model wi, using its private dataset Pi based on the gradient
descent method as

wi(t + 1) = wi(t)− ηt∇Fi(w(t)) (2)

where ηt denotes a step size. After sending the local models {wi} back to the central
cloud server, the global model w is updated via the following aggregation: w(t + 1) ←
∑N

i=1
ni
n wi(t). The above procedure is repeated until a desired accuracy is achieved.

Suppose that the global model is updated in every k steps; otherwise, the local models
are trained. Then it follows that

wi(t + 1) =

{
wi(t)− ηt∇Fi(wi(t)), if rem(t, k) 6= 0

∑N
i=1

ni
n wi(t) if rem(t, k) = 0

(3)
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where rem(a, b) denotes the remainder when a is divided by b.

Non-Identical Distributions among UAVs

Given the differences in commercial types of UAVs and their hardware, the data
acquired by those different UAVs are highly likely to be non-i.i.d. This is especially the
case of the FL in the practical UAV networks, compared to the traditional machine learning,
where the training data are expected to be uniform. Therefore, heterogeneity of the UAVs
leads to poor performance and convergence behavior of the FL due to the large deviation
among the local models trained at the devices [20]. Under these circumstances, training a
model Fk in its data Pk will not be representative of the joint global model f [19]:

EPk [Fk(w)] 6= f (w) (4)

There are several ways in which the data among devices can be deviated from be-
ing i.i.d:

• Feature distribution skew: The marginal distributions Pi vary among the devices.
That means the features of data are different between the devices. For example, the
picture of the same object might differ in terms of brightness, occlusion, camera sensor,
etc.

• Label distribution skew: The marginal distributions Pi variance, where devices have
access to a small subset of all available labels. For example, each device has access to a
couple of images of a certain digit.

• Concept shift (different features, same label): The conditional distributions Pi(x|y)
vary among the devices. This is the case where the same label y might have different
features x among devices. In the digit recognition case, digits might be written in
drastically different ways, which results in varying underlying features for the same
digit.

• Concept shift (same features, different label): The conditional distributions Pi(x|y)
vary among the devices. Here, similar features might be labeled differently across
devices. For example, different digits are written in very similar ways, such as 5 and 6,
or 3 and 8.

In real-world scenarios, at least each of the above ways can occur in practice, and most
datasets usually contain a mixture of them. The problem becomes even more severe in
the edge-aided UAV network due to the existence of additional intermediate nodes (i.e.,
edge servers).

3. Hierarchical FL Algorithm

The key idea of the proposed hierarchical FL algorithm is that the edge servers are
used as intermediate aggregators with commonly shared data to improve the performance
of learning, even with non-i.i.d data. For this purpose, in practice, one can collect exemplary
data samples from the UAVs and employ them as the commonly shared data.

In the hierarchical FL, the commonly shared data are used to train the local models at
the edge servers. In addition, we suggest aggregating the local models of both the UAVs
and edge servers hierarchically. Detailed explanations are given in the following.

The proposed hierarchical FL algorithm for the edge-aided UAV network is presented
in Algorithm 1, where T is the overall aggregation step. In addition, C denotes the fraction
of UAVs participating in the hierarchical FL, which are selected from the total N UAVs.

Algorithm 1 works as follows: First, the local models of the UAVs and the edge servers
are all initialized with random weights w0, and each edge server is assigned the commonly
shared public dataset Q that is equivalent to 5% of the overall dataset. Then, the UAVs and
edge servers start training their local models (i.e., the global model of the previous round)
in parallel using their private and commonly shared data, respectively. In every step of the
global aggregation, the UAVs update their models with globally aggregated parameters
wt from the previous round. By averaging the model update, the magnitude of poisoned
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models can be reduced in the case of attack, which ensures that the single backdoor has
less effect on the overall update procedure.

Algorithm 1 Proposed hierarchical FL algorithm.

1: Initialize w0 and Q
2: for t = 0, 1, . . . T − 1 do
3: for each edge l = 1, . . . , L do // in parallel
4: {wl

i}i∈Cl ← wt
5: for k = 1, 2, . . . k2 do
6: for each UAV i ∈ Cl do // in parallel
7: for j = 1, 2, . . . k1 do
8: wl

i ← LocalUpdate(i, wl
i ,Pi) in Algorithm 2

9: end for
10: end for
11: wl ← EdgeAggregation(l, {wl

i}i∈Cl ) in Algorithm 3
12: end for
13: end for
14: wt+1 ← GlobalAggregation({wl

t}L
l=1) in Algorithm 4

15: end for

Algorithm 2 Local update procedure.

1: function LOCALUPDATE(w,P)
2: B ← (split P into batches of size B)
3: for each local epoch i from 1 to k1 do
4: for batch b ∈ B do
5: w← w− η∇(w; b)
6: end for
7: end for
8: return w
9: end function

After k1 local iterations, each UAV sends its local model wl
i trained with private dataset

Pi to the edge servers. Upon receiving the local models from the corresponding UAVs,
the edge servers perform the EdgeAggregation procedure in Algorithm 3, wherein the local
models we

l of the edge servers are trained with the shared dataset Q and those are then
aggregated together with the local models of the UAVs.

Algorithm 3 Edge aggregation procedure.

1: function EDGEAGGREGATION(l, {wl
i}i∈Cl )

2: wl ← ∑Cl
i=1

ni
l

nl
wl

i

3: wl
e ← LocalUpdate(wl ,Q)) // Edge local update

4: return wl+wl
e

2
5: end function

After k2 iterations of the EdgeAggregation procedure, the edge servers send their
aggregated models {wl

t}L
l=1 to the cloud server, where the global model wt+1 is obtained

according to the GlobalAggregation procedure in Algorithm 4. Overall, the local update at
the ith UAV assigned to the lth edge server takes the following form:
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wl
i(t + 1) =



wl
i(t)− ηt∇Fl

i (w
l
i(t),Pi), rem(t, k1) 6= 0

1
2

[
∑
i∈Cl

ni
nl

wl
i(t) + wl(t)

]
rem(t, k1) = 0

rem(t, k2) 6= 0

∑L
l=1

nl
n wl(t), rem(t, k1k2) = 0

, (5)

which is clearly different from that of the traditional FL in Equation (3). We note that when
the intermediate aggregator is unable to perform the EdgeAggregation procedure due to the
low system resources, which is the case when k1 = 1 and wl(t) = ∑i∈Cl

ni
nl

wl
i(t), the overall

process reduces to FedAvg Equation (3).

Algorithm 4 Global aggregation procedure.

1: function GLOBALAGGREGATION({wl
t}L

l=1)
2: wt+1 ← ∑L

l=1
nl
n wl

t
3: return wt+1
4: end function

In any FL algorithm, there is a decrease in the accuracy of training a machine learning
model compared to the centralized learning method due to the weight divergence, which
is mainly caused by the following two factors: different initialization of the models of the
UAVs in the training process and the non-i.i.d nature of the underlying data distribution [20].
As a result, there are two important factors that should influence the performance of the
proposed hierarchical FL algorithm. The first one is the number k1 of iterations in the local
updates of the UAVs and the number k2 of aggregation steps in the edge server before
transmitting the update result to the global server.

Lower values of k1 and k2, that is, fewer iterations steps between global aggregations,
will reduce the communication cost in practice.

The percentage of commonly shared data Q is the second factor.
Since the edge servers act as aggregators in the hierarchical FL, it is possible for the

edge servers to fine-tune the sizes of the shared dataset independently depending on the
data distributions of the UAVs assigned to them. The overall training process is shown in
Figure 2.
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Complexity Analysis

Suppose the completion time for the UAV to finish a single training round is tu, the
transmission time of the UAV updates to the edge server is te, the transmission time of
aggregated model updates from the edge servers to central server is tc, and the overall
communication time complexity in each round isO(CNte + Ltc). Since the edge server also
acts as a base station between UAVs and central server, the communication time complexity
of FedAvg is O(CN(te + tc)). Since the active number of users CN is magnitudes higher
than the number of edge servers L, our proposed algorithm yields a small communication
complexity compared to FedAvg.

4. Numerical Results

In simulations, we consider the image classification task to evaluate and compare the
performance of the various FL algorithms. In this task, we consider two scenarios with
different degrees of non-i.i.d. data distributions.

First, in Scenario I, the widely used MNIST dataset [29] is set to the private dataset Pi
at the UAVs as well as the commonly shared dataset Q at the edge servers. To consider
the situation with extremely non-i.i.d. data distribution, 100 UAVs and 10 edge servers
are selected such that each UAV is given the data samples only with one class and each
edge server is assigned 10 UAVs with 2 different classes in total (for example, the first edge
server can be assigned the labels 3 and 5, and thus, each UAV assigned to it has the data
samples only with either the label 3 or 5). This scenario well describes the case with label
distribution skew, i.e., both when each UAV has the data samples only with one class and
when each edge server is assigned the UAVs that have the same labels.

Second, in Scenario II, the Federated Extended MNIST (FEMNIST) dataset [30] is used
to classify 52 handwritten uppercase and lowercase letters in addition to the 10 digits,
and the dataset is divided according to the writer of the characters with an unbalanced
number of samples per UAV. The purpose of considering this scenario is to study the impact
of feature distribution skew on the FL, where Pi is set to be different among the UAVs.

In total, 360 UAVs are assigned to 18 edge servers randomly. In both Scenarios I and II,
5% of the dataset is selected as a shared dataset for the edge servers. The dynamical nature
of the UAV networks can lead to some of the devices being the bottleneck in the system
(i.e., the straggler effect).

Finally, in Scenario III, we also perform experiments using a very low value of
C = 0.008, to demonstrate the robustness of our system to high dropout or low partic-
ipation rates due to the straggler effects. We use similar settings to Scenario II, while
increasing the number of users from FEMNIST dataset to 3500.

In addition, for the purpose of performance comparison, we report the accuracy of the
model in every k1k2 times.

For the MNIST dataset in Scenario I, we construct a convolutional neural network
(CNN) with four layers: the first two convolutional layers using 10 and 20 filters, respec-
tively, with a kernel size of 5, followed by two fully connected layers with 50 and 10 units,
respectively. The FEMNIST dataset in Scenario II is evaluated using a similar CNN: two
convolutional layers using 32 and 64 filters with a kernel size of 5 and two fully connected
layers with 1024 and 62 units. At each UAV, the stochastic gradient descent is used to
update the local models, where the batch size is set to 32, and the learning rate is set to 0.01
with exponential weight decay of 0.995 after every step of the global aggregation.

4.1. Evaluation Metrics

We split the data of each user into 90% training and 10% test sets, and report the
results on the test set. In order to evaluate the performance of the model, we measure
the top-1 accuracy of all users and average them to obtain the average test accuracy of
the whole network. Since the average accuracy might not take poorly performing users
into account, we also measure what percentage of users are achieving the desired target
accuracy threshold. This allows to better understand the fairness of the model in non-i.i.d.
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scenarios, where the underlying data distribution can heavily affect the accuracy of the
global model in a particular user. We set the target accuracy threshold to 98% and 80% for
Scenario I and Scenario II, respectively.

4.2. Experimental Results

Figure 3 shows a performance comparison between the proposed hierarchical FL
algorithm and other existing FL algorithms, such as FedAvg [5], HierFAVG [22], and
HFEL [23] for Scenario I.

In this figure, we set k1 to 10 and C to 0.2. The naive FL algorithm in [5] performs worst
and even achieves low accuracy (below 70% in terms of average accuracy after 50 rounds).
Although another FL algorithm developed in [22,23] performs better than that of [5], it
still fails to achieve the desired accuracy level (e.g., above 98%) for the case with the label
distribution skew.

On the other hand, the proposed hierarchical FL algorithm not only achieves the
highest accuracy (98.3% average test accuracy across the UAVs), but also converges very
fast and stably (fewer than 20 iterations of the global aggregation). Experiments conducted
with the FEMNIST in Scenario II also demonstrate a similar trend as shown in Figure 4,
where the proposed hierarchical FL algorithm still significantly outperforms the other
FL algorithms.
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Figure 3. Test accuracy of the various FL algorithms over communication rounds for Scenario I.
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Figure 4. Performance comparisons of the various FL algorithms for Scenario II.

In Table 1, we compare the percentage of UAVs that achieve the target accuracy of 98%
in both Scenarios I and II. From Table 1, it can be seen that the proposed hierarchical FL
algorithm considerably outperforms the others in both scenarios. Specifically, in Scenario I,
the proposed hierarchical FL algorithm has 66% of the UAVs reaching the target accuracy
level, higher than those of the FL algorithms in [22,23], more than two times. Note that
the naive FL algorithm in [5] only has 6% of UAVs above 98% accuracy, which is very low.
Experiments for Scenario II also show the clear advantage of the proposed hierarchical
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FL algorithm over the other FL algorithms. Specifically, we can see the performance
gain around 10% compared to [22,23], and it is almost 10 times better compared to [5].
The performance gain is even greater for the case with label distribution skew. The trend
continues in Scenario III, where the proposed algorithm performs even better in both of the
metrics compared to other schemes.

Table 1. Performance comparisons of average test accuracy and the percentage of UAVs reaching the
target accuracy of 98% for Scenario I and 80% for Scenario II after 50 global aggregations.

Scenario I Scenario II Scenario III

Accuracy % UAVs Accuracy % UAVs Accuracy % UAVs

Proposed 98.3% 66% 80.8% 65% 78.51% 55%
FedAvg 62% 6% 69.7% 7.2% 62.3% 3.4%

HierFAVG 84.3% 26% 77.5% 55.6% 74.1% 45.3%
HFEL 85.7% 28% 77.7% 57.8% 73.8% 43.2%

Table 2 lists the performance of the proposed hierarchical FL algorithm in terms of
the average test accuracy and the percentage of UAVs reaching the target accuracy levels,
for both scenarios by varying the hyperparameters C, k1, and k2. In Scenario I, almost all
results with different values of C converge to more than 98% average accuracy across the
UAVs. However, there is an insignificant difference in accuracy with higher values of C,
but the percentage of UAVs with more than 98% test accuracy increases noticeably, in which
moving from C = 0.1 to C = 0.6 results in approximately 10% difference. The increase in
the number of iterations also leads to a significant improvement in terms of the percentage
of UAVs reaching the target accuracy in both scenarios for all values of C. Based on these
results, there is a little advantage in increasing the number of participating UAVs if the
other hyperparameters are tuned carefully. In addition, the high fraction of UAVs leads to
significantly more communication and computational overheads, which might be an issue
in practical resource-constrained edge-aided networks.

Table 2. Performance of the hierarchical FL with different choices of hyperparameters C, k1, and k2

for Scenarios I and II after 50 global aggregations.

Scenario I Scenario II

C k1 k2 Accuracy % UAVs Accuracy % UAVs

0.1

1 1 98.1 46 74.4 48.8
5 1 98.2 54 76.6 57.8
5 5 98.4 60 80.1 64.4

10 5 98.7 62 79.1 60
30 10 98.6 62 76.9 56.1

0.2

1 1 97.8 42 77.2 54.4
5 1 97.9 44 78.7 58.3
5 5 98.6 60 80.8 64.4

10 5 98.6 68 80.5 62.2
30 10 98.3 56 77.7 59.4

0.4

1 1 98 40 77.6 54.4
5 1 98.4 56 79.4 59.4
5 5 98.7 72 80.7 65.5

10 5 98.7 68 80.4 61.7
30 10 98.6 62 77.7 56.7

0.6

1 1 98.2 54 78.5 58.8
5 1 98.7 62 79.02 60.5
5 5 98.8 64 81.5 68.3

10 5 98.7 64 80.9 65.5
30 10 98.9 72 79.01 61.1
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To further analyze the generalization of the proposed algorithm, we perform an addi-
tional set of experiments in NLP (natural language processing) tasks, using Shakespeare
and Sent140 datasets from the LEAF [30] benchmarks suite. We sample the users in non-i.i.d.
fashion, where each speaking role and tweeter user represents the individual user in FL
settings. For the Shakespeare dataset, we consider the model with the embedding layer that
maps the input into 8 dimensions and LSTM of 2 layers with 256 units followed by a fully
connected layer for prediction. We use the input the sequence with 80 characters, learning
rate of 1.0 and 549 users with the participation rate C of 0.1. For the Sent140 dataset, we
construct a similar model with 2 layer LSTM with 100 units following pretrained 300D
GloVe embeddings [31] that takes a sequence with 25 characters as an input. We drop the
users with fewer than 50 samples and set the learning rate to 0.1 for all experiments.

As shown in Figures 5 and 6, our proposed method yields better results compared to
the existing schemes in both metrics, validating that the proposed algorithm is robust in
various FL applications.
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Figure 5. Performance comparisons of the various FL algorithms in Shakespeare dataset.
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Figure 6. Performance comparisons of the various FL algorithms in Sent140 dataset.

5. Conclusions

In this work, we proposed the hierarchical FL algorithm for the edge-aided UAV
network by exploiting the commonly shared data at the edge servers. The numerical
results showed that the hierarchical FL algorithm outperformed the existing FL algorithms
in both practical scenarios with the non-i.i.d. data and a large number of edge servers.
The performance gap was especially large, particularly when each edge server was assigned
the UAVs with the data samples with the same label, where the existing FL algorithms
failed to achieve the desired accuracy levels.
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