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Abstract: Electric arc furnace dust (EAFD) is an important secondary resource for the zinc industry.
The most common process for its recycling is the pyro-metallurgical treatment in the Waelz process.
However, this process focuses on the recycling of the zinc, whereas the recovery of other metals
from the EAFD—such as iron and other alloying elements—is neglected. An up-to-date version of
reprocessing can involve multi-metal recycling by means of a metal bath containing carbon. The
use of a liquid iron alloy requires a higher processing temperature, which enables the reduction
and melting of iron oxides as well as other compounds occurring in the dust. Furthermore, the Zn
yield is higher and the reduction kinetics are faster than in the Waelz process. This paper is only
focused on the zinc reduction in such a metal bath. In order to determine the influence of the carbon
content in the molten metal on the reduction rate, experiments were carried out on the reduction
behavior of zinc oxide using a synthetic slag. This slag, with a basicity B2 = 1, was applied to an iron
bath with varying carbon contents. (0.85%, 2.16%, 2.89%, and 4.15%) The decrease in the zinc oxide
concentration was monitored, along with the reaction rates calculated from these data. It was found
that the reaction rate increases with rising carbon content in the melt.

Keywords: electric arc furnace dust; zinc oxide reduction; metal bath

1. Introduction

Steel mill dusts with high zinc content, occurring during the production of carbon
steel, are a well-known secondary resource for the zinc industry. Because of the heavy metal
content in the dust (Pb, Cr, Cd, etc.), the EAFD is categorized as a hazardous waste and,
therefore, creates a major issue for the steel producer. Due to environmental concerns, it is
important to recycle the dust in a proper way. Despite considerable disadvantages, such as
low product quality and high amounts of residual waste, the Waelz process has dominated
the recycling of these dusts for several decades. Throughout Europe, more than 90% of the
EAFDs are treated in Waelz kilns. Decreasing landfill capacities and increasing disposal
costs, along with global rethinking towards a circular economy, have led to significant
interest in establishing a new, innovative process concept. The desire for a zero-waste
approach and high product quality provides strong motivation for a new recycling route.
Therefore, research is focused on multi-metal recovery and a possible application of the
final slag in the building industry. A suitable concept could be the recycling of the EAFD
via an iron bath containing dissolved carbon. Process developments such as the PIZO,
ESRF, and 2sDR processes make use of this technology [1–5].

In characterization studies of electric arc furnace dusts, it should be noted that a large
part of the compounds occurring are iron oxide (Fe2O3), zinc oxide (ZnO), and zinc ferrite
(ZnO*Fe2O3). Depending on the concentration of the individual elements or the influence
of temperature, the ratios between these three species can change, even though the total
mass of all compounds remains almost unchanged. It can also be considered that in a
neutral atmosphere zinc ferrite decomposes to ZnO and Fe2O3 at ~1200 ◦C, as shown in (1).
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Therefore, ZnO*Fe2O3 can be neglected at the trial process temperature described in this
paper (1400 ◦C) [1,2,6–16].

ZnO × Fe2O3(s) = ZnO(s) + Fe2O3(s) (1)

Furthermore, the following experiments focus on the reduction behavior of ZnO, while
iron is only considered as an additional reducing agent. For this reason, the reduction
reactions of zinc oxide with carbon (C) dissolved in the iron melt, as well as the interactions
with iron oxide and metallic iron, are described below. The system can be divided into
three areas:

• The metal bath containing the dissolved reducing agent (carbon);
• The slag, including the zinc and iron oxide compounds;
• The gaseous phase above the slag.

At the metal–slag interface, direct reduction occurs with the dissolved carbon in the
iron bath as well as with metallic iron. ZnO reacts with Fe from the melt and forms FeO
as shown in (2). A similar behavior can be observed in the reaction with dissolved carbon
listed in (3). A high C content in the iron bath increases the carbon activity and, therefore,
the driving force for the reduction of ZnO [6,7,9,10,17–20].

(ZnO) + Fe(l) = Zn(g) + (FeO) (2)

(ZnO) + [C] = Zn(g) + CO(g) (3)

The reduction of zinc oxide by iron is confirmed by the Richardson–Ellingham diagram
(RED), which is limited to standard conditions (1 mol of oxygen, ambient pressure of 1 atm,
and an activity of 1 for solid and liquid substances). Nevertheless, the RED gives a good
overview of the stability of the individual metal oxides, plotting their Gibbs free energy
over temperature. Low reaction enthalpies indicate a higher stability of the oxides. Metals
that form stable oxides have the characteristics of reducing less stable oxide compounds.
In terms of ZnO, the stability is lower than that of FeO at temperatures over 1200 ◦C.
Above this temperature, the reduction of ZnO by iron is thermodynamically possible. In
case of carbon, a reduction of zinc oxide can already be carried out at temperatures of at
least 1150 ◦C. Since the selected process temperature is 1400 ◦C, theoretically the overall
reduction rate can be increased, as both reactions occur side by side [21].

The conditions at the slag–gas interface provide the requirements for another reduction
with an iron compound, as shown in (4). The low partial pressure of zinc at the boundary
layer between the slag and the gas phase favors the reduction of ZnO with FeO [6,19].

(ZnO) + 2(FeO) = (Fe2O3) + Zn(g) (4)

The gaseous components rise through the slag layer, and can react with other com-
pounds in the slag. In addition to Zn, which passes almost unhindered through the slag
layer and passes into the gaseous phase, the CO serves as an accelerator for the reduction
reactions in the process. The rising CO bubbles increase the reaction area in the system as
they react with ZnO, as shown in (5). In addition, the CO bubbles cause a stirring effect
that entrains iron particles into the slag, and further increase the reaction surface via an
additional reduction path [6,8,10,17,18,22].

(ZnO) + CO(g) = Zn(g) + CO2 (g) (5)

In case of reduction reactions with carbon, the Boudouard reaction, as shown in (6),
can be added. At the process temperature of 1400 ◦C, the equilibrium of the Boudouard
reaction is predominantly on the product side and, therefore, favors the production of CO.
The crucial point is that the thermodynamically preferential reduction reaction of ZnO with
the dissolved carbon in the melt (3) can be described as the sum reaction of (5) and (6).



Appl. Sci. 2022, 12, 664 3 of 10

Consequently, the reaction progress and the reduction rate are also related to a fast and
efficient expiration of the Boudouard reaction [22–24].

C + CO2 (g) = 2CO(g) (6)

To achieve the maximum reduction rate of the Boudourd reaction, the pressure depen-
dence of this reduction and thus of the entire described reduction system plays a desisive
role. According to the principle of Le Chatelier, the equilibrium of a reaction tends to
shift to reduce changes in reaction parameters. In the case of an increase in pressure, the
equilibrium prefers the side of lower molar volume, equivalent to the side of less moles of
gas. An increased pressure leads to an equilibrium that tends towards the reactants (CO2
and C). Therefore, at high pressure, higher temperatures are required for the same amount
of CO. The lower number of CO bubbles in the system reduces the reaction area in the slag
and limits the mixing between slag and melt. Conversely, a decreased pressure favors the
production of CO at lower temperatures and, therefore, leads to a system with a higher
reduction potential, meaning the Boudouard reaction is the limiting step for the reduction
of zinc oxide [7,17,18].

To sum up the reduction behavior of ZnO on a carbon-containing iron bath, Figure 1
compares the thermodynamic calculations of zinc oxide interacting with carbon and iron.
For this purpose, the Gibbs energies are plotted as a function of temperature. The direct
reduction with C shows the lowest reaction enthalpy and, therefore, the greatest driving
force for the reduction of ZnO, followed by the reductions with Fe, CO, and FeO. With
increasing temperature, all reactions show a decrease in delta G, of which the reaction
with C again shows the greatest drop. The reaction products Fe2O3 and FeO remain in
the slag and, in the case of FeO, are available for a further reduction of ZnO at the slag–
gas interface. At the slag–melt interface, a reduction of ZnO via liquid iron can occur.
The reaction product—gaseous zinc—forms bubbles just as CO does, produced during
carbothermic reduction. Carbon monoxide can be oxidized again in the slag, forming
CO2 via the reduction of ZnO. The reaction between FeO and ZnO can only arise in areas
with very low Zn partial pressure. The sole interface that meets these requirements is the
boundary layer between the atmosphere and the slag. In case of the experiments carried
out in this paper, the gaseous Zn is directly re-oxidized above the melt and transferred into
the off-gas system. As a result, the reaction equilibrium of all reactions is shifted to the
production of Zn(g). The reduction of ZnO by FeO, which shows positive Gibbs energy
between 1200 and 1700 ◦C, can therefore also occur during the experiments shown in this
paper. [6,10,20,21,24]
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2. Materials and Methods

Based on the knowledge described above, a series of laboratory-scale trials were
executed to investigate the influence of the initial carbon concentration in the metal bath on
the reduction kinetics of zinc oxide. For this reason, reduction experiments were performed
on iron baths with defined starting concentration of carbon. A synthetic slag with basicity
B2 = 1 was used to simulate process conditions as they occur during the recycling of steel
mill dust. The separate addition of zinc oxide defined the initial concentration of ZnO
in the slag. The resulting slag and iron samples were analyzed by using SEM–EDX and
spark spectrometry.

The tests were carried out in the “Indutherm MU700” induction furnace with a maxi-
mum power input of 12 kW at the Chair of Nonferrous Metallurgy of the Montanuniversität
Leoben. Heating was provided by a graphite crucible with the following dimensions:

• External dimensions (height: 170 mm; diameter: 110 mm);
• Internal dimensions (height: 140 mm; diameter: 56 mm);
• Thermal isolation of the crucible was secured by a ceramic shell of 7 mm.

Since the experiments were investigating the influence of the carbon concentration
in the molten iron on zinc oxide reduction, the experimental setup had to be designed to
prevent any contact between the metal bath and the graphite crucible. For this reason, a
spinel crucible (70% Al2O3, 30% MgO; height: 85 mm; external diameter: 56 mm; thickness:
3 mm) was placed within the graphite crucible. This setup provided uniform, indirect
heating of the spinel crucible through the graphite, and protected against additional carbon
input. The temperature was measured using a thermocouple placed at the bottom of the
graphite crucible. The schematic experimental setup is shown in Figure 2.
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The required metal bath was created by melting a pre-produced iron–carbon alloy
with a defined C content. After heating the metal bath to 1400 ◦C, the previously produced
synthetic slag was added. The composition of the synthetic slag was based on the slag
components occurring in steel mill dusts and thermodynamic calculations ensuring the
lowest possible melting point of the slag. After 10 min of temperature homogenization, the
zinc oxide was added. The charging of ZnO into the liquid slag was also defined as the
starting point of the experiments. The measured temperature at the bottom of the crucible
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was set to 1400 ◦C throughout the entire test period. The compositions of the synthetic slag
and zinc oxide are shown in Tables 1 and 2, respectively. Since the crucible was not sealed,
the produced gaseous zinc was directly re-oxidized in the furnace atmosphere, and ZnO
was transferred into the off-gas system.

Table 1. Chemical composition of the synthetic slag.

Composition of the Synthetic Slag

Compound MgO Al2O3 SiO2 CaO

wt-% 0.42 15.57 42.29 41.72

Table 2. Chemical composition of the zinc oxide.

Cofmposition of Zinc Oxide

Compound FeO Al2O3 SiO2 ZnO PbO CaO

wt-% 2.17 0.68 0.21 89.16 5.96 1.82

To show the temporal progression of ZnO concentration, the fully reproducible exper-
iments were stopped at defined process times. After completion of the individual trials,
the compositions of the slag and the iron–carbon alloy were analyzed. The series of tests
included 4 different carbon concentrations in the iron alloy (0.85%. 2.16%, 2.89%, and
4.15%), and the time intervals of the experiments were set to 2, 4, 6, 10. and 15 min. The
amounts of the individual components used for the experimental procedures are given in
Table 3, and resulted in an initial concentration of ZnO in the slag of 10.55%.

Table 3. Amounts of used input materials.

Input Materials

Compound Iron Alloy Slag Zinc Oxide

Mass [g] 100 22.35 3

3. Results

The temporal progression of ZnO in the slag, relative to the carbon content in the
metal bath, is shown in Figure 3. An increased carbon concentration in the molten iron led
to a faster decrease in ZnO in the first six minutes of the test. Additionally, the tests with
higher C content in the metal bath showed an earlier formation of a plateau in the trend line.
The level of the equilibrium concentration was in a similar range for the experiments with
2.16% C, 2.89% C, and 4.15% C (~2% ZnO). The trial with the lowest carbon concentration
in the molten iron showed higher ZnO content after 15 min of process time. Therefore the
15-minute test with a C content of 0.85% could not be used for the analysis of the reaction
kinetics, because of unrepresentative conditions during the trial.

Furthermore, the tests with 0.85% carbon have limited significance. Considering
the iron–carbon diagram, an iron alloy with 0.85% carbon content is not fully liquid
at a temperature of 1400 ◦C. Although the iron alloy used for the experiment contains
some alloying elements, which reduce the melting point (carbon equivalent = 1.15%), it
is still present in the 2-phase liquid/solid area. Therefore, the transfer of carbon into
the slag is limited. With decreasing carbon content during the reduction of ZnO, the
liquidus temperature increases and the proportion of the solid phase rises further. Based
on these facts, the test trials using the iron alloy with a carbon content of 0.85% can only be
considered in a limited manner.
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For better illustration of the influence of the carbon concentration in the molten iron
on the reaction of ZnO, the reduction rate was calculated from the experimental data.
The trend lines correspond to a first-order reaction equation fitting the experimental data.
The first-order reaction equation is shown in (7); the derivative, shown in (8), allows the
calculation of the reaction rate [24,25].

[ZnO](t) = [ZnO](0) + A × e−kt (7)

r(t) = −
d[ZnO](t)

dt
(8)

[ZnO](t): nO content in the slag at t [%];
[ZnO](0): Initial ZnO content in the slag [%];
A: Reaction constant [-];
K: Reaction constant [-];
T: Time [min];
r(t): Reaction rate at time t [%/min].

The different concentration trends of ZnO in the slag resulted in various reaction rates,
depending on the carbon concentration in the metal bath. The mathematical descriptions
of the trend lines and the reaction rates calculated are shown in Table 4.
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Table 4. Calculated changes in the concentration of zinc oxide in the slag, and the reaction rates.

C0 in Metal
[%]

ZnO Concentration
[%]

Reaction Rate
[%/min]

0.85 [ZnO] = 3.67391+ 6.83081× e−0.26874×t r = 1.83571× e−0.26874×t

2.16 [ZnO] = 1.66117+ 8.86756× e−0.30131×t r = 2.67188× e−0.30131×t

2.89 [ZnO] = 1.93761 + 8.45855× e−0.3673×t r = 3.10683× e−0.3673×t

4.15 [ZnO] = 2.68455 + 7.89179× e−98.022×t r = 7.73569× e−98.022×t

Plotting the reaction rate against the ZnO concentration in the slag results in the curves
shown in Figure 4. The different graphs represent the various carbon concentrations in the
molten iron. The reaction rates at the beginning of the tests are strongly dependent on the
initial concentration of C in the metal bath. At 10% ZnO in the slag, the experiment using
the iron bath with 4.15% carbon shows a reaction rate more than four times higher than
that with 0.85% carbon. The low reactivity can be justified by the high melting point of
an iron alloy with 0.85% carbon. The rate of ZnO reduction is significantly increased at a
carbon content of 2.16%, compared to that at 0.85%; however, the difference at 10% ZnO is
relatively small, at less than 0.8%/min. The difference between the experiments with C
contents of 2.16% and 2.89% is even smaller (0.5%/min), the main reason being their very
similar carbon concentrations. As the ZnO concentration in the slag is reduced, the reaction
rates of all trials decrease linearly, and converge at lower concentrations of ZnO in the slag.
At a residual content of 4% zinc oxide in the slag, the reaction rates of all tests are below
2%/min, and subsequently drop to zero.
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The most important aspect of the experiments presented in this paper is that the
unwanted carbon input to the melt could be prevented. For this reason, in addition to the
analyses of the slag, the C content in the metal bath was also determined after each test.
The results and a trend line for each series of trials are shown in Figure 5. Similar to the
highest reduction rates of ZnO taking place during the period of 0–6 min, the decrease in
carbon concentration in the molten iron is also the greatest during this time. The rest of
the process time shows constant C contents, indicating that an undesirable input of carbon
to the metal bath could be prevented. The reduction of ZnO, which still occurs between
6 and 15 min, is not evident in the graphs. The large ratio of iron bath to slag means that
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the amount of carbon needed for the reduction of the remaining amounts of ZnO causes
insignificant changes in the C concentration. The large metal/slag ratio was necessary in
order to prevent limitation of the reduction process of ZnO by low amounts of C in the
system. The decrease in carbon concentration in all test trials followed a similar temporal
progression, and showed no unusual effects in the iron bath.
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In the tests carried out, the main reduction agent was carbon although, as described
previously, zinc oxide can also be reduced by means of iron. This iron-reduced zinc oxide
represents only a small proportion of the total mass of reduced zinc.

4. Conclusions

The investigations carried out in this paper confirm that the carbon content in the iron
alloy plays a significant role in the reaction process. An effective and fast reduction of a
ZnO-containing steel mill dust in a metal bath is ensured by a high carbon concentration
in the iron alloy. In the case of an industrial process, two opportunities to secure high C
content should be discussed: The first involves using a high ratio of metal to slag in order
to achieve the same phenomenon as in the laboratory tests. The changes in the carbon
content in the iron alloy, due to the reduction of a certain amount of steel mill dust, differ
only slightly from the starting concentration and, therefore, have a negligible influence on
the reduction rate. After tapping the slag, the metal bath is carburized by charging a carbon
carrier onto the molten metal, and the reduction process can be repeated. The second option
would be a permanently installed injection system that provides a continuous supply of
carbon to the metal bath. In this case, the C-containing feed material can be provided by an
injection lance from above through the slag layer. Furthermore, purging stones installed at
the bottom of the furnace and operating with inert gas can increase the movement in the
bath, resulting in a higher reaction surface between the melt and the slag, which increases
the reduction kinetics to the highest possible value. Using these mechanisms, an economic
and ecological process performance with a zinc yield well above 95% is feasible.
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At industrial plants, continuous carburization of the melt is preferred, because the
melting unit can be kept small and, therefore, the investment costs kept low. Furthermore,
the injection device provides an additional stirring effect in the melt, and improves the
conditions for an effective and fast reduction of the steel mill dust.
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