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Abstract: The sedimentation problem is one of the critical issues affecting the long-term use of rivers,
and the study of sediment variation in rivers is closely related to water resource, river ecosystem
and estuarine delta siltation. Traditional research on sediment variation in rivers is mostly based
on field measurements and experimental simulations, which requires a large amount of human
and material resources, many influencing factors and other restrictions. With the development of
computer technology, intelligent approaches have been applied to hydrological models to establish
small information in river areas. In this paper, considering the influence of multiple factors on
sediment transport, the validity of predicting sediment transport combined with wavelet transforms
and neural network was analyzed. The rainfall and runoff cycles are extracted and decomposed
into time series sub-signals by wavelet transforms; then, the data post-processing is used as the
neural network training set to predict the sediment model. The results show that wavelet coupled
neural network model effectively improves the accuracy of the predicted sediment model, which can
provide a reference basis for river sediment prediction.

Keywords: wavelet transform; sediment prediction; rainfall and runoff; estuaries

1. Introduction

Due to the tremendous variations in midstream and downstream areas of rivers and
in the vicinity of estuaries, under the influence of climate change or strong anthropogenic
factors at present, high efficiency and accurate tools are urgently needed for describing and
predicting runoff and sediment movement conditions of rivers [1–3]. The hydro-sediment
variability of rivers has brought significant impacts on river evolution, hydropower plant
construction, river ecology, channel development and estuarine delta siltation [4]. Sediment
load is transported by water flow to tributaries, reservoirs and affected by the processes of
sediment trapping, and eventually outflow to the ocean. These processes can be difficult
to measure. In the midstream and downstream areas of the rivers, sediment-carrying
capacity of flow is weakened by the interception of dams and other hydraulic facilities,
which has brought about fundamental alterations in the runoff processes and sediment
movement conditions of the rivers as well as in the ecological. Whereas, the transport
of sediment through an estuary, which has emerged as one of the potential threats to the
coastal areas, as the change of river sediment supply. The changes in sediment transport
not only seriously affect the construction of water resources, but also have a profound
impact on the production and life of people in riverine areas. Among them, modeling
of runoff-sediment processes is highly variable and nonlinear in nature. Bonaldo et al.
noted that sediment discharge from natural rivers is one of the most powerful drivers of
coastal morphology evolution and proposed the use of integrated information resources
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prioritization to establish an effective coastal management system [5]. The difficulty of
rainfall-runoff-sediment production hydrological processes remains challenging in terms
of sand production prediction [6]. At the meantime, sediment data is highly dependent
on runoff, thus rainfall–runoff models can be developed to improve sediment load predic-
tion [7]. Therefore, the research on accurate forecasting of river hydro-sediment sequences,
combining runoff and rainfall information, is of guiding significance for the rational use of
water resources and flood control in disaster relief.

The estimated sediment flow of a river basin is crucial for the planning and manage-
ment of the basin. In recent years, as computing and artificial intelligence technology are
developing, the artificial neural network has been widely used in mathematical model
building and disaster prediction. Artificial intelligence models can be used to predict and
cluster various hydrological problems, such as prediction of rainfall, runoff and sediment,
in which the most used models are ANN, SVM/SVR, ANFIS, genetic algorithm (GA),
particle swarm algorithm (PSO) and artificial bee colony algorithm (ABC) [8–11]. Based on
the hydrological model of ANN, the flow prediction problem with precipitation as an input
showed that the wavelet derived value can provide relevant flow path and hydrological
information [12]. The simple artificial intelligence model provides raw time series data as
an input, which has limited training accuracy for complex river sand production prediction,
while the coupled wavelet function will improve the prediction efficiency and accuracy.

Artificial neural networks were introduced to the field of hydrology by Professor
French back in the 1990s [13]. Then, Jain S et al. [14] compared traditional autoregressive
models with neural network models for validation and showed that neural network pre-
diction is effective in high flow runoff, while the opposite is achieved in low flow and
autoregressive models are more adept. Fan et al. [15] proposed a data-driven approach for
long short-term memory (LSTM) networks and applied the model to the Poyang Lake Basin
(PYLB) with non-uniform hydrological characteristics across space. The results showed that
the model outperforms artificial neural networks (ANN) and soil and water assessment
tools (SWAT) to capture the peak of runoff more accurately. In addition, there is significant
potential in extending data-based modeling approaches in the field of hydrology. The MLP
model proposed by Shahzad Ali can be successfully used to predict runoff due to rainfall in
the Jhelum River. The results showed that artificial neural network-based approaches can
be a solution to hydrological problems, such as river flow prediction [16]. Kazem Javan [17]
evaluated the ability of two different types of models, the hydrological simulation pro-
gram (HSPF) model and the artificial neural network (Ann) model, to simulate runoff and
showed that the runoff simulated by the artificial neural network is closer to the observed
values than the HSPF prediction and reduces the complexity of modeling the system.

Currently, the application of wavelet analysis to neural networks can combine the
learning ability of the neural network model and the localization ability of wavelet trans-
form to form a new neural network model with fast approximation and strong fault
tolerance, which can obtain faster convergence speed and more accurate prediction results.
The application of the wavelet neural network model to oil field production prediction in
petroleum exploration has resulted in high prediction accuracy, simple operation and low
error due to the model’s better convergence and ability to handle complex situations [18].
Yang et al. [19] quantified the spatial correlation of eight factors, such as bulk density,
clay content and topography on potassium with the wavelet coherence model, which was
very important for hydrological simulation and irrigation management in arid areas of
Loess Plateau in China. John et al. [20] discussed the influence of input variable uncer-
tainty and wavelet decomposition on the performance of hydrological and water resources
probabilistic prediction model, and establishes a prediction model driven by probabilistic
wavelet data. The flow prediction problem with precipitation as an input was based on
the hydrological model of ANN, which shows that the wavelet derived value can provide
relevant flow path and hydrological information.

The wavelet analysis (WA) method has the ability to perform time-frequency inte-
grated analysis of non-stationary time series and is suitable for studying complex hydrolog-
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ical and water resources systems with multi-timescale variability. This paper analyzes the
precipitation and runoff changes of the Lancang River system based on wavelet transform,
and uses the first main cycle of rainfall and runoff as a training set to provide relevant
flow path and hydrological information for predicted sediment in the basin, which helps
to understand the evolution of the river to improve water conservancy construction and
ecological civilization in inland and coastal areas, and provides a reference basis for water
resources utilization.

2. Methods
2.1. Data

Mengsheng hydrological station, located in Lincang City, Yunnan Province (99◦25E, 23◦22N),
is the main stream hydrological station of Nanbi River in the Lancang Water System, with a
catchment area of 1766 km2, inter-annual average precipitation of 1687.9 mm, inter-annual
average runoff of 161,766,000 m3 and inter-annual average flow of 51.3 m3/s, in which
water resources of 334,269,000 m3 are available in Lincang city area.

The hydrological data contains a total of 54 years of observed data for rainfall, runoff
and sediment from 1964 to 2017 at Mengsheng hydrological station in the Lancang River
system. Before studying the relationship between rainfall, runoff and sediment, the hydro-
logical data will be preprocessed [6]:

y(i) =
x(i)−minx(i)

maxx(i) −minx(i)
, i = 1, 2, · · · , a (1)

where maxx(i), minx(i) are the maximum and minimum values of data x(i), respectively; a
is the number of the data.

2.2. Wavelet Transform Method

The basic concept of wavelet transform is to express a signal by a cluster of wavelet
function. Therefore, wavelet function is the core of wavelet transform, which refers to a
type of function that has oscillatory nature with the ability for rapid decay to zero [21,22].

The wavelet function is defined as the equation:∫ ∞

−∞
ψ(t)dt = 0 (2)

ψ(t) = e−
t2
2 eiwt, w ∈ R (3)

where ψ(t) is called the fundamental wavelet and can compose a transform function by
scaling and shifting:

ψm,n(t) = |m|−
1
2 ψ

(
t− n

m

)
(4)

where ψm,n(t) is sub-wavelet function; m is a non-zero real number; n is a real number.
The discrete wavelet transform is applied to the hydrological series of rainfall and

runoff by the convolution of a wavelet function with awaiting signal:

W f (m, n) = |m|−
1
2 ∆t

N

∑
k=1

f (k∆t)ψ
(

k∆t− n
m

)
, k = 1, 2, · · · , N (5)

where W f (m, n) is the wavelet transforms coefficients; N is the number of discrete points.
The real part and mode square of wavelet transform coefficients are used for hydro-

logical period determination. Additionally, the period of the hydrologic time series was
reflected by the wavelet variance with different scales:

Var(m) =
1
N

N

∑
k=1

W2
f (m, n) (6)
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where Wf is the signal to be processed; ψ is the complex conjugate function of ψ.
The discrete inverse transform can reconstruct the signal to produce a smoothed

component W f (t) as:
W f = W f (t) + W f (m, n, t) (7)

where W f (t) is an approximate sub-signal and can represent the trends in the original series
as a whole; W f (m, n, t) are detailed sub-signals on the time scale and can capture small
features of explanatory value in time series.

When the original signal is decomposed multiple times, the approximate sub-signal
and detailed sub-signal will be generated as:

W f = A + D1 + D2 + . . . DN (8)

where detailed sub-signal DN depends on the magnitude of the signal.

2.3. The Artificial Neural Network

The different factors considered in sediment variability, as well as various assumptions
in the transport process, lead to distinct sediment prediction. As the coefficients in the
empirical formula of sediment transport are mostly carried out under different laboratory or
experimentally measured conditions, the results of the formula calculation are inconsistent,
and some even differ greatly. It is difficult for theoretical formulas to reflect the interaction
between these factors, while the artificial neural network can link each factor.

Neurons in artificial networks are connected in diverse ways to form models of
artificial neural networks. Goodfellow et al. viewed artificial intelligence as belonging
to the realm of statistical applications, focusing as much on how to estimate complex
functions statistically with computers and less on providing confidence intervals for those
functions [23]. In this article, computation using neural networks is divided into two main
steps. Firstly, the network is trained, that is the learning of neural networks; then, the
trained network is used to solve the problem, thus the network is verified.

As seen in Figure 1, the input layer is used to represent the number of inputs for the
network, where the wavelet decomposition value Xb is used as the number of processing
units. The output layer is the objective function h(θ)(x). The implicit layer between the
input layer and the output layer is used to denote the interaction effects between the input
processing units. To reduce the impact of data partitioning on the model, the multiple
linear regression model is used for training and prediction [24].

h(θ)(x) = [θ0 θ1 · · · θb]


X0
X1
· · ·
Xb

 (9)

P(θ) =
1
2a

a

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)2
(10)

where a means the number of samples and b represents the number of input variables; θ
is harmonic parameter to make the model work best, which is searched to minimize the
cost function. The most appropriate parameter θ was defined when the cost function P(θ)
was minimized. x(i) and y(i) represent respectively the value of all input variables and
measured value for samples i.
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Figure 1. Neural network structure.

3. Results and Discussion

The real contour of wavelet transform coefficient is shown in Figure 2a,c in which
various color areas mean the positive and negative values of wavelet transform coefficients,
respectively, representing the abundant and depleted periods, which can analyze the
rainfall and runoff characteristics of hydrological stations at the time scale [21]. The module
square of wavelet transform coefficient shown in Figure 2b,d reflects the energy density
corresponding to the period of time-scale variations, where a larger value of the coefficient
modulo square indicates a stronger periodicity of the corresponding time period [25,26].
Wavelet variance plots of wavelet energy with intensity in the frequency domain are shown
in Figures 3 and 4, where the red points indicate the extremes and the time periods of the
main time scales can be identified.

Figure 2. (a) Real part of rainfall wavelet transform coefficients; (b) Square of rainfall wavelet
transform coefficient mode; (c) Real part of runoff wavelet transform coefficients; (d) Square of
rainfall wavelet transform coefficient mode.

It is clear from Figure 2 that there is an obvious interannual variation in the rainfall
and runoff series, and both of them are nearly the same, indicating that runoff is mainly
controlled by rainfall in the region. Additionally, it can be found that there are four main
cycle variations about rainfall and runoff, which are 3–6 years, 8–12 years, 15–20 years and
25–30 years, respectively. The annual rainfall and runoff period, mainly on the 3–6 years,
was more significant from 1972 to 1980, accompanied by relatively ambiguous abundance
and depletion variations. The variation of annual runoff series with 8–12 years is mainly
shown in 1965–1975 and 1998–2008, showing regional oscillations of alternating abundance
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and depletion. In main cycle variation of 15–20 years, annual rainfall mainly occurred in
1965–1975 and annual runoff mostly in 1965–1980. In main cycle variation of 15–20 years,
annual rainfall mainly occurred in 1965–1975 and annual runoff mostly in 1965–1980. The
variation of hydrological time series with a period of 25–30 years is relatively stable in
the whole–time domain and combined with the results of wavelet mode squared contours
and variograms, the first main cycle of rainfall and runoff has a consistent performance of
28 years.

Figure 3. Rainfall wavelet variogram.

Figure 4. Runoff wavelet variogram.

In this paper, Figures 5 and 6 show the discrete wavelet transform is applied to the
monthly average runoff and rainfall information of 28-year main cycle, and the high frequency
and low frequency parts of the information are extracted respectively, then the runoff and
rainfall wavelet coefficients are used as the input layer to make predictions. In essence, the
main cycle runoff and rainfall information is used as a training set for the prediction of
wavelet coefficients in addition to the prediction of the original data. The advantage is that the
magnitude and structure of the weights of the high frequency and low frequency components
of the prediction model reflect the relationship between the constituent components of the
hydrological time series. Meanwhile, the periodic runoff and rainfall data are used as the
training set to improve the accuracy of predicting sediment load.

Figure 5. Original sequence of rainfall.

The sequence after discrete wavelet decomposition for data of rainfall and runoff
is shown from Figures 7–10, in which the detail signals (D1, D2 . . . D4, D5 and D6) are
high-frequency components and approximate signal (A) can be included in the trend term.
As seen in Figures 9 and 10, the fluctuations of D3, D4, D5 and D6 are slight, while the D1
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and D2 as the random item of the original sequence with high volatility. The detail signals
(D1, D2 . . . D4, D5 and D6) and approximate signal (A) can be used to expressed for time
series data characteristics.

Figure 6. Original sequence of runoff.

Figure 7. Trend term of the rainfall original series.

Figure 8. Trend term of the runoff original series.

Figure 9. Decomposition sequence of rainfall.
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Figure 10. Decomposition sequence of rainfall.

The data from 1982–2010 were collected to build a three-layer neural network, in which
2 units of monthly average rainfall and runoff were taken as the input layer and monthly
average sediment load is used as the output layer. After discrete wavelet decomposition,
monthly average data of rainfall and runoff from 1982–2009 were selected as the training
set and used to determine the model parameters. The data from 2010 were selected as
the test samples for the prediction model. Figure 11 shows the comparison between the
predicted and the observed sediment by wavelet transform and neural network model,
in which the predicted sediment is indicated by the “-” line and the observed sediment is
indicated by the red “*” sign.
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For predicting model effects, the Root Mean Squared Error (RMSE), the fit rating
(S) and the Correlation Coefficient (r) are commonly used to determine the accuracy of
the model’s predictions. The RMSE represents the distribution of data points around the
best-fit line. For a perfect match between the observed and predicted values, the root mean
square error is zero. The closer the observed and predicted values are the smaller the RMSE
value [27]. The RMSE can be calculated by using the following relationship:

RMSE =

√
Σ(Qmi −Qci )

2

M
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where Qmi is the measured sediment on month i and Qci is the predicted sediment on
month i; M is the total number of values.

The general form of the fit rating (S) proposed by Willmott [28] is expressing as:

S = 1− Σ(Qmi −Qci )
2

∑
(∣∣Qmi −Qmi

∣∣+ ∣∣Qci −Qci

∣∣)2

where Qmi is the measured average sediment on month i; Qci is the predicted average
sediment on month i. If the S is close to 1, it indicates that the error between the predicted
and measured results is small.

The Correlation Coefficient (r) demonstrates the closeness between the observed and
predicted values:

r =
∑
{(

Qmi −Qmi

)(
Qci −Qci

)}2√
∑
(
Qmi −Qmi

)2
√

∑
(
Qci −Qci

)2

Based on the prediction results, the Root Mean Squared Error (RMSE), the fit rating
(S) and the Correlation Coefficient (r) are 0.05, 0.98 and 0.99, respectively, indicating
that the prediction model can predict the overall trend and volatility of sediment load
more accurately.

4. Conclusions

Predicting sediment transport is essential for effective river basin planning and man-
agement. Among them, the simulation of river sediment transport is highly variable and
nonlinear in nature, hence the difficulty of the runoff–sediment production hydrologi-
cal process remains challenging in terms of sediment prediction. Additionally, sediment
load data are highly dependent on runoff, while runoff is directly related to rainfall in-
tensity. In this study, based on wavelet transform analysis and neural network principle,
the rainfall-runoff-sediment model was established, so as to improve the accuracy of
sediment prediction.

Using the wavelet transform, this article obtains the study of interannual cycle vari-
ation of rainfall and runoff in the study area, both of which have the first main cycle of
28 years, and the main period data were decomposed to obtain the detail signals (D1, D2 . . .
D4, D5 and D6) of high-frequency components and approximate signal (A) on time series.
Then, the monthly average wavelet decomposition of rainfall and runoff was coupled into
the neural network training set as the input layer and the monthly average sediment is
used as the output quantity for predicting the monthly average sediment quantity. The
Root Mean Squared Error (RMSE), the fit rating (S) and the Correlation Coefficient (r) were
used to compare the observed and predicted monthly average sediment transport values;
the results show that the RMSE, the S and the r were 0.05, 0.98 and 0.99, respectively. The
model establishes the relationship between rainfall, runoff and sediment in river basins,
which effectively improves the accuracy of the predicted sediment model and can enhance
the recognition of river systems, thus providing a reference for the establishment of small
information sediment prediction in river areas, and provide a reference basis for sediment
prediction and improve the utilization rate of hydropower energy.

Author Contributions: Conceptualization, Z.L.; Data curation, W.X.; Funding acquisition, Z.S.
and H.Z.; Methodology, Z.L. and H.D.; Project administration, Z.S., L.S. and H.Z.; Visualiza-
tion, J.L.; Writing-original draft, J.L. All authors have read and agreed to the published version
of the manuscript.

Funding: The article was supported by was supported by the National Natural Science Foundation
of China (Grant No. 91647209) and the Public Welfare Project of Zhoushan City (No. 2022C31046).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 647 10 of 11

Data Availability Statement: The data presented in the present study are available on request from
the corresponding author.

Acknowledgments: Great thanks were owed to the Hydrology and Water Resources Bureau in the
Lincang city where data was monitored and those two anonymous referees for their invaluable
suggestions to improve this article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Han, Z.; Long, D.; Huang, Q.; Li, X.; Zhao, F.; Wang, J. Improving Reservoir Outflow Estimation for Ungauged Basins Using

Satellite Observations and a Hydrological Model. Water Resour. Res. 2020, 56, e2020WR027590. [CrossRef]
2. Bonaldo, D.; Benetazzo, A.; Sclavo, M.; Carniel, S. Modelling wave-driven sediment transport in a changing climate: A case study

for northern Adriatic Sea (Italy). Reg. Environ. Chang. 2015, 15, 45–55. [CrossRef]
3. Nezhad, A.; Akbari, G. A new approach for prediction of estuary flow-sediment variation at the downstream end of a reach.

In Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, NL, USA, 17–21
September 2007; CRC Press: Boca Raton, FL, USA, 2019.

4. Chai, Y.; Zhu, B.; Yue, Y.; Yang, Y.; Li, S.; Ren, J.; Xiong, H.; Cui, X.; Yan, X.; Li, Y. Reasons for the homogenization of the seasonal
discharges in the Yangtze River. Hydrol. Res. 2020, 51, 470–483. [CrossRef]

5. Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; De Falco, G.; Fantini, M.; Fontolan, G.; Furlani,
S.; et al. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and
challenges from the Adriatic Sea, Italy. J. Coast. Conserv. 2019, 23, 19–37. [CrossRef]

6. Bajirao, T.S.; Kumar, P.; Kumar, M.; Elbeltagi, A.; Kuriqi, A. Superiority of Hybrid Soft Computing Models in Daily Suspended
Sediment Estimation in Highly Dynamic Rivers. Sustainability 2021, 13, 542. [CrossRef]

7. Idrees, M.B.; Lee, J.; Kim, D.; Kim, T. Complementary Modeling Approach for Estimating Sedimentation and Hydraulic Flushing
Parameters Using Artificial Neural Networks and RESCON2 Model. KSCE J. Civ. Eng. 2021, 25, 3766–3778. [CrossRef]

8. Kamruzzaman, M.; Shahriar, M.; Beecham, S. Assessment of Short Term Rainfall and Stream Flows in South Australia. Water
2014, 6, 3528–3544. [CrossRef]

9. Reisenbüchler, M.; Bui, M.D.; Rutschmann, P. Reservoir Sediment Management Using Artificial Neural Networks: A Case Study
of the Lower Section of the Alpine Saalach River. Water 2021, 13, 818. [CrossRef]

10. Khan, M.A.; Stamm, J.; Haider, S. Assessment of Soft Computing Techniques for the Prediction of Suspended Sediment Loads in
Rivers. Appl. Sci. 2021, 11, 8290. [CrossRef]

11. Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A review of the hybrid artificial intelligence and
optimization modelling of hydrological streamflow forecasting. Alex. Eng. J. 2022, 61, 279–303. [CrossRef]

12. Campozano, L.; Mendoza, D.; Mosquera, G.; Palacio Baus, K.; Célleri, R.; Crespo, P. Wavelet analyses of neural networks based
river discharge decomposition. Hydrol. Process. 2020, 34, 2302–2312. [CrossRef]

13. French, M.N.; Krajewski, W.F.; Cuykendall, R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol. 1992,
137, 1–31. [CrossRef]

14. Jain, S.; Das, A.; Srivastava, D. Application of ANN for Reservoir Inflow Prediction and Operation. J. Water Resour. Plan. Manag.
1999, 125. [CrossRef]

15. Fan, H.; Jiang, M.; Xu, L.; Zhu, H.; Cheng, J.; Jiang, J. Comparison of Long Short Term Memory Networks and the Hydrological
Model in Runoff Simulation. Water 2020, 12, 175. [CrossRef]

16. Ali, S.; Shahbaz, M. Streamflow forecasting by modeling the rainfall–streamflow relationship using artificial neural networks.
Modeling Earth Syst. Environ. 2020, 6, 1645–1656. [CrossRef]

17. Javan, K.; Lialestani, M.R.F.H.; Nejadhossein, M. A comparison of ANN and HSPF models for runoff simulation in Gharehsoo
River watershed, Iran. Modeling Earth Syst. Environ. 2015, 1, 56390. [CrossRef]

18. Wang, L.; Zhang, S.; Duan, Q. The Analysis of Wavelet Neural Network In Oilfield Production Prediction. Appl. Mech. Mater.
2013, 368–370, 1804–1807. [CrossRef]

19. Yang, Y.; Jia, X.; Wendroth, O.; Liu, B. Estimating Saturated Hydraulic Conductivity along a South-North Transect in the Loess
Plateau of China. Soil Sci. Soc. Am. J. 2018, 82, 1033–1045. [CrossRef]

20. Quilty, J.; Adamowski, J. A stochastic wavelet-based data-driven framework for forecasting uncertain multiscale hydrological
and water resources processes. Environ. Model. Softw. 2020, 130, 104718. [CrossRef]

21. Shi, W.; Yu, X.; Liao, W.; Wang, Y.; Jia, B. Spatial and temporal variability of daily precipitation concentration in the Lancang River
basin, China. J. Hydrol. 2013, 495, 197–207. [CrossRef]

22. Malekpour Heydari, S.; Aris, T.N.M.; Yaakob, R.; Hamdan, H. Data-Driven Forecasting and Modeling of Runoff Flow to Reduce
Flood Risk Using a Novel Hybrid Wavelet-Neural Network Based on Feature Extraction. Sustainability 2021, 13, 11537. [CrossRef]

23. Ian, G.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
24. Hecht-Nielsen, R. Theory of the backpropagation neural network. In Proceedings of the IEEE TAB Neural Network Committee,

San Diego, CA, USA, 24–27 July 1988.
25. Li, H.; Song, W. Characteristics of Climate Change in the Lancang-Mekong Sub-Region. Climate 2020, 8, 115. [CrossRef]

http://doi.org/10.1029/2020WR027590
http://doi.org/10.1007/s10113-014-0619-7
http://doi.org/10.2166/nh.2020.143
http://doi.org/10.1007/s11852-018-0633-x
http://doi.org/10.3390/su13020542
http://doi.org/10.1007/s12205-021-1877-9
http://doi.org/10.3390/w6113528
http://doi.org/10.3390/w13060818
http://doi.org/10.3390/app11188290
http://doi.org/10.1016/j.aej.2021.04.100
http://doi.org/10.1002/hyp.13726
http://doi.org/10.1016/0022-1694(92)90046-X
http://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(263)
http://doi.org/10.3390/w12010175
http://doi.org/10.1007/s40808-020-00780-3
http://doi.org/10.1007/s40808-015-0042-1
http://doi.org/10.4028/www.scientific.net/AMM.368-370.1804
http://doi.org/10.2136/sssaj2018.03.0126
http://doi.org/10.1016/j.envsoft.2020.104718
http://doi.org/10.1016/j.jhydrol.2013.05.002
http://doi.org/10.3390/su132011537
http://doi.org/10.3390/cli8100115


Appl. Sci. 2022, 12, 647 11 of 11

26. Irannezhad, M.; Liu, J.; Chen, D. Influential Climate Teleconnections for Spatiotemporal Precipitation Variability in the Lancang-
Mekong River Basin From 1952 to 2015. J. Geophys. Res. Atmos. 2020, 125, e2020JD033331. [CrossRef]

27. Kumar, M.; Kumari, A.; Kushwaha, D.P.; Kumar, P.; Malik, A.; Ali, R.; Kuriqi, A. Estimation of Daily Stage–Discharge Relationship
by Using Data-Driven Techniques of a Perennial River, India. Sustainability 2020, 12, 7877. [CrossRef]

28. Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [CrossRef]

http://doi.org/10.1029/2020JD033331
http://doi.org/10.3390/su12197877
http://doi.org/10.1080/02723646.1981.10642213

	Introduction 
	Methods 
	Data 
	Wavelet Transform Method 
	The Artificial Neural Network 

	Results and Discussion 
	Conclusions 
	References

