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Abstract: Geometric similarity plays an important role in geographic information retrieval, map
matching, and data updating. Many approaches have been developed to calculate the similarity
between simple features. However, complex group objects are common in map and spatial database
systems. With a micro scene that contains different types of geographic features, calculating similarity
is difficult. In addition, few studies have paid attention to the changes in a scene’s geometric
similarity in the process of generalization. In this study, we developed a method for measuring
the geometric similarity of micro scene generalization based on shape, direction, and position. We
calculated shape similarity using the hybrid feature description, and we constructed a direction
Voronoi diagram and a position graph to measure the direction similarity and position similarity.
The experiments involved similarity calculation and quality evaluation to verify the usability and
effectiveness of the proposed method. The experiments showed that this approach can be used to
effectively measure the geometric similarity between micro scenes. Moreover, the proposed method
accounts for the relationships amongst the geometrical shape, direction, and position of micro scenes
during cartographic generalization. The simplification operation leads to obvious changes in position
similarity, whereas delete and merge operations lead to changes in direction and position similarity.
In the process of generalization, the river + islands scene changed mainly in shape and position,
the similarity change in river + lakes occurred due to the direction and location, and the direction
similarity of rivers + buildings and roads + buildings changed little.

Keywords: geometric similarity; micro scene; cartographic generalization; direction Voronoi diagram;
position graph; quality assessment; Hausdorff distance; curvature

1. Introduction

Matching and analyzing geometric similarities play important roles in the field of
GIS, and these tasks have garnered considerable research attention [1–3]. Geometric
similarities can also be applied in map quality evaluation [4,5], spatial transmission [6,7],
map updating [8,9], cartographic generalization [10–12], and others.

Spatial group objects manifest on two-dimensional (2D) maps as point groups, line
groups, and polygon groups. The point group is composed of point features, which
can be bus stops, commercial outlets, and point-of-interest (POI) data. The line group is
considered the greater set of elements in a cartographic database, and it constitutes the
primary information presented in a map [13]; the line group may be used to represent
geographic vector data, which consist of the following three groups: road networks, river
networks, and contour clusters. The polygon group is an important entity of geographical
space distribution [14], which includes the building group, island group, and lake group.
In the field of cartography, line groups and polygon groups often exist in the form of
composite features, such as complex river sections that are composed of islands and river
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banks, as well as blocks that are composed of roads and buildings. Traditional studies
mostly divided the above-mentioned composite features into line groups and polygon
groups for separate research [15–17], thereby splitting the overall connection between
the elements.

In this study, we addressed a spatial scene composed of a line group and a polygon
group as a micro scene (Figure 1). These micro scenes were derived from roads, rivers,
islands, lakes, and buildings in the real world, such as a block composed of roads and
buildings (scene a), an urban waterfront composed of buildings and rivers (scene b), and
the river system formed by rivers and lakes (scene c).
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Figure 1. Map and the extracted micro scenes (a) (block composed of roads and buildings), (b) (an
urban waterfront composed of buildings and rivers), and (c) (a river system formed by rivers
and lakes).

In practical applications, micro scenes are the basis for hand-drawn scene navigation,
fragment scene positioning, and criminal investigation analysis. Numerous studies have at-
tempted to compare scenes based on geometric similarities [18,19]. However, the definition
and representation of similarity are complex, and human expression and cognition relative
to space are hierarchical [20–22]. Almost all of the existing geometric similarity theories,
methods, and models are imperfect. The central question of micro scene comparisons
is how to associate objects and relationships in one scene to corresponding objects and
relationships in another scene. Therefore, it is important to identify what factors should
guide the correspondence amongst them.

Our purpose in this study was to research the preservation of micro scenes’ geometric
similarity in generalization, and to apply the geometric similarity to evaluate the quality
of cartography. Therefore, we chose the three basic geometric characteristics of shape,
direction, and position [23], upon which geometric similarity or matching is often based [24].
Complex structures exist in the spatial objects of micro scenes. In the process of calculating
similarity, it is necessary to comprehensively calculate the overall shape similarity and the
direction similarity, and the position similarity of the objects should also be considered.

Thus, we constructed a method for measuring the geometric similarities of micro
scene generalizations, which considers the transformations in shape, direction, and po-
sition. The improvements mainly include: (1) a proposed method for accounting the
relationships amongst the geometrical shape, direction, and a position of a micro scene
during cartographic generalization; and (2) a method that is able to quantitatively evaluate
the preservation of geometric features between original micro scenes and their general-
ized counterparts.

The remainder of this paper is organized as follows: Section 2 details the proposed
approach, Section 3 describes the experiments and discusses the experimental results, and
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finally, the research conclusions are provided and suggestions for future work are outlined
in Section 4.

2. Methodology

A micro scene contains line groups and polygon groups; shape transformation, direc-
tion transformation, and position transformation should be considered in the similarity
calculation of micro scenes (Figure 2). In this study, we constructed a method of evaluating
the geometric similarity of micro scenes based on hybrid feature description, a direction
Voronoi diagram, and a position graph. Shape similarity was calculated by combining
the Included Angle Chain and the Hausdorff distance; the directional Voronoi diagram
was used to calculate the direction similarity; the Delaunay triangulation network was
constructed to calculate the position similarity.
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Figure 2. Factors affecting micro scenes in similarity judgements: (a) original object group; (b) shape
transformation; (c) direction transformation; (d) position transformation.

2.1. Shape Similarity

The extraction algorithm for shape features needs to convert the original node se-
quence into a feature description sequence [25]; the more detailed the descriptions of the
morphological features, the more accurate the similarity calculation results [26]. In addition,
the algorithm should include the extraction of global and local features [27]. The former
involves the use statistical methods to extract global features, such as area, perimeter, cir-
cumscribed rectangle, and Hausdorff distance, from geometric figures; the latter describes
the local structure of the graph based on curvature [28], key points [29], concave-convex
morphology [30], Hough variation [31], etc.

To ensure the accuracy of calculation and to describe complex shapes, this paper
proposes a hybrid features description method that combines Included Angle Chain and
Hausdorff distance.

We treated polygons as closed line features to calculate the shape similarity of the
micro scenes, and the direction Voronoi graph and position graph were constructed. The
micro scene similarities were calculated through shape similarity, direction similarity and
position similarity.

2.1.1. Shape Feature Extraction by Included Angle Chain

Included Angle Chain [32] is one of the main methods used for the shape similarity
analyses of linear features. Its basic idea is as follows:

Two curves are fitted with n line segments of equal length, and the angles between
the adjacent line segments are used to form their respective angle sequences (i.e., Included
Angle Chain). Then, the similarities between the linear features are measured by calculating
the differences in the angle sequences.

The generation process of the isometric polyline is as follows: First, the Minimum
Bounding Rectangle (MBR) of the curve is determined, taking the longer side as L1, and
then a circle with radius L1/n and the node as the center is drawn. The intersection of the
circle and the curve serves as the end of the line segment, and this point is also the center
of the second circle (if there are multiple intersections, we select the point closest to the
starting point). Then, the above steps are repeated in sequence to obtain the nth intersection
In; if the end of the curve is not reached, the remaining curve is regarded as a complete
curve, and the above operation is repeated. Finally, within range of error δ, the length of
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the isometric polyline is obtained after m cycles. The length calculation formula is shown
in Equation (1):

l =
m

∑
i=1

Li
n

(1)

2.1.2. Shape Feature Extraction by Hausdorff Distance

The Hausdorff distance reflects the proximity of positions between curves, and simi-
larity is calculated by measuring the distance between discrete point sets. The basic idea is
as follows:

Assuming point sets A = {a1, a2, . . . am} and, B = {b1, b2, . . . bn} the calculation using
the Hausdorff distance calculation formula is as shown in Equation (2):

H(A, B) = max(h(A, B), h(B, A)) (2)

where h (A, B) and h (B, A) are one-way Hausdorff distances, representing the maximum of
the minimum distances between all points in a set of points and another set of points. The
details are shown as Equation (3).{

h(A, B) = max(a ∈ A)min(b ∈ B) ‖ a− b ‖
h(B, A) = max(b ∈ B)min(a ∈ A) ‖ a− b ‖ (3)

2.1.3. Shape Feature Extraction by Hausdorff Distance and Included Angle Chain

The Included Angle Chain is suitable for the calculation of local similarity, but the
global features of a curve cannot be described by only the Euclidean distance of the angle
chain [33]. The Hausdorff distance is often used as a method of measuring geometric
similarity, but its disadvantage is that only the maximum offset value is considered; the
detailed features of the curve are not reflected [34].

Thus, this paper proposes a shape similarity calculation method that combines the
Included Angle Chain and Hausdorff distance under a curvature constraint. The method is
mainly divided into the following three steps:

Step 1: The process of using the Included Angle Chain to determine the equal-length
polyline is time consuming, and the curve may not be equally divided into n at the same
time. In view of this, the process is transformed in the process of dividing a curve into
equal segments, and the curvature is used as the basis of the equal division of the curve.

Taking Figure 3 as an example, the black lines are curves P and Q, which are to be
compared, and the number of nodes is m and n; P = ((px,1, py,1), (px,2, py,2), . . . , (px,m, py,m)),
Q = ((qx,1, qy,1), (qx,2, qy,2), . . . , (qx,m, qy,m)). The red line and the green line are the fitted
lines, which are composed of a sequence of equal points, and angle sequences (α1, α2 . . .
α9) and (β1, β2 . . . β9) are obtained.
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To further extract the morphological features of a curve, the number of equally divided
segments needs to be increased. Since the first and second derivatives at the node can be
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approximated by numerical differentiation, the curvature at the node (ax,i, ay,i) is as shown
in Equation (4).

ρ
(
ax,i, ay,i

)
=

∣∣∣a′x,ia
′′
y,i − a′′x,ia

′
y,i

∣∣∣((
a′x,i

)2
+
(

a′y,i

)2
)3/2 (4)

Here, a′x,i and a′y,i are the first partial derivatives at the node, respectively; a′′x,i and a′′y,i
are the second partial derivatives, respectively.

Given a curvature threshold ζ, the mean value of the absolute curvature of each
segment is sorted. When the sorted value is less than ζ, the equal division of the linear
feature is stopped.

Step 2: The angle sequence and the corresponding length sequence are synthesized to
obtain feature sets: M = {(p1, α1), (p2, α2) . . . (p9, α9)} and N = {(q1, β1), (q2, β2) . . . (q9, β9)}.
Coordinate origin O is taken as the pole, the counterclockwise direction is treated as the
positive direction, the length is treated as the polar diameter, and the angle is treated
as the polar angle. Then, Equation (5) is used to scatter the points sequence, and the
polar coordinate systems (pi, αi) and (qi, βi) are constructed (Figure 4). Finally, according
to x = ρcosθ, y = ρsinθ, the polar coordinates are converted into rectangular coordinates,
and the feature point sequences of the curves are converted into description sequences of
geometric features.

θ = π − arctan
py,1 − py,2

px,1 − px,2
− arctan

py,3 − py,2

px,3 − px,2
(5)
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Figure 4. Feature point sets of curve P and curve Q.

Step 3: The median Hausdorff distance of the point groups is calculated, and the
similarity between the two curves can be obtained according to:

Simgeometric
P, Q = 1−

∣∣∣∣∣ HM,P(P, Q)− HM,Q(P, Q)

max
(

HM,P(P, Q), HM,Q(P, Q)
) ∣∣∣∣∣ (6)

where HM,P(P, Q) and HM,Q(P, Q) are the median Hausdorff distance, and Simgeometric
P, Q is

the similarity between P and Q.

2.1.4. Double Lines Shape Similarity Calculation

The method of a constructing skeleton line can describe the shape features of a simple
double line to some extent [35]. In Figure 5, the black lines are the curves to be compared
and the red lines are the extracted skeleton lines. Shape recognition and element matching
can be performed by comparing the geometric features between the skeleton lines.
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Figure 5. Shape feature extraction of constructed skeleton lines: (a) original data; (b) the first
generalization; (c) the second generalization.

However, this method has certain limitations, such as the four types of double-lines
(Figure 6a–d) being converted into straight lines after generalization (Figure 6e). If we use
the linear features of generalization or skeleton lines to calculate the geometric similarity,
the calculated result will be too large, which is inconsistent with visual perception.
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Figure 6. Several types of double lines: (a) convex symmetry; (b) concave symmetry; (c) curvature
difference; (d) misplaced; (e) final generalized result.

The above-mentioned situations mostly occur in fine-grained line groups, such as
curved sections and transition sections of a river system, multilane roads, and complex
interchanges in road networks. Hence, this method is unable to describe complex shapes,
and an effective shape extraction approach should consider the geometric features of both
sides of double lines.

We expanded the calculation method of the single line shape similarity that combines
the Included Angle Chain and Hausdorff distance under a curvature constraint. We take
Figure 7a,b as examples for the similarity calculation of a double line.
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Figure 7. Curves to be compared: (a) curve A’s; and (b) curve B’s features’ description sequence.

Firstly, dividing the double line into an upper curve C� and a lower curve C�, the
curvature constraint thresholds of the curves are ζ� and ζ�, respectively. Then, curves
C� and C� are initially segmented, the segment curvature is calculated, and the feature
description set of the upper curve and the lower curve is obtained. By integrating them
under the same coordinate system (Figure 8a,b), the geometric similarity between curve A
and curve B is calculated using Equation (7).

Simgeometric
A(C��), B(C�� )

= 1−
∣∣∣∣∣ HM,A

(
A
(
C��

)
, B
(
C��

))
− HM,B

(
A
(
C��

)
, B
(
C��

))
max

(
HM,A

(
A
(
C��

)
, B
(
C��

))
, HM,B

(
A
(
C��

)
, B
(
C��

))) ∣∣∣∣∣ (7)

where C�� represents the upper and lower curves, and Simgeometric
A(C��), B(C�� )

is the similarity
between A and B.
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Figure 8. Extraction of curves’ shape feature point: feature description sequence of (a) curve A and
(b) curve B.

2.1.5. Micro Scenes’ Shape Similarity

Humans’ expression and cognition of space are hierarchical, and the multilevel expres-
sion of space aligns with the human cognitive perception of space [36,37]. The morphology
similarity calculation is based on multilevel grids, where the larger the grid size, the fewer
the number of grids; the details of spatial objects are generalized, which can only reflect the
global distribution of features. The smaller the grid, the more detailed the description of
objects, and the more detailed the extraction of local structural features [38].

Initial grids are constructed and the regions are divided into several levels according
to hierarchical control index N. The calculation of N is shown in Equation (8), using the
maximum density, minimum density, and the visual discrimination coefficient to estimate
the number of levels [39,40].

N =
logDmax − logDmin

logq
+ 1 (8)

Here, Dmax is the maximum density, Dmin is the minimum density, and q is the visual
discrimination coefficient of the map load.

The geometric similarity of each grid is calculated according to:

SimGrid = 1−
∣∣∣∣∣ HM,GridA(GA, GB)− HM,GridB(GA, GB)

max
(

HM,GridA(GA, GB), HM,GridB(GA, GB)
) ∣∣∣∣∣ (9)

where HM,GridA(GA, GB) and HM,GridB(GA, GB) are the median Hausdorff distance, and
SimGrid is the shape similarity between GridA and GridB.

Finally, the shape similarity calculation formula is obtained according to the percentage
of the length (Equation (10)):

Simshape = w1SimGrid1 + w2SimGrid2 + . . . + wnSimGridn (10)

where w1, w2 and wn are the percentages of each type of grid in the total length, and
Simshape is the shape similarity.

2.2. Direction Similarity

Direction relationships between object groups play an important role in spatial com-
putation and spatial recognition. A number of models for the description and computation
of direction relations have been proposed, including the cone-based model [41], the 2-D
projection model [42], the direction-relation matrix model [43], the statistical weighting
orientation [44], and the Voronoi-based model [45].
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2.2.1. Direction Voronoi Graph Model

The direction Voronoi graph model considers all sides of the directional relationships
between two targets, and uses a set of multiple directions to describe the directional
relationships.

To simplify the discussion, the two object groups in Figure 9a are used as an example.
The specific calculation process is divided into the following five steps:

1. Construct a point set of the two object groups.
2. Generate the Voronoi diagram. If the three vertices of a triangle belong to the same

object group, it is called the first type of triangle; otherwise, it is called the second
type of triangle (Figure 9b).

3. Delete the first type of triangles, and the remaining triangles form a visible triangula-
tion network (Figure 9c). The area covered by the triangulation network is the visible
area between the targets.

4. Connect the midpoints of the triangle waists to generate the Voronoi diagram of the
direction (Figure 9d).

5. Calculate the azimuth angle of the normal of each Voronoi side, and use the eight-
direction system to classify the azimuths within the same direction into one category.
Then, calculate the percentage of the length of the Voronoi side in each main direction.
As such, the precise directional relationship between group targets can be obtained.
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Figure 9. Procedures for computing direction relationships between two object groups: (a) the
object groups; (b) triangulation of the object groups; (c) proximal sections of the object groups; and
(d) direction Voronoi diagram.

2.2.2. Micro Scenes’ Direction Similarity

The direction Voronoi diagram model uses the 8-direction system to calculate the
percentage of the Voronoi edge in each main direction to obtain the direction relationship,
and it cannot be directly applied to the calculation of direction similarity [46]. For example,
for the case shown in Figure 10, Table 1 provides the calculation result of the direction
relationship. The result is semi-qualitative, and the percentages in each direction cannot be
directly applied to similarity calculations.
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Figure 10. Object group generalization: (a) original data, (b) the first generalization, and (c) the
second generalization.

Table 1. Computation results of the direction relationship.

Object
Group

N
(%) NE (%) E

(%)
SE
(%)

S
(%)

SW
(%)

W
(%)

NW
(%)

(a) 40.67 15.11 5.44 2.52 12.82 23.44
(b) 42.87 13.33 3.99 20.22 19.59
(c) 41.14 16.27 5.24 4.72 16.17 16.46

As such, we constructed a direction similarity measurement method that combines
a direction Voronoi diagram and Hausdorff distance. This method quantifies the overall
distribution characteristics of the direction Voronoi diagram, and calculates the directional
similarity through the Hausdorff distance.

Firstly, the equipartition spacing of lines and polygons is determined using Equa-
tion (11), and the direction Voronoi diagram is constructed (Figure 11).

d = Int
[

ε ∗ MapScale(A)

1000
∗ 1

10

]
(11)

where Int[] is a function that returns the integer part, and MapScale (A) is the scale denomi-
nator of data A. MapScale (A)/1000 indicates the actual length of the graph corresponding
to 1 mm, 1⁄10 represents the proportion that can be recognized by human eyes at a distance
of 1 mm on the drawing, and ε represents the distance tolerance coefficient.
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Figure 11. Construction of direction Voronoi diagram: (a–c) the directional Voronoi diagrams con-
structed using the three scales of micro scenes.

Subsequently, the ratio of the area of the triangle in each direction to the total area is
calculated so that it can be used as the X coordinate. The ratio of the length of each line
segment to the total length is used as the Y coordinate. The size of the direction angle
is used as the offset value of the Z axis. Thereby, a three-dimensional feature point set
describing the direction relationship is obtained (Figure 12).
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Then, the directional similarity between the micro scenes is calculated by the Hausdorff
distance of the feature point set. The calculation formula is as follows:

Simdirection = 1−
∣∣∣∣∣ HM,S1(S1, S2)− HM,S2(S1, S2)

max
(

HM,S1(S1, S2), HM,S2(S1, S2)
) ∣∣∣∣∣ (12)

where HM,S1(S1, S2) and HM,S2(S1, S2) are the median Hausdorff distance, and Simdirection
is the direction similarity between S1 and S2.

2.3. Position Similarity

The position similarity calculation of the micro scenes needs to consider the positional
relationship between lines and lines, lines and polygons, and polygons and polygons. In
this paper, the position similarity between the elements is obtained through the construction
of the position graph.

2.3.1. Position Graph

Generally, the position similarity is obtained by calculating the center distance be-
tween objects, where position graphs and Delaunay triangulation are commonly used
methods [47,48]. Micro scenes contain lines and polygons, and the positional relationship
between features needs to be described separately. Delaunay triangulation has been widely
used in the description of spatial relations and it meets the above requirements. We selected
Figure 10a as an example; three types of triangles describing position relationships were
obtained through the construction of Delaunay triangulation (Figure 13).
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The first type of triangulation describes the position relationships between polygons,
the second triangulation describes the position relationships between lines and polygons,
and the third triangulation describes the position relationships between lines.

2.3.2. Micro Scenes Position Similarity

It is necessary to calculate the similarity of these triangles separately, and the similarity
of any two triangles can be calculated according to the fuzzy similarity method. The specific
process is as follows:

First, a pair of similar triangles is taken and marked as ∆ABC and ∆A’B’C’, and
the corresponding vertex angle degrees are denoted as θa and θ’a. The similarity of the
corresponding internal angles of the triangle is denoted as Sima, Simb, and Simc, and the
angle similarity equation is:

Sima = cos3
(π

2

(
1− ed(ε)

))
(13)

d(ε) = e−
1

2σ2 (θ′a−θa)
2

σ =
θa

6
Then, the similarity of the other two pairs of vertices is obtained using Equation (13),

and the similarity of this pair of triangles is:

Sim∆ABC, ∆A′B′C = (Sima + Simb + Simc)/3 (14)

The similarity of all triangles in the Delaunay triangulation of the two images is
calculated using Equations (13) and (14) to construct the following similarity M × N matrix:

R =


S11 S12 · · · S1n
S21 r22 · · · r2n

...
...

...
rm1 rm2 · · · rmn

 (15)

The mean value is:

S =
n

∑
i=1

m

∑
j=1

Sij/m× n (16)

Subsequently, the position similarity of each type of triangulation is:

Simtype =

√√√√ n

∑
i=1

m

∑
j=1

(
Sij − S

)2/[(m− 1)× (n− 1)] (17)

Finally, the position similarity calculation formula is obtained according to the per-
centage of the area:

Simposition = w1SimTypeI + w2SimTypeI I + w3SimTypeI I I (18)

where w1, w2, and w3 are the percentages of each type of triangulation in the total area, and
Simposition is the position similarity.

2.4. Geometric Similarity Measurements of Micro Scenes

At present, the overall similarity is mainly determined through the weight calculation
of each similarity index, and the similarity calculation formula is obtained by combining
the similarity evaluation factors. However, due to the complex structure of the micro scenes,
the analytic hierarchy process (AHP) and entropy methods have certain limitations. These



Appl. Sci. 2022, 12, 628 12 of 19

methods may be suitable for specific areas, but they are not capable of describing a wider
range of situations. For example, the weight value of river + islands obtained through AHP
is not applicable to roads + buildings.

Referring to recent research [31,49], we took the geometric mean of the direction
similarity, position similarity, and shape similarity as the value of the global similarity
(Equation (19)); we found the calculation results were more stable and more in line with
the actual situations by tests, indicating the geometric mean is suitable for the micro scene
similarity calculation.

SIM = 3
√

Simshape × Simdirection × Simposition (19)

Here, Simshape is the shape similarity calculated by Equation (10), Simdirection is the di-
rection similarity calculated by Equation (12), Simposition is the position similarity calculated
by Equation (18), and SIM is the overall similarity.

3. Experiments and Analysis

To fully test the performance of the presented approach, a Fourier shape descriptor
was implemented to conduct a contrast experiment. In the first experiment, we applied the
proposed method to calculate the similarities of micro scene. In the second experiment, we
applied similarity to evaluate the quality of micro scene generalization.

3.1. Study Area and Data

The experiments were based on a preprocessed GF-2 remote sensing image (Figure 14);
the study area was Lanzhou, China. The image acquisition time was 6 December 2016, and
the coordinate system was WGS-84.
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Figure 14. The original remote sensing image.

3.2. Similarity Measurement for Micro Scene Generalization

The purpose of this part of the study was to verify the usability of the experimental
methods in the detection of changes in the shape, direction, and position of micro scenes.
We extracted five micro scenes (Figure 15a–e) from the remote sensing image: Figure 15a,b
depicts the complex river section formed by islands and rivers, Figure 15c is the river system
composed of rivers and lakes, Figure 15d depicts the urban waterfront, and Figure 15e
shows the block composed of roads and buildings. Four basic operations of displacement,
simplification, merging, and deletion in cartographic generalization were carried out
sequentially. Similarities between each micro scene were computed, and the experimental
results are shown in Figure 16.
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Figure 15. Original data and generalization data: (a–e) the original data; (a1–e1) the data after the
displacement operation; (a2–e2) the data after the simplify operation; (a3–e3) the data after the merge
operation; and (a4–e4) the data after the delete operation.
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Figure 16a shows that the shape similarities of the five micro scenes obtained by
the proposed method are all one, and the directional and positional similarities change
considerably. Taking the set (a, a1) as an example, the positional similarities of the first
and third types of triangulation are both one, indicating that the relative position of island
to island and river bank to river bank has not changed; the similarity of the second type
of triangulation is 0.740, indicating that the relative position between the islands and the
river banks changed. The similarities calculated by the Fourier shape descriptor are all
one, which is inconsistent with the actual situation. This is because Fourier calculates the
similarities of line features and polygon features separately, ignoring the direction and
position relationship between the elements of the micro scenes.

Figure 16b provides the calculation result of the similarity between the original data
and the simplified data. The shapes of the five micro scenes calculated by the proposed
method changed markedly, but the changes in position and direction are small, which is
consistent with the actual situation. The Fourier calculation results only showed that the
similarities of the line group and polygon group reduced, and the specific operations could
not be deduced from the calculation results.

According to the calculation results of the proposed method, we found that the position
similarity of the five micro scenes was relatively low, and the direction and shape similarities
were high (Figure 16c). The Fourier calculation results showed that the similarity of line
features did not change, but the similarity of polygon features changed considerably. The
above results showed that the two methods are complementary under the merge operation.
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From the calculation results of the proposed method, we found that the position
similarity changes greatly, and the changes in shape and direction similarities were small
(Figure 16d), which is in line with the characteristics of the deletion operation. Fourier
detected that the object of the deletion operation was mainly polygon features, but in the
(d, d1) set, we deleted both line features and polygon features, and the calculation results
did not show the type of cartography operation.

In conclusion, Fourier divides micro scenes into independent line features and polygon
features to calculate similarity, which breaks the overall connection between the objects in
the micro scenes and cannot express the direction and position changes in the process of
generalization. The proposed method compensates for the above shortcomings, and the
similarity calculation results are more in line with the actual situation.

3.3. Quality Assessment of Micro Scene Generalization

The main purpose of this part of the study was to verify the effectiveness of applying
geometric similarity to assessing the quality of micro scene generalization. We chose
Figure 17a–e as the original data, and small-scale maps were generated on this basis. The
similarities between each micro scene were computed, and the experimental results are
shown in Tables 2 and 3.
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Table 2. Calculation results produced by the method proposed in this paper.

Micro Scene Shape
Similarity

Direction
Similarity

Position
Similarity

Micro Scene
Similarity

(a, a1) 0.923 0.836 0.769 0.840
(a, a2) 0.818 0.742 0.692 0.749
(b, b1) 0.937 0.858 0.893 0.895
(b, b2) 0.812 0.786 0.676 0.756
(c, c1) 0.802 0.819 0.853 0.824
(c, c2) 0.721 0.730 0.747 0.733
(d, d1) 0.769 0.842 0.785 0.798
(d, d2) 0.697 0.715 0.703 0.705
(e, e1) 0.930 0.871 0.852 0.884
(e, e2) 0.865 0.822 0.739 0.807
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Table 3. Calculation results of Fourier shape descriptor.

Micro Scene Line Features
Similarity

Polygon Features
Similarity

Total
Similarity

(a, a1) 0.914 0.842 0.878
(a, a2) 0.852 0.791 0.822
(b, b1) 0.883 0.890 0.887
(b, b2) 0.821 0.774 0.798
(c, c1) 0.943 0.901 0.922
(c, c2) 0.875 0.806 0.841
(d, d1) 0.829 0.933 0.881
(d, d2) 0.740 0.814 0.777
(e, e1) 0.912 0.878 0.895
(e, e2) 0.733 0.803 0.768

From the calculation results in Tables 2 and 3, we found that as the degree of general-
ization increased, the similarity between the two methods gradually decreased. However,
the Fourier shape descriptor breaks the overall connection between the objects in the micro
scenes and cannot express the direction and position changes in the process of gener-
alization. Only the similarity of a single feature can be described through the Fourier
shape descriptor; it cannot be directly applied to the quality evaluation of micro scene
generalization. However, the proposed method compensates for this deficiency.

In the map generalization process, we used the selection and merging methods. Some
islands, buildings, and lakes were discarded, and smaller units were merged, which caused
(1) the similarity of the second and third types of triangular nets to be reduced, and (2) the
direction difference between composite features to increase and the similarity between
micro scenes to decrease. In addition, the simplification method reduces the details, and the
shape similarity is decreased. The details of the similarity changes between micro scenes
are as follows:

In the river + islands micro scene, such as in Figure 17a–a2,b–b2, the simplification op-
eration of the river caused the main shape to change, and the changes in direction similarity
and position similarity mainly occurred due to the deletion of islands. In Figure 17a–a2,
the shape similarities dropped from 0.923 to 0.818; the position similarities of the first type
changed from 0.847 to 0.759, and the second changed from 0.791 to 0.656. These calculation
results are consistent with the actual situation.

In the river +lakes micro scene, as shown in Figure 17c–c2, due to the generalization
operation between river and lakes, the directional similarity decreased, and the changes in
position similarity occurred due to the merge operation. In Figure 17c–c2, the directional
similarity dropped from 0.819 to 0.730, and the positional similarities of the first type
dropped from 0.864 to 0.679. The calculation results detected the changes in the position
and direction before and after generalization.

In the rivers + buildings micro scene, such as in Figure 17d–d2, the change in direc-
tion similarity was small, and the change was mainly due to the merge operation. For
Figure 17d–d2, the change rate of directional similarity was 5.05%, and the positional
similarities dropped from 0.785 to 0.703.

In the roads + buildings micro scene, such as in Figure 17e–e2, the change in directional
similarity was small, and the change was due to the merge operation. For Figure 17e–e2,
the change rate in direction similarity was 5.63%, and the change rate of position similarity
was 13.26%; the results are consistent with the actual situation.

The proposed method comprehensively considers the overall distribution relation-
ships between features in micro scenes, and measures the changes in shape, direction,
and position. Overall, the calculation results are more consistent with the actual situation,
and the changes in geometric similarity before and after generalization can be quantita-
tively evaluated.
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4. Conclusions

In this study, we examined the geometric similarity of micro scenes from the perspec-
tive of generalization. The geometric similarity changes in the micro scene were described
from three aspects: shape similarity, direction similarity and position similarity. This
study’s findings contribute to existing research on cartographic generalization by analyzing
the geometric features and the generalization process.

The findings illustrated that the three factors can quantitatively describe the geometric
similarity changes in micro scene generalization. In the river + islands micro scene, the
simplification operation caused the shape similarities to decrease from 0.923 to 0.818, and
the delete and merge operations caused the position similarity to change from 0.769 to
0.692. In the river +lakes micro scene, the changes in position similarity occurred due
to the merge operation, and the directional similarity dropped from 0.819 to 0.730. In
the rivers + buildings and roads + buildings micro scenes, the change rates of directional
similarity were 5.05% and 5.63%, respectively; the changes mainly came from the deletion
and simplification operations.

In general, the geometric similarities of micro scenes can be comprehensively calcu-
lated, even if they contain different types of geographic features. The proposed method
effectively detects the changes in shape, direction, and position during generalization. In
addition, it is able to quantitatively evaluate the preservation of geometric features between
original micro scenes and their generalized counterparts; the calculation results were more
in line with the actual situation.

However, several issues should be investigated further. The proposed approach
could be improved further by considering the constraints of spatial relationships, such as
topological constraints, and the method should be extended to the similarity calculation
of multiscale and multi-morphological micro scenes. In addition, automatic micro scene
extraction and segmentation methods need to be further studied.
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