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Abstract: Nowadays, hydraulic excavators are an indispensable part of the construction industry;
however, conventional hydraulic excavators consume a great deal of fossil fuel and release a large
amount of pollution emissions into the environment. This causes many unwanted costs, therefore,
effective solutions are required to solve the above-mentioned problems. In this paper, a new inde-
pendent metering system is proposed to improve energy-saving and reduce costs of a conventional
system. In detail, a directional valve is used to control movement and three electro-hydraulic poppet
valves are integrated to adjust the flow rate at the inlet and outlet ports of the boom cylinder. In
addition, a control strategy based on the coordination between the speed of the pump and the opening
area of the spool valve is designed to improve the performance of the system. Specifically, the valves
are controlled based on the strategy that the meter-in valve is opened fully to reduce throttling losses
and that the meter-out valve is controlled to reduce leakage. The speed of the pump is adjusted
according to the feedback position signal. To demonstrate the effectiveness of the new configuration,
a real test bench of the boom system was built under laboratory conditions. From the experimental
results, the new independent metering valve system not only works with a high tracking precision,
but it also reduces energy consumption. Compared with a conventional independent metering
system, the fuel economy of the proposed structure can achieve a reduction of approximately 6.5%.

Keywords: energy consumption; energy-saving; hydraulic boom system; independent metering valve

1. Introduction

Hydraulic systems are usually applied to construction machinery and are widely
used in industry, such as for excavation, construction, and agriculture systems. Due to
their high power-to-size ratio and robustness, hydraulic systems are considered to be the
perfect alternative to electrical actuators that require high power. Among these, hydraulic
excavators are the most generally used [1–3]; however, conventional excavators consume a
great deal of fossil fuel, which are gradually being depleted. Moreover, the emissions from
conventional excavators emit harmful gases into the environment, which cause problems
related to air pollution and global warming [4]. Hence, reducing energy consumption is
presently an urgent issue for excavators [5–12].

Regarding energy consumption problems, a conventional excavator is controlled by
electro-hydraulically directional spool valves, in which four-way proportional directional
control valves are the most popular. However, these directional valves cause a high energy
loss of approximately 30% through many factors, such as high-pressure margin, throttling
loss, and load differential. In addition, the leakage and friction in the pumps and pipelines
are also elements that motive energy loss in conventional excavators [13–16], leading to
increasing costs during system operation. Hence, to achieve the desired performance in
terms of cost- and energy-saving, an independent metering valve system (IMV) has been
developed [17–20].

A conventional independent metering valve (CIMV) configuration uses four propor-
tional valves (2/2-way-proportional valve) or an electro-hydraulic poppet valve (EHPV)
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and a check valve. In detail, two valves are connected to the inlet and the other two valves
are located at the outlet of the cylinder. A check valve is placed on the tank return line
(as shown in Figure 1). The valves are independently controlled according to different
working modes, which represent flexible operations and energy-consumption optimization
in the system. In addition, a regeneration mode in the CIMV system operates without a
flow from the pump. Thus, the energy consumption of the CIMV system is lower than that
of the conventional excavator, which has been proven by numerous research projects and
patents [21–26]. However, controlling four proportional valves is not simple when they de-
pend on a pressure difference between the inlet and outlet of the valves, which leads to poor
performance in valve control. To overcome this problem, Tabor developed a mathematical
model of a hydraulic system using four independent metering valves with an optimal valve
coefficient ratio. The experiment results indicated that the velocity errors of the valves
could be reduced [27]. Nevertheless, using an equivalent valve coefficient equation is a
complicated approach because it causes difficulties in terms of programming and control.
Moreover, another significant disadvantage of this system is that the regenerative and
pumped flows are combined directly, resulting in a difficult conservation of regenerative
energy. Using a different approach, Choi proposed a valve conductance method, which
was computed using the desired flow and pressure difference across the valve. After that, it
is combined with the characteristic curves of EHPV to exactly determine the control valve
signal [28]. This approach ensures that the cylinder operates at its design speed in the
experimental environment; in reality, however, valves always leak due to pressure changes
during operation. Therefore, closed-loop control methods to compensate for leakage are
widely used for controlling proportional valves [29–32].
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Figure 1. The conventional independent metering valve system.

The CIMV system has great benefits in terms of energy-savings for hydraulic exca-
vators and provides more flexibility in designing a control strategy, but using four EHPV
circuits to control one actuator is an expensive approach. In recent years, some studies
have focused on reducing the number of proportional valves and simplifying the control
process of the system, as well as on developing new control strategies. Different strategies
using pump/valve coordinate controls with two 4/3-way proportional directional valves
for the IMV system, one for meter-in control and another for the meter-out control have
been developed [33–36]. These studies take advantage of combining the pump control into
the IMV system to smoothen system operation and save energy. Although the number
of proportional valves is decreased, the use of proportional directional valves is still an
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expensive solution compared to EHPV though their functions are almost the same. In
another study, a new configuration of a single metering edge was presented [13], where
only one proportional valve (2/2-way-proportional valve) was used with a function of
a meter-out valve. Moreover, the combined control algorithm for the meter-out valve
and pump was developed with improved energy-savings and auxiliary functions, such as
anti-flow overload and overload protection. Hence, this system can achieve low operational
costs and an energy-consumption reduction. However, the control method of this system
is highly complex with many levels of control for the pump and valves; this could cause
instability and difficulty for the operator.

Considering the high cost of the IMV system, Ahamad et al. proposed a new IMV
(NIMV) circuit that replaced the expensive proportional directional valve with a cheaper
directional valve [37]. This study explained the working principle of the NIMV system
under the different load conditions. Moreover, an equivalent valve coefficient equation
was developed for this system. Based on the simulation results by the AMESim software,
the energy savings of this system were higher than those of the CIMV system by 16.43%
in the high-side regeneration extension mode and 63.63% in the low-side regeneration
retraction mode. However, the equivalent valve coefficient equation is still complex and
difficult to exactly control the flow rate through the valve. Simulation results are not
sufficiently qualified to accurately evaluate the effectiveness of the NIMV system. Intensive
experiments are required to have a more accurate view.

Based on the above reasons, in this paper, a coordinated pump–valve control strategy
is proposed to improve energy-saving and displacement tracking precision. In detail, the
velocity feed-forward and position feedback signals were used to control the valves. In
addition, the pump speed command was calculated from the tracking error through a
proportional integral derivative (PID) controller. To prove the effectiveness of the new IMV
system with the proposed control strategy, a real test bench was built based on the proposed
hydraulic circuit under laboratory conditions. Then, the proposed control strategy was
verified in real-time. The experiment results of each metering mode were compared with
equivalent modes using the CIMV system. The result shows that the NIMV can save energy
by approximately 4% in the power extension mode, by 22% in the power retraction mode
and by 6.5% in the high side regeneration extension mode. Moreover, the displacement
tracking precision of the proposed IMV is higher than that of the CIMV.

The rest of this paper is organized as follows: Section 2 introduces the NIMV system
and the working principle of the metering modes. The control strategy of the system is
presented in Section 3. The experimental results are discussed in Section 4, and finally,
conclusions are given in Section 5.

2. New Independent Metering Configuration

To overcome the shortcomings of the CIMV circuit, a new NIMV configuration is
shown in Figure 2a, in which three EHPVs (Ksa, Ksb, Kbt) and one directional valve (Kd)
are logically linked together to control the cylinder. In this configuration, the NIMV can
reduce the number of EHPVs, but still guarantees the same working modes as the CIMV
configuration. Moreover, the NIMV does not have check valves for pressure maintenance
in the low side regenerative modes, thus the power loss in these operating modes is
minimized. The NIMV system has five metering modes, like the CIMV system; however,
only four metering modes are used in this study. The load force in this study has the same
direction as gravity. The CIMV system has a low side regeneration extension mode (LSRE)
that requires the load force be in a different direction from gravity; therefore, the LSRE
mode is neglected in this research. The four modes of the NIMV are shown in Figure 2b
and the EHPV operation in each mode is shown in Table 1.
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Figure 2. (a) Configuration of an actuator using the new IMV circuit. (b) Four metering modes of the
NIMV; (I) PE mode; (II) PR mode; (III) HSRE mode; (IV) LSRR mode.

Table 1. Valve operation in each mode.

Metering Mode Ksa Kab Kbt Kd

PE Open Closed Open Left
PR Open Closed Open Right

HSRE Open Open Closed Left
LSRR Closed Open Open Left

The power extension mode (PE) is described in Figure 2(b-I). In the PE mode, the bore
chamber of the cylinder is supplied with the flow rate from the pump through the Ksa valve.
The oil from the rod chamber goes to the tank through the Kbt valve. Directional valve Kd
changes the position of the spool to adjust the direction of the flow to the cylinder. With the
PE mode, the directional valve operates at the left position. Like the PE mode, the power
retraction mode (PR) has the same working valve as the PE mode (shown in Figure 2(b-II)).
The cylinder retracts when directional Kd valve operates at the right position, and the oil
from the pump goes into the rod chamber through the Ksa valve. The oil from the bore
chamber returns to the tank through the Kbt valve.

Operations of the high side regeneration extension mode (HSRE) is described in
Figure 2(b-III). Different from the PE mode, the HSRE drives the cylinder with a high
velocity. In these modes, returning oil from the rod chamber through the Kab valve combines
with the supplied oil from the pump through the Ksa valve, and goes into the bore chamber.
Therefore, a lager flow is supplied to the cylinder in the HSRE mode than in the PE mode,
resulting in higher speeds during operation.

The low-side regeneration retraction mode (LSRR in Figure 2(b-IV)) allows the boom
cylinder to move without using the flow rate from the pump. In the LSRR mode, the
cylinder retracts under the effect of load and the gravitational force. The output flow rate
from the bore chamber is reused through the Kab valve and pumped into the rod chamber
during piston retraction. The excess flow rate due to differences in chamber volumes goes
to the tank through the Kbt valve.
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3. Control System Design

In this study, the NIMV system is applied to a boom test bench. The cylinder is
assembled vertically with a fixed load. Thus, the potential of the regeneration mode can be
effectively studied in practice. The working principle and the control strategy of the system
are shown in Figure 3. To save energy and improve control performance, the coordinated
control between the speed of the pump and opened area of valve is used. The pump has
the role of ensuring that the required flow rate is supplied to the cylinder with a suitable
amount of oil to reduce the energy consumption of the system. However, the operating
speed of the motor is often very high, leading to large errors during operation. This makes
it difficult for the pump to precisely control the desired position of the cylinder. Therefore,
the valve that has the function of controlling the flow rate between the pump and the boom
cylinder can ensure a better tracking performance of the cylinder. In the proposed control
strategy, the meter-in valve is fully opened, and meter-out valve is controlled to combine
the velocity feed-forward and position feedback (VFPB) [35,36]. In addition, the speed of
the pump is controlled based on the position feedback control (PBC).
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Figure 3. NIMV control strategy for the boom system.

3.1. Valve Control

To reduce the throttle loss of the valve, the meter-in valve is opened to maximum
and the meter-out valve is controlled using the VFPB method (shown in Figure 4). The
maximum opened area of the meter-in valve decreases the throttling losses more compared
to the meter-out valve [13]. The control valve signal, UK (K = sa, ab or bt), is combined with
the velocity feed-forward control signal, Uv f , and the position feedback control signal, Upd,
as given by Equation (1):

UK = Uv f + Upd (1)
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The velocity feed-forward control signal, Uv f , is obtained, as given by Equation (2):

Uv f =
vd.Ax

qN
.

√
∆pN
∆p

(2)

where vd is the design velocity, Ax is piston chamber area (x = a or b follow the mode
operation), qN is flow rate through the EHPV under rated pressure difference ∆pN , and
∆p = pin − pout is the pressure difference between the inlet and outlet of the EHPV.

Moreover, position feedback control signal Upd with a proportional integral derivative
(PID) controller is added to improve operation accuracy, as follows:

Upd = Kpv

[
(xd − xrel) +

1
TIv

∫
(xd − xrel) + TDv

d(xd − xrel)

dt

]
(3)

where xd is the design position and xrel is the actual position of the cylinder.

3.2. Pump Control

During the moving up and down processes of the boom cylinder, the pump is con-
trolled with the PBC method (shown in Figure 4). The speed of the motor is controlled
by the signal that is obtained by the position of the feedback control, UPump. With the
PBC control for the pump, a suitable flow rate is provided for the cylinder chambers to
ensure the stable operation of the cylinder. By combining the PBC and VFPB control, the
position of the cylinder can achieve a good tracking performance. In addition, the energy
consumption at the pump is also minimized. The UPump is produced by a PID-controller,
as given by Equation (4):

UPump = Kpp

[
(xd − xrel) +

1
TIp

∫
(xd − xrel) + TDp

d(xd − xrel)

dt

]
(4)

During the experiment, to reduce energy consumption and protect the pump, we
recommend the following two operational strategies: (1) maintain the pressure Ps be-
fore starting to operate the valves; (2) turn off the pump when the cylinder extends to
its maximum.

3.3. Energy Consumption

The energy consumption of the IMV system can be calculated by the energy consump-
tion of the electric motor that drives the pump of the system. The energy consumption is
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calculated based on the feedback value of a speed sensor and a torque sensor installed in
the system and is given as Equation (5):

E =
∫

Tωdt (5)

where E is the energy consumption and T and ω are the torque and angular velocity of the
electric motor, respectively.

The energy consumption is used to evaluate the energy savings of the NIMV system
and compared with the CIMV system in each case using Equation (6).

∆Esave =
ECIMV − ENIMV

ECIMV
· 100% (6)

where ∆Esave is the energy savings, ECIMV is the energy consumption of CIMV system, and
ENMV is the energy consumption of NIMV system.

4. Experiments and Results

The hydraulic boom excavator system was built to evaluate the effectiveness of the
NIMV system and was also compared with the CIMV system. The NIMV (circuit 7) and
CIMV (circuit 6) were designed in parallel, and had the same connection with hydraulic
cylinder 10 (placed on vertical) and pump 3, as shown in Figure 5. The transition of two
controllers between two circuits was performed via a switch that was connected with three
4/2 directional valves (one valve for pump outlet 5, two valves for inlet 8, and outlet 9 of
the cylinder). The EHPVs of the system were solenoid proportional valve SP10-24 from
HydraForce. The control signal range for the EHPV was from 0 to 10 V, the signal was
converted from 0 to 24 V via the amplifier and was then transferred to the EHPV. The
diameter of the piston was 40 mm, the rod diameter was 20 mm with a stroke length
of 500 mm, and the cylinder was affected by a fixed load of 100 kg. The linear sensor,
TLH-0500, was added to measure the position of the cylinder, and a pressure sensor was
added to measure the pressure value of the valve, cylinder, and pump outlet. The relief
valve was set at 100 bar to guarantee the safety of the system during operation. The
experiment parameters are listed in Table 2.
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Table 2. Experimental parameters for boom–excavator model.

Parameters Specification Value

Cylinder (D140H-LA40B-N500) Piston diameter × rod diameter × length
of stroke 40 mm × 20 mm× 500 mm

Gear pump (SAP20-8.0)
Pump displacement 8.3 cc/rev

Max. speed 3500 rev/min
Max. speed control 1500 rev/min

Relief valve (VPN1-06-MP-32S) Cracking pressure 100 bar

EHPV (SP10-24)
Max. flow rate 26.5 L/min

Max. operating pressure 207 bar

Check valve (VJ3-10-005-G1) Cracking pressure 0.5 bar

Directional valve (SP10-21)
Max. flow rate 60 L/min

Max. operating pressure 250 bar

4.1. Verification with Mode Control

From the working principle of the metering modes and the control strategy, two test
cases for the boom system were conducted based on two main evaluation criteria: the
working performance and energy-saving potential. The first case includes the experimental
results from the NIMV system with four metering modes over one cycle to evaluate the
proposed system’s performance. Meanwhile, the second test case was a comparison of
energy-saving between the NIMV system and the CIMV system based on the same working
conditions to prove the effectiveness of the proposed system.

The NIMV system’s experimental results are depicted in Figure 6, and show the
working parameters of each mode, including the EHPV control signal, system pressure,
and cylinder displacement. The PE mode begins from 1 to 9 s with a target velocity of
62.5 mm/s (the target velocity can be obtained by the derivative of the target position). In
the initial state from 0 to 1 s, all valves are closed, only the pump runs to maintain the Ps
pressure to protect the pump from returned pressure at the cylinder (in some cases, the
initial position of the cylinder is not zero, so the system still maintains the Pa pressure
before the pump opens). Under the coordinated control of the PBC and the VFPB, the
actual displacement of the cylinder is stability controlled and reaches the target trajectory.
The Ksa valve is fully open while the signal control of the Kbt valve increases quickly from
0 to 10 V at 2.5 s and drops gradually after that. The pump must deliver the necessary flow
for the cylinder to move in the required trajectory when the PE mode is activated. Thus,
the position feedback in the VFPB method increases the valve control signal, enabling the
valve to open faster. Therefore, the loss at the valve is minimal, helping the cylinder reach
the target speed faster. The cylinder moves to its maximum stroke length after 9 s, at that
point the pump and all valves are closed to save energy and the position of the cylinder
is maintained.
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Figure 6. The NIMV experimental results. UK (K = sa, ab or bt): control signal of Ksa, Kab, and Kbt

valves. Ps: pressure at pump outlet; Pa, Pb: pressure at bore and rod chamber of cylinder, Pr: pressure
at tank.

From 10 to 17 s, the PR mode is used for the cylinder to retract at a high speed
(100 mm/s) because this mode is affected by both flow rate in the pump and the gravita-
tional potential energy. Therefore, the Kbt valve plays a major role in adjusting the speed of
the cylinder. However, a high speed can cause damage to the dampers and endanger the
operator. In addition, when the cylinder moves down at a high speed, the flow rate from
the pump goes to the rod chamber, which cannot keep up with the speed of the cylinder.
Because the valve and pump are opened at the same time and the cylinder moves down
as soon as the valve opens, the pump cannot provide the correct flow rate to the cylinder
at that time; thus, the cylinder will draw oil from the pump. This is also the reason why
pressure Ps is zero when the valve is open (shown in Figure 6). After that, the flow rate
from the pump increases gradually and responds to the speed of the cylinder, so that the Ps
pressure increases gradually until the position is zero.

After the PR mode ends, the pump is turned on to maintain pressure Ps before starting
the HSRE mode. In the HSRE mode, the cylinder moves at the target velocity at 100 mm/s
from 18 to 25 s. The response time of the cylinder in this mode is slower than in the PE
mode, because when the valve opens, the oil is supplied into both cylinder chambers. It
then takes a long time to create a thrust difference between the bore chamber and rod
chamber. Moreover, the lifting load pressure of this mode is higher than that of the PE
mode because the oil circulates in a closed circuit, which causes a high pressure in the
system. This pressure is higher than the setting pressure on the relief valve, leading to loss
of flow in the system. Hence, it causes a higher energy consumption than in the PE mode
(energy consumption of the PE and HSRE modes is shown in Figure 7 in Section 4.2).
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The final model used in this experiment is the LSRR mode, from 24 to 35 s. In this
regeneration mode, only the valve is controlled while the pump is turned off. However,
the difference between the VFPB method and this mode, and the other 3 modes, is that the
Kbt and Kab valves are controlled together. In this case, the Kbt valve has the function of
a check valve, which helps the flow rate from the bore chamber go into the rod chamber.
If the Kbt valve is opened fully, the oil from the bore chamber will flow directly into the
tank. Therefore, if the required oil for the rod chamber is insufficient, it risks the creation
of air bubbles in the oil when the rod chamber draws oil. In addition, the cylinder speed
is controlled by the Kab valve; hence, the cylinder moves down stably and follows the
design trajectory.

4.2. Comparison with CIMV

We conducted an experiment to compare the energy consumption of the NIMV system
to that of the CIMV system in order to assess its effectiveness. Two cycles were chosen,
with Cycle 1 including two modes: PE and PR (see Figure 7a) and the other including the
HSRE and LSRR modes (see Figure 7b). The energy consumption and energy savings of
each mode are recorded and shown in Table 3.

Table 3. The energy consumption of the experiment model.

Mode NIMV CIMV Energy-Saving

PE 1.69 kJ 1.76 kJ ∼4%
PR 0.42 kJ 0.54 kJ ∼22%

HSRE 2.59 kJ 2.77 kJ ∼6.5%
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Figure 7a describes the energy consumption between the NIMV and CIMV in cycle 1.
The energy consumption of the NIMV was lower than that of the CIMV, i.e., the energy-
saving on the PE mode was 4% and that of PR was 22%. The reason is that the returned oil to
the tank of the CIMV system needed to maintain a higher pressure than the setting pressure
in the check valve. This leads to more energy being required from the pump. Therefore,
from 1 to 2 s, the speed and torque of the CIMV system were higher because during this
time the pump needed to supply a greater flow rate to reduce the delay response of the
cylinder. Similarly, from 11 to 12 s in the PR mode, the cylinder moved down unimpeded
in the NIMV system (does not have a check valve), so the torque from the motor was very
low. Thus, this system has better energy savings than the CIMV system. However, with
more used energy, the CIMV system can achieve a better tracking performance in the early
stage. The comparison is evaluated based on the displacement tracking error, as shown in
Figure 8a. Although the displacement error of the NIMV is higher in the early stage (from 1
to 5.5 s), it is closer to the target position after that (similar to the PR mode).
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The results of Cycle 2 are displayed in Figure 7b, with the LSRR mode consuming
nearly no energy on both systems. The energy is consumed mainly in the HSRE mode,
which is better in the NIMV system because, in this mode, losses mainly occur at the EHPV.
In the NIMV system, the oil from the pump flows through the Ksa valve combining with
the returned oil from the rod chamber and flows to the bore chamber. In contrast, in the
CIMV system, the oil from the pump combines with the returned oil from the rod chamber
and flows through the Ksa valve after that. Therefore, losses at the Ksa valve of the CIMV
system are higher than those of the NIMV system. In addition, in the LSRR mode, the check
valve of the CIMV system causes the delayed response time of the cylinder, thus it takes a
long time to move the cylinder in the starting cycle. From the cylinder displacement results,
Figure 7b shows that the cylinder in the NIMV system has a better tracking performance
and a faster response time. In addition, the displacement tracking error from the NIMV
system is lower than that of the CIMV system, as shown in Figure 8b. Therefore, this proves
that the proposed system, not only focuses on minimizing the factors that cause losses in
the IMV system, but also achieves a good working performance.
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5. Conclusions

In this paper, a new IMV configuration that could regenerate gravitational potential
energy was developed for a boom system. The proposed structure included three EHPVs
and one directional valve that could ensure similar working modes as the CIMV system. In
addition, a control strategy was developed based on the velocity feed-forward and position
feedback method to improve the stability and safety of the proposed system. A real test
bench, based on laboratory conditions, was built to evaluate the effectiveness of the NIMV
system in detail. Then, the NIMV system was compared with the CIMV system in terms of
the working performance and energy-saving potential. The results showed that the NIMV
system outperformed the CIMV system in terms of the following characteristics:

• The energy savings of the NIMV system was higher than the CIMV system by ap-
proximately 4% in the PE mode, 22% in the PR mode and 6.5% in the HSRE mode.
The proposed system removed the use of a check valve, which is the main factor that
caused energy loss in the CIMV system. Moreover, the throttling loss was reduced by
the valves, which were logically connected, and are shown in the HSRE mode.

• In the proposed configuration, the cost of the system was significantly reduced by
reducing one EHPV and a check valve, while ensuring the stability of the IMV system.

• Both systems applied a simple controller and achieved a high tracking performance.
However, by eliminating the factors that cause losses in the system, the NIMV system
could work with a higher precision and stability. Especially, the displacement tracking
error of the cylinder in the NIVM system was about 0.043 m in the HSRE mode and
about 0.034 m in the LSRR mode, while in the CIMV system it was around 0.065 m
and 0.04 m, respectively.

However, the test bench still exhibits some limitations. First, these studies only focused
on the boom system, so the LSRR mode was omitted in the experiments. Second, the PE
and HSRE modes were differentiated based on two factors, the velocity and load force.
However, the load force in this test bench was a fixed value. Thus, the switching mode
must be designed based on the speed to determine the mode of operation.

Generally, a NIMV, with its proper logic control, has a strong ability to be applied
in practical applications. In future research, we will improve the proposed configuration,
apply mode switching for the system, and integrate the NIMV system into a real excavator.
With the energy-saving potential and a good working performance, the proposed NIMV
will be a trending research direction in the future.
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