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Abstract: The evaluation of structural response constitutes a fundamental task in the design of
ground-excited structures. In this context, the Monte Carlo simulation is a powerful tool to estimate
the response statistics of nonlinear systems, which cannot be represented analytically. Unfortunately,
the number of samples which is required for estimations with high confidence increases dispro-
portionally to obtain a reliable estimation of low-probability events. As a consequence, the Monte
Carlo simulation becomes a non-realizable task from a computational perspective. We show that
the application of machine learning algorithms significantly lowers the computational burden of
the Monte Carlo method. We use artificial neural networks to predict structural response behavior
using supervised learning. However, one shortcoming of supervised learning is the inability of a
sufficiently accurate prediction when extrapolating to data the neural network has not seen yet. In
this paper, neural networks predict the response of structures subjected to non-stationary ground
excitations. In doing so, we propose a novel selection process for the training data to provide the
required samples to reliably predict rare events. We, finally, prove that the new strategy results in a
significant improvement of the prediction of the response statistics in the tail end of the distribution.

Keywords: machine learning; training data selection; Monte Carlo simulation; artificial neural
networks; supervised learning; earthquake generation; Kanai–Tajimi filter; probability of failure;
nonlinear structural dynamics

1. Introduction

As engineers, we are responsible for the reliable design of structures and infrastruc-
tures. This task turns out to be challenging, especially when structures are supposed
to withstand natural hazards, such as earthquakes. A powerful tool to evaluate the re-
sponse statistics of structures provides the statistical investigation of a set of experiments,
commonly known as the Monte Carlo method.

Structural failure should occur very rarely in order to save infrastructures and, conse-
quently, human life so that the number of samples of the crude Monte Carlo method must
be chosen high. Generally, experimental setups on full-scale structures are the most reliable
way to collect data of the response behavior [1–3]. However, on the one hand, measured
earthquake acceleration data are limited and, on the other hand, experimental setups of
such a high number of samples are not realizable. One strategy to overcome this problem
is the realization of hybrid simulations [4]. Although this approach significantly decreases
the costs, it is still inefficient to collect enough data for reliable Monte Carlo predictions of
low failure probabilities.

In order to obtain a practically realizable framework, purely numerical models are
used to simulate the statistical response behavior of structures. Especially when induc-
ing structural failure, numerical simulations are much easier realizable in an engineer’s
every-day life environment. Nevertheless, for complex structures modeled by high-
dimensional finite element models, the computational cost of the crude Monte Carlo
simulation becomes excessive.
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There are two major options to deal with this issue:

• Methods were developed to reduce the number of the required samples employ-
ing advanced Monte Carlo strategies to estimate the probability of failure, such as
importance and asymptotic sampling [5,6] or subset simulation techniques [7].

• Methods were developed to reduce the effort of each simulation, in this regard, model
order reduction techniques have shown significant improvement of the computational
burden [8–10]. Furthermore, the application of machine learning has received attention
in the field of structural mechanics and showed promising results [11–14].

Several studies have used neural networks for the design in earthquake
engineering [15] and for the investigation of hazard events [16]. Researchers used machine
learning approaches for structural response prediction, health monitoring, post-earthquake
assessment, and interpretation of experimental data [17–25]. Special focus has been laid on
the design of the structures to estimate the response or classify the damage of reinforced
concrete frames and masonry shear walls [26,27]. Furthermore, in-plane failure modes have
been investigated using machine learning algorithms [28]. With particular emphasis on the
estimation of the tail end probability, i.e., the occurrence of very extreme events, extended
data sets were used to predict the probability of failure using various neural network
architectures [29,30]. To this end, the earthquake samples for the training sets of the neural
network were generated using random factorization. This leads to sample sets with higher
variance and, therefore, a larger portion of extreme events. However, these strategies need
the consideration of additional extended data sets for the training procedure to obtain a
suitable neural network prediction in case of very rare events—a strategy that requires a
careful choice of additional intensity factors when generating earthquake training sets.

In order to deal with this issue, this paper proposes a training data selection approach
that enables a reliable prediction within the entire domain without extending the training
data set. The proposed training data selection process is demonstrated on three different
structures using two-, three-, and six-dimensional selection processes. This strategy im-
proves the prediction of the response statistics in the case of rare events, i.e., in the tail
region of the distribution and turns out to result in more stable response distributions.

2. Materials and Methods
2.1. Estimation of Failure Probability

To determine whether structural failure occurs, one must define a limit state based on
engineering decisions. Using a limit state function g(x), failure occurs if this function is
below or equal to zero, i.e., g(x) ≤ 0. The probability of failure can be evaluated in terms of
a multi-dimensional integral of the probability density function fX(x) [5]:

Pf =
∫
· · ·

∫

g(x)≤0

fX(x) dx1 . . . dxn . (1)

Introducing an indicator function Ig(x1, . . . , xn), which is 1, if g(x1, . . . , xn) ≤ 0, and 0
otherwise, Equation (1) can be reformulated as:

p f =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
Ig(x1, . . . , xn) fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn . (2)

Generating a set of random samples and evaluating the corresponding indicator
functions Ig(x(k)), the Monte Carlo method allows one to define the probability of failure
in terms of an expected value:

p f =
1
m

m

∑
k=1

Ig(x(k)) . (3)
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This approach works well for response estimations around the mean of the distribution,
however, the general drawback is the low confidence of this estimator around the tail end
of the distribution, i.e., the estimation of low failure probabilities:

σ2
p f =

p f

m
−

p2
f

m
≈

p f

m
−→ σp f =

√
p f

m
. (4)

Therefore, a disproportionately high number of samples must be evaluated in order to
estimate small probabilities of failure with high confidence.

2.2. Artificial Non-Stationary Seismic Excitation Using the Kanai–Tajimi Filter

During the design process, earthquake excitations are employed to perform nonlinear
dynamic time history analyses. In this context, the Kanai–Tajimi [31,32] filter is used
to model the movement of the ground in terms of a single degree of freedom oscillator,
which is subjected to a random white noise excitation. In doing so, site dependencies are
included by using the natural frequency and the damping ratio of the ground. However,
the conventional Kanai–Tajimi filter models earthquakes as stationary random processes
and does not account for temporal changes in the properties of the excitation history. To
this end, non-stationary Kanai–Tajimi models have been proposed to create more realistic
excitations [33,34]. In this way, the time-dependent frequency content ωg(t) and the time-
dependent intensity parameter e(t) are extracted from a measured benchmark record.

We adopt this procedure to provide many realistic and site-dependent artificial ground
motions based on one recorded accelerogram chosen from the region around the building
site. Exemplary, we use the Northridge earthquake accelerogram, recorded in California in
1994. In particular, the chosen time history is the 360° component from a Station of USGS
(Sepulveda VA Hospital, CA: VA Hospital Bldg 40) on the ground level [35].

A time window that moves from t0 to tend of the accelerogram is defined to capture
the time-varying features, as shown in Figure 1.

t0 =
tw
2

t
tend = Tr −

tw
2

0

tw

Figure 1. Parameter extraction from a record of the Northridge earthquake in 1994 [35] using a
moving time window.

In this study, we chose a time window of size tw = 1.5 s, which results in a smooth
extraction of the parameters, while covering the frequency oscillations. Decreasing the
time windows increases the deviation from window to window. By contrast, large time
windows flatten the curves of the extracted parameters. The intensity of the acceleration at
time t within the time-window t− tw

2 < t < t + tw
2 is calculated by:

ê(t) =
∫ t+ tw

2

t− tw
2

(
ẍ(r)g

)2
dt . (5)

By counting the number of zero crossings in the interval [t − tw
2 , t + tw

2 ], the time
dependent frequency at time t is evaluated:

ω̂g(t) =
n̂(t)
tw

2π . (6)



Appl. Sci. 2022, 12, 581 4 of 19

We fit polynomial functions to the extracted properties, as shown in Figure 2. Therefore,
next to the size of the scanning time, the order of the polynomial function must be chosen
carefully to subsequently generate the nonstationary excitation. Next to these time-varying
parameters, other ground properties must be chosen, such as damping of the ground. This
parameter may be found through soil tests or from trial and error methods. We choose a
damping ratio of ζg = 0.3 based on numerical fitting methods [36,37] and visual inspection.

t0 tendt

ω
g
(t

)

ω̂g(t) extracted frequency

ωg(t) polynomial fit

(a)

t0 tendt

e
(t

)

ê (t) extracted intensity

e (t) polynomial fit

(b)

Figure 2. Extracted time-dependent properties of the recorded Northridge accelerogram, shown
in Figure 1: (a) intensity e(t) extracted by the moving time window from the Northridge event;
(b) frequency content ωg(t) from counted zero-crossing extracted by the moving time window of the
Northridge event. The polynomial fits of the extracted parameters are highlighted in red.

The nonstationary Kanai–Tajimi filter is represented as the solution to the following
nonlinear single degree of freedom system [33]:

ẍ(k)f + 2ζgωg(t)ẋ(k)f + ω2
g(t)x(k)f = n(t) . (7)

To obtain the filter response, x f and ẋ f , the single degree of freedom system is solved
by the explicit central difference integration scheme [38,39]. The filter acceleration is
written as:

¨̂x(k)g = −2ζgωg(t)ẋ(k)f −ω2
g(t)x(k)f . (8)

The extracted envelope function e(t) magnifies this response based on the extracted
intensity parameter over the excitation time history. Finally, one obtains the synthetic ac-
celerogram that includes the essential physical properties of the chosen benchmark excitation:

ẍ(k)g = ¨̂x(k)g e(t) . (9)

Using a value of S0 = 1.8 for the power spectral density, we generated 104 samples for
the numerical demonstration of this study, which we will discuss in Section 3 more detailed.
One real and one synthetic accelerogram are presented in Figure 3a,b, respectively. As
can be observed from these figures, the artificial ground excitation preserves the essential
properties of the benchmark accelerogram while revealing the required level of randomness
for our Monte Carlo simulation approaches.

This procedure was repeated 104 times to generate the sample set used in the nu-
merical experiments of this paper. The range of the acceleration response spectra of all
generated ground excitation is shown in Figure 4. Furthermore, the 25 percentile, mean,
and 75 percentile of the spectra are highlighted in this visualization. The acceleration
response spectrum of the benchmark earthquake is also plotted and is embedded within
the envelope, defined by the upper and lower bound of all generated spectra.
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Figure 3. (a) Accelerogram of the Northridge earthquake [35] in 1994 and (b) time history of one
sample of the synthetic generated accelerograms using a nonstationary Kanai–Tajimi filter.
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Figure 4. Acceleration response spectra of all generated earthquakes using the presented procedure.
The mean, 25 percentile, and 75 percentile spectrum are compared with the spectrum of the benchmark
earthquake (Northridge 1995).

2.3. Feedforward Neural Networks

Machine learning has become an indispensable tool in many applications. The incor-
poration of artificial neural networks in complex problems of mechanics has been shown
useful in terms of structural response prediction. In this section, we provide the basic
idea and key mathematical expressions, summarizing the fundamentals of feedforward
neural networks, which can be found in detail in literature [40,41]. The term feedforward
neural networks implies already the data flow of the neural network, as the information is
transported forward from layer to layer. These architectures comprise at least two layers:
an input and an output layer. In this case, they are called single-layer perceptrons. For this
type, the output is calculated by the weighted sum of all inputs. However, this architecture
is limited to the classification of separable patterns [40]. By adding so-called hidden layers
between the input and output layer, one overcomes these limitations. These architectures
are called multi-layer or deep feedforward neural networks or multi-layer perceptrons.
The simplest architecture has one hidden layer, as depicted in Figure 5. First, one chooses
appropriate information parameters for the input layer and the output parameters as the
desired targets. In our case, the input parameters are chosen intensity measures, while the
output parameter is the failure criterion. The data is passed forward from layer to layer
via matrix multiplications, vector additions, and activations, where, in case of supervised
learning, the coefficients of these matrices and vectors are the neural network parameters
to be found through an optimization process.
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x1

x2
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ŷ1

ŷ2

Input
layer
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layer

Output
layer

Figure 5. Graph of a feedforward neural network with one hidden layer.

The procedure of one forward pass is expressed mathematically as follows. The first
layer (l = 1), is provided with normalized input data, such as, min-max feature scaling or
standard score normalization, cf. [41]. The following layers (l > 1) are fed by the output of
the previous layer, ŷ(l). The outputs are weighted by a matrix W(l). Furthermore, a bias
vector is added b(l), i.e., z(l) = W(l)x(l) + b(l). Additionally, each neuron within each layer
is provided by an activation function f (z(l)). The most common activation functions are
the sigmoid function f (z) = ez

1+ez , the tangent hyperbolicus function f (z) = ez−e−z

ez+e−z , and
the rectified linear activation unit f (z) = max (0, z). The output of every hidden layer is
written as ŷ(l) = f (z(l)).

In this manner, the information is transported through all the layers until the output
layer ŷ(l=L) = ŷ. During parameter optimization, the output layer is provided by the
targets y of the sample. The error is calculated by comparing this target with the output
of the last layer. The weights and biases can be optimized by back-propagation of the
error [42], e.g., the mean squared error ε = 1

Ny
(y− ŷ)2:

∆W(l) = −α
∂ε

∂W(l)
with

∂ε

∂W(l)
=

∂z(l)

∂W(l)
∂ŷ(l)

∂z(l)
∂ε

∂ŷ(l)
. (10)

Hereby, the gradient
∂ε

∂ŷ(l)
of the last layer (l = L) leads to

2
Ny

(ŷ− y). For all previous

layers applies
∂ε

∂ŷ(l)
= W(l+1) ∂ŷ(l+1)

∂ẑ(l+1)
.

The forward computation, the back-propagation of the error, and the respective update
of the weights W and biases b are performed in each training iteration. This procedure
is repeated until the error falls below a desired magnitude. Implementation-wise it has
proven useful to update the neural network parameters after a certain training subset or
so-called batches. After the neural network has seen every sample of the entire training
data set, one epoch is finished. Generally, it takes many epochs to sufficiently train a
neural network on the data set. In order to obtain the best results, the neural network
architecture needs to be modified iteratively. These adjustments include the number of
layers, the number of neurons in each layer, the activation function, the optimizer, and the
input features.

2.4. Artificial Neural Network Strategy for Structural Response Prediction

The main goal of this study is to use artificial neural networks to decrease the com-
putational effort and, therefore, to make the Monte Carlo method attractive for real-life
applications. We focus on predicting the peak story drift ratio (PSDR) for the output instead
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of predicting the complete response time history. The latter would require more complex
neural network architectures, such as recurrent neural networks. Using feedforward ar-
chitectures, there are several options, i.e., convolutions, to extract the features from the
accelerogram [30]. However, the failure prediction is more accurate using a relatively small
artificial neural network with fewer training samples. Therefore, this strategy is supposed
to have the highest speed up compared to the full simulation procedure [43].

Carefully preprocessing the input data allows us to use a simple artificial neural
network architecture. The challenge of so-called feature engineering is the generation
of physically meaningful input parameters. In this context, in earthquake engineering,
extensive research has been carried out to characterize seismic motion in terms of single
magnitudes, such as earthquake intensities [44]. These intensity measures are used as
input parameters for neural networks in this paper. Hereby, the Arias intensity IA, the
characteristic intensity Ic, and the cumulative absolute velocity (CAV) were already used
for response predictions [45,46]. Besides using features directly from the accelerogram,
one may extract additional spectral features. Therefore, the displacement, velocity, and
acceleration response spectra as well as the spectral values at the first eigenfrequency
of the structure are used to evaluate additional relevant input features. As a result of
this, a meaningful combination of several intensity measures as input parameters was
extensively studied [47]. For a steel frame structure, the combination of the effective
peak ground acceleration (EPA), the spectral acceleration at the natural period Sa(T1), the
velocity spectrum intensity

∫ 2.5
0.1 Sv, the spectral displacement at the natural period Sd(T1),

the cumulative absolute velocity (CAV), and the peak ground acceleration (PGA) revealed
promising prediction results [29]. A set of relevant input parameters that can be calculated
from an accelerogram are summarized in Table 1.

Table 1. Earthquake intensities used as neural network input.

Feature Abbreviation Formula

Acceleration spectrum intensity
∫ 0.5

0.1 Sa
∫ 0.5

0.1 Sa(T) dT

Arias intensity Ia
π
2g
∫ t

0 ẍg dt

Cumulative absolute velocity CAV
∫ t

0 |ẍg| dt

Effective peak ground acceleration EPA Sa(0.1,··· ,0.5)
2.5

Housner intensity
∫ 2.5

0.1 Sd
∫ 2.5

0.1 Sd(T) dT

Peak ground acceleration PGA max |ẍg|
Spectral acceleration at T1 Sa(T1) Sa(T1)

Spectral displacement at T1 Sd(T1) Sd(T1)

Spectral velocity at T1 Sv(T1) Sv(T1)

Velocity spectrum intensity
∫ 2.5

0.1 Sv
∫ 2.5

0.1 Sv(T) dT

We first calculate the set of artificial earthquake records S , based on which we extract
the corresponding intensity set I that contains the intensity vectors
X = [Ia, Sa(T1),

∫ 2.5
0.1 Sv, Sd(T1), CAV, PGA]:

S =< ẍ(1)g (t), · · · , ẍ(l)g (t) >⇒ I =< X(1), · · · , X(l) > . (11)

Applying supervised learning, the neural network learns from training data. Therefore,
at first, a subset of S must be evaluated:

St =< ẍ(1)g (t), · · · , ẍ(n)g (t) >⇒ Rt =< x(1), · · · , x(n) > . (12)
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The neural network learns the damage indicator directly, which is, in our case, the
PSDR. The target set for the neural network training, Ot, is calculated from the response
setRt:

Rt =< x(1), · · · , x(n) >⇒ Ot =< PSDR(1), · · · , PSDR(n) > . (13)

Using a neural network, the prediction of the sets are written as

It =< X(1), · · · , X(n) >⇒ Ôt = ˆPSDR(1), · · · , ˆPSDR(n)
> . (14)

Once the neural network is trained and optimized in such a way that the predictions
converge to the targets, the neural network can be used to predict the individual response
values and, consequently, the full set:

I =< X(1), · · · , X(l) >⇒ Ô = ˆPSDR(1), · · · , ˆPSDR(l)
> . (15)

2.5. The New Training Data Selection Method Based on Sample Intensities

Artificial neural networks can solve a wide variety of tasks in several fields of appli-
cation. Once a neural network is properly trained, it can make predictions that are both
accurately and efficiently. In general, neural networks will predict reliably as long as they
have seen similar patterns before. Thus, one may imagine that the mean of the data set
will be excellently predicted. However, in this study, we want to estimate the response
of events near the failure region of the distribution, i.e., extreme events that happen very
rarely. Therefore, we provide a new strategy to cover the entire domain of possible events
during the training procedure. The major steps of the procedure to use machine learning
are shown in Figure 6, while the appropriate choice of the training data is addressed in
this paper.

Benchmark earthquake
from respective site Full set of earthquakes

Intensities Training sample set

Neural
network

Predicted
response
statistics

Predicted
training
samples

Structural response of
training sample set

PSDR - target for training Error
calculation

update parameters

Generate
earthquakes

Select
samples

Calculate
response

Evaluate output

feature

Figure 6. Flowchart of machine learning enhanced structural response statistics using the proposed
strategy for the selection of the training samples during supervised learning.

In particular, Figure 7 shows all the steps of the new selection process. Instead of
using an arbitrary training data set It,rand, we select a training data set It,sel based on the
intensities of the generated artificial earthquake samples. Therefore, we split each intensity
range into evenly distributed intervals. Dependent on the number of intensity measures
considered for the selection, we choose from an i-dimensional grid. If the selection is based
on one intensity only, we pick one sample from each bin. In this case, the number of selected
samples is equal to the number of bins or slightly smaller if empty bins exist. This procedure
will likely give a better-distributed training set than a randomly picked set, especially, if the
chosen intensity correlates with the output quantity. However, it will probably not cover
the whole domain of all intensity measures chosen as input parameters. One may interpret
this strategy as an adaption of the Latin-Hypercube sampling approach. The difference is
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that we perform the sampling beforehand based on non-stationary Gaussian random white
noises and, subsequently, filter the data.

Full set of
generated

earthquakes

Calculate
intensities

Choose number
of intensities

Choose type
of intensities

Choose grid sizeSelect sample
from each bin

Selected sample
set for training

Selection
process

Figure 7. Flowchart of the proposed selection strategy for the training samples.

The domain is represented better considering two intensities. The procedure can
be easily shown for this setup. In Figure 8, we present the correlation between velocity
spectrum intensity

∫ 2.5
0.1 Sv and the spectral displacement Sd(T1). In particular, Figure 8a

shows all samples from set I , while Figure 8b shows only 450 samples from this set, in other
words a randomly chosen subset used for the training, It,rand. As one can see, most samples
with high intensities are not included in this set, although they are the most important
samples that allow for the neural network to learn more around the tail region of the
distribution, as the intensities have a certain correlation with the structural response. In
Figure 8c, we also present the samples chosen from I using this strategy. Both Intensities
were cut into 34 intervals, which resulted in the selection of 438 samples. In doing so,
we achieve that the selected training set It,sel covers the whole parameter space of both
intensities. Therefore, the neural network will learn from very frequent and from very rare
events to the same extent.

0 0.2 0.4

2
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6

Sd(T1) [m]

∫ 2
.5

0
.1

S
v
[m

]

(a)
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4

6

Sd(T1) [m]

∫ 2
.5

0
.1

S
v
[m

]

(b)

0 0.2 0.4

2

4

6

Sd(T1) [m]

∫ 2
.5

0
.1

S
v
[m

]

(c)

Figure 8. Two-dimensional selection strategy: selection of samples from (a) the full set I using
the velocity spectrum intensity

∫ 2.5
0.1 Sv and the spectral displacement at the natural period Sd(T1),

(b) randomly chosen samples for the training set It,rand, and (c) selected samples for the training
set It,sel .

The crucial part of this strategy is a meaningful choice in the number of the intensities
considered and their type to perform the selection procedure. Furthermore, the grid size
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must be adjusted to get a certain amount of samples, and the reduction of the grid size
results in a higher number of training samples. In particular, if several intensity measures
are considered, the grid size must be chosen large enough to select a small share of the set.

The selection process, shown in Figure 9, is based on three intensities: the velocity
spectrum intensity

∫ 2.5
0.1 Sv, the spectral displacement Sd(T1), and the spectral acceleration

at the natural period Sa(T1). Each intensity is split into 19 bins resulting in a selection of
565 samples. Figure 9 shows that the selected data points for the three intensities spread
evenly over the entire domain of interest.
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[
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Figure 9. Three-dimensional selection strategy: Selection of samples from (a) the full set I using the
velocity spectrum intensity

∫ 2.5
0.1 Sv, the spectral displacement at the natural period Sd(T1) and the

spectral acceleration at the natural period Sa(T1), and (b) selected samples for the training set It,sel .

3. Numerical Example

In this section, we provide a numerical demonstration of the new strategy. We chose
the peak story drift ratio (PSDR) as the damage indication criterion. Thus, the evaluation of
the PSDR was used for the entire training data set and the reference solution using the crude
Monte Carlo simulation approach. We used an in-house finite element tool written in C++
and Python to calculate the nonlinear structural response. This tool has been used in several
previous studies and has been validated using commercial finite element codes [48]. For
the implementation of artificial neural network architectures, we used the Python library
TensorFlow [49]. Three different structures are subjected to synthetic seismic excitations to
present the new strategy. Furthermore, we provide the neural network predictions based
on different numbers of intensities chosen to select the training data.

3.1. Nonlinear Frame Structures

The three structures are modeled by fiber beam elements using an elastoplastic material
law with kinematic hardening, as shown in Figure 10. We chose a Young’s modulus of
E1 = 210 GPa and a material density of ρ = 7850 kg

m3 . The yielding limit of the material was
set as a value of σy = 235 MPa. The post-yielding stiffness was chosen as E2 = 21 GPa,
which is 10% of initial Young’s modulus. The beams and columns of the frames were
modeled using the same beam element formulation, shown in Figure 10. For the fiber-beam
elements, we used hollow cross sections with different widths, heights, and thicknesses.
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Figure 10. Beam elements with a hollow cross section and elastoplastic material behavior with
kinematic hardening.

The geometrical inputs for all structures used for the numerical experiments are
summarized in Tables 2 and 3. Additionally, the structures are presented in Figure 11.
To account for a realistic mass distribution, all structures have additional point masses.
The first natural period of the structures A, B and C are T1,A = 0.74 s, T1,B = 0.40 s and
T1,C = 0.88 s, respectively.

Table 2. Dimensions of the structures.

Dimension Structure A Structure B Structure C

wbay 6 m 5.5 m 6 m

hs1 4.5 m 3.5 m 4.5 m

hs2 4 m 3.0 m 4 m

hs3 4 m 4 m

hs4 4 m

hs5 4 m

Table 3. Dimensions of the cross sections used for the beams and columns.

Dimension P1 P2 P3 P4

wb 0.3 m 0.35 m 0.3 m 0.35 m

hb 0.3 m 0.35 m 0.4 m 0.45 m

tb 0.03 m 0.03 m 0.03 m 0.03 m

The PSDR for the first two stories is depicted in Figure 11 for structure C. For these
particular problems, we observed that a story drift ratio of ∼4.5% corresponds to a full
plastification of the frame corners in the first stories. These assumptions agree with the
estimation of the collapse of steel structures [50]. However, lower story drift ratios can
already cause damage to the structure, i.e., story drift ratios above 2% lead already to
plastification of the frame corners. More elaborate models could also include damage and
softening effects and may improve the failure criterion [51], which is material for future
research. However, in this study, we focus on the general approach of the strategy with
the PSDR as representative output quantity and an elastoplastic material law from the
underlying finite element model.
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Figure 11. Numerical example to demonstrate the strategy: (A) Two-bay-tree-story frame structure;
(B) three-bay-two-story frame structure; (C) two-bay-five-story frame structure.

3.2. Training Data Selection from Generated Earthquake Samples

Figure 12 reveals the distribution of the intensities of the training set using the violin
plot format. To compare the statistics of each set, all intensities are scaled between zero and
one by min-max normalization based on the entire set. In Figure 12a, the violin plots of
the full set are shown. Comparing this set with a randomly chosen sample set, shown in
Figure 12b, the issue becomes clearer. Observing the randomly chosen training distribution,
one immediately realizes that the most severe earthquakes are not covered. However, using
our new selection strategy enables covering a broad range of data that include a large
share of high- and low-intensity values, as shown in Figure 12c. Therefore, these events
are covered more likely in the training set. The presented distributions in Figure 12c are
based on the selection using two intensities, and Figure 12d is based on the selection using
three intensities. The strategy clearly shows the anticipated effect on the training set. The
distributions based on two or three dimensions do, however, not change significantly.

Increasing the number of intensities that contribute to the selection process, the number
of bins needs to be decreased. Otherwise, the number of training samples increases and the
computational benefit of the whole strategy vanishes. Using six intensities for the selection
process, the probability density function of each intensity shows an uneven distribution,
as shown in Figure 13. The peaks of these distributions correlate with the number of the
selected bins, and the share of the higher selected Intensities decreases except for the peak
ground acceleration. Therefore, we propose to select training data from a relatively small
number of intensities, i.e., two or three different features.
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Figure 12. Violin plots [52,53] show the distribution of the intensities, which are used as inputs
for the neural network; (a) full set, 10,000 samples; (b) 500 randomly chosen samples from the
full set; (c) 438 samples are chosen as training data based on the proposed strategy using two
intensities (velocity spectrum intensity

∫ 2.5
0.1 Sv and the spectral displacement Sd(T1)) with 34 bins each;

(d) 565 samples are chosen as training data based on the proposed strategy using three intensities
(velocity spectrum intensity

∫ 2.5
0.1 Sv, the spectral displacement Sd(T1) and the spectral acceleration

Sa(T1)) with 19 bins each.
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Figure 13. Violin plots [52,53] show the distribution of the intensities, which are used as inputs for
the neural network; 291 samples are chosen as training data based on the proposed strategy using the
shown six intensities with 5 bins each.
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3.3. Predicted Response Statistics

The response statistics using the Crude Monte Carlo method were performed calcu-
lating l = 104 artificially generated earthquakes, which constitutes for all simulations the
entire benchmark set S . The peak story drift ratio set O was calculated using the finite
element method by evaluating the reference solutions through numeric time integration
using the Newmark method [54]. We applied the new strategy to the structures A, B, and
C (see Figure 11) using the proposed sample selection for two, three, and six intensities,
respectively.

For each selection, an artificial neural network was trained. The input vector X consists
of six features; therefore, the input layer also had six neurons. We used three hidden layers,
consisting of between 11 and 14 neurons, using rectified linear activation functions. The
output layer consisted of one neuron only, which produced the PSDR prediction. We used
the ADAM algorithm to update the learning rate during training [55]. This configuration
was used for all neural network architectures presented in this study.

The statistics of the predictions are shown in Figure 14. For the structures, A, B,
and C, the prediction of the PSDR is shown in the top, middle, and bottom plots of
Figure 14, respectively. The probability density function (PDF) is shown on the left-hand
side, while the complementary cumulative distribution function (CCDF) is shown on the
right-hand side.

For the two-dimensional selection process, the samples were selected based on the
velocity spectrum intensity

∫ 2.5
0.1 Sv and the spectral displacement Sd(T1,A) using 29 bins

each. The selected set consists of n = 333 samples, which was used for the training. The
validation data was taken from the full set and has a size of 20% of the entire training
set. Furthermore, considering the spectral acceleration Sa(T1,A), the 3D selection method
used 15 bins, which resulted in 336 samples for the training. The six-dimensional selection
method used five bins, which resulted in 291 samples. The PDF of the predicted PSDR
of structure A is shown in Figure 14a and shows the expected agreement with the finite
element solution. In Figure 14b, the corresponding CCDF is shown. On the one hand, we
can see that the prediction of randomly selected data cannot predict the tail region correctly.
On the other hand, all neural networks trained by the new selected data approach predict
this region well.

We performed the same procedure for structure B. The two-dimensional selection
process was based on

∫ 2.5
0.1 Sv and Sd(T1,B), using 27 bins for each resulted in n = 318

training data samples. Considering the spectral acceleration Sa(T1,B) for the 3D selection,
we used 15 bins, which resulted in n = 325 samples for the training set St,sel . We used only
five bins for the six-dimensional selection, which resulted in n = 274 samples. Independent
of the training data, the PDF of the predicted PSDR of structure B, shown in Figure 14c,
matches the finite element solution. Figure 14d shows the corresponding CCDF. Compared
to the previous example using structure A, we observe that the prediction of randomly
selected data performs better in the tail region. This structure shows higher resistance to
earthquakes and the neural network can predict the results of the extreme event better in
this case, although the prediction overshoots the finite element solution slightly. The neural
networks trained by the selected data approach can predict this region well.

Structure C shows the highest share of samples exceeding a PSDR of 4.5%. The two
dimensional selection process based on

∫ 2.5
0.1 Sv and Sd(T1,C), with 28 bins each, resulted

in n = 331 selected samples for training. Considering Sa(T1,C) for the three dimensional
selection and using 14 bins, resulted in n = 309 selected samples. The six-dimensional
selection method resulted in n = 274 samples if five bins were used for each intensity. The
PDF of the PSDR using structure C is shown in Figure 14e. All artificial neural networks
can predict the statistics in the mean region well. Figure 14f shows the CCDF. However,
the artificial neural network trained by randomly selected data fails to predict the statistics
in the tail region of the distribution. The results of the selected training procedure show
that it is beneficial to use two or three intensities during the selection instead of using all
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six intensities. Generally, the extreme events are not covered properly if large bin sizes
are chosen.
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Figure 14. Response statistics. Structure A: (a) Probability density function and (b) complementary
cumulative distribution function; Structure B: (c) Probability density function and (d) complementary
cumulative distribution function; Structure C: (e) Probability density function and (f) complementary
cumulative distribution function. Color scheme: Finite element solution (black, dashed), predicted
solution from neural network with randomly chosen data (blue), predicted solution from neural
network with selected data using selection process based on Sd(T1) and

∫ 2.5
0.1 Sv (orange), predicted

solution from neural network with selected data using selection process based on Sd(T1),
∫ 2.5

0.1 Sv and
Sd(T1) (brown), predicted solution from neural network with selected data using selection process
based on all six intensities (dark ruby).
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4. Discussion

Our three numerical studies reveal that the neural networks trained by the new
data selection can predict the tail region. In particular, the response of structure B is
predicted well by each neural network. Regarding the taller structures A and C, the neural
network trained by randomly selected data fails to predict rare events, while the statistics
are provided accurately by selected training data. Hereby, it turns out that the selection
strategy, using two or three intensities, namely, the velocity spectrum intensity

∫ 2.5
0.1 Sv, the

spectral displacement Sd(T1,A), and the spectral acceleration Sa(T1,A), provides the most
stable solution. The selection process using all six intensities does not ensure the inclusion
of extreme events, as the bin size must be chosen rather large.

The predictions of artificial neural networks using randomly selected data during
training are unstable. Even though the mean region is predicted well, the results in the tail
region give inconsistent results. The easiest way to tackle this problem is to increase the
training data set. The predictions will be less sensitive to each randomly selected point, and
it is likely to perform better on the task. However, the computational benefit of the entire
strategy would suffer. While preserving the computational efficiency, we can reduce the
instability using the proposed selection strategy. We propose to use two or three intensity
measures for the selection to make this procedure efficient. Using the new selection strategy,
the predicted response statistics significantly improve in the tail region of the distribution.
However, the neural network prediction using the same training data can still vary slightly
if the influence of the randomness, such as the initialization of the weights and biases of
the neural networks, is not removed.

The proposed procedure increases the share of rare events from the distribution in the
training data without increasing the computational cost. Another strategy to provide ex-
treme events in the training data is to use scaling methods during the generation procedure
of the synthetic earthquake [29]. The generation of another set of earthquakes results in
additional computational effort. Furthermore, these excitations must be generated carefully
regarding factorization; otherwise, the prediction on a differently generated set can lead
to unsatisfactory results. The new proposed strategy does not need to create extended
training data. Instead, the data are taken from the already generated set. Thus, compared
with the strategy of extended sets, this selection process benefits in its applicability.

The prediction of the structural response of a single earthquake might be improved
by choosing more complex neural network architectures, such as convolutional neural
networks. Advanced machine learning algorithms would learn from the unprocessed
input data, i.e., the entire time history of the generated earthquakes. The downside of
employing more sophisticated architectures, such as convolutional neural networks, is that
the simulation requires higher computational effort during training. The neural network
must learn more parameters, and the number of training samples that need to be evaluated
for the training data set increases significantly.

The computational cost for training the network parameters and predicting the pro-
posed neural network is small compared to the cost of evaluating the training data. There-
fore, the computational speed-up can be roughly estimated by dividing the total number
of samples l of the entire set S by the number of samples n of the training set St. Using
333 samples for training and 20% for validation leads to a speed-up of around 25. Consid-
ering the calculation of the intensities, this speed-up will decrease slightly. Overall, the
numerical experiments have shown that the new procedure results in a speed-up factor of
above 20.

Limitations and Potential Advancements

The approach provides a reliable prediction of the tail end of the response statistics.
Yet, we tested this strategy on two-dimensional models only. Three-dimensional structures
will be of high interest for this strategy as the number of degrees of freedom drastically
increases and, consequently, the computational cost. In this case, the accuracy of the
proposed approach must be tested. Furthermore, we used a rather simple assumption
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for the criterion of structural failure. Incorporating more elaborate material models that
include material damage and softening will result in a significantly higher computational
cost. It is interesting to evaluate the computational speed up in this case since we assume
that the neural network prediction will not be affected by this extension. However, in this
study, we used a bi-linear material model and analyzed the behavior in the cross section
with the highest stresses and focused on the level of plastification. Evaluating static cyclic
test calculations one observes that, if the story drift ratio exceeds the chosen failure criterion
of a maximum PSDR the most affected cross section, i.e., the cross section in the first frame
corner, fully plastifies.

5. Conclusions

This paper proposes a new training data selection strategy for neural network-enhanced
Monte Carlo simulations. The training data selection enables one to reliably predict the
whole response statistic domain, while revealing a high level of computational efficiency.
Based on a synthetic earthquake set that is generated taking into account the properties of
a specific region, this strategy provides a powerful technique to predict the probability of
failure, even in the tail end of the distribution.

Although the application of the proposed selection strategy reduces the sensitivity of
classically trained neural network architectures, the prediction quality is still sensitive to
the neural network parameters. Thus, future studies are necessary to find the best neural
network architecture and stabilizing measures for consistent output quality. However,
we found a way to effectively choose training data to apply artificial neural networks for
seismic response statistics.

The use of more than only one benchmark earthquake record can be incorporated into
the data generation process, which is of high interest for future research. Furthermore, the
applicability to more realistic structures could reveal even more significant benefits of the
new strategy in the future, as more complicated structures do not necessarily require more
sophisticated neural network architectures, which would, finally, reveal an even higher
speed up in computation time.
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