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Abstract: The introduction of modern methods for the mathematical processing of geological data
is one of the promising areas of study and development in the field of geosciences. For example,
today mathematical geology makes it possible to reliably identify astronomical cycles by measuring
the scalar magnetic parameters of rocks (magnetic susceptibility). The main aim of this study is to
develop a mathematical tool for identifying stable oscillation cycles (periods) in the dataset of the
magnetic susceptibility of rocks in a geological section. The author’s method (algorithm) is based on
the concept of discrete mathematical analysis—an innovative mathematical approach to the analysis
of discrete geological and geophysical data. Its reliability is also demonstrated, by comparison with
the results obtained by classical methods: Fourier analysis, Lomb periodogram, and REDFIT. The
proposed algorithm was applied by the authors to analyze the material of field geological studies
of the Zhelezny Rog section (Taman Peninsula). As a result, stable cycles were determined for the
Pontian and Lower Maeotian sedimentary strata of the Black Sea Basin (Paratethys).

Keywords: sedimentary rocks; magnetic susceptibility; discrete mathematical analysis; astronomical
cyclicity; Paratethys; Taman Peninsula; black sea basin

1. Introduction

In recent years, the active development of various geodata acquisition techniques
caused the accumulation of large amounts of heterogeneous data. As a result, nowadays
in geosciences, there is a need for new mathematical methods and approaches to analyze
accumulated data. This is especially actual in geology for the analysis and interpretation
of complex phenomena, such as paleoenvironmental changes, sedimentation rates, and
fluctuations in insolation [1].

The Maeotian stratigraphic scale of the Black Sea region is based on the determina-
tion of mollusk fauna, along with dates of the boundaries of regional stages and their
subdivisions derived from various geochronology methods. However, some uncertainties
remain which cause disputes and impede the performance of full-scale interregional com-
parisons and paleogeographic reconstructions. The solution to this problem is improving
the stratigraphic dissection of the studied sediments and developing methods for dating
rocks. They include one of the new directions in geology: cyclostratigraphy (dating of
strata by astronomical cyclicity, recorded in scalar magnetic parameters), which is often
used in combination with mathematical approaches.

Cyclostratigraphy is a new scientific domain in stratigraphy and sedimentology that
deals with identifying, describing, correlating, and interpreting cyclic variations in the
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stratigraphic sequence. In particular, cyclostratigraphy involves applying this knowledge
to geochronology by increasing the accuracy and resolution of chronostratigraphic units.
It uses the astronomical cycles of the currently known periodicity and an interpretation
of the sedimentation conditions. According to the astronomical theory of paleoclimates,
largely developed by Milankovitch, cyclical changes in the Earth’s orbit (orbital cycles) are
the main causes of climate change [2]. These cycles translate into climatic, oceanographic,
sedimentary, and biological changes recorded in sedimentary deposits over geological time.
Numerous case studies have shown that detailed analysis of sedimentary rocks allows
these cycles to be identified with a high degree of confidence. An unprecedented high
temporal resolution is available once the relationship between the sedimentary record
and orbital forcing is established. This relationship provides a basis for the timing of the
processes occurring in the Earth system [3].

The main task of cyclostratigraphy is to analyze the structure of sedimentary deposits
and identify stable signals reflecting the orbital influence. An essential aspect of time
series analysis in cyclostratigraphy is transforming raw data into the time domain using
calibration points. Once the time series is established, mathematical methods can be used
to detect orbital periodicities.

Determination of astronomical cyclicity using geochronological methods, including
paleomagnetic reconstruction and lithological analysis, is possible by defining the mag-
netic susceptibility of sediments. Magnetic susceptibility depends on the amount of solar
radiation reaching the Earth’s surface and reflects climatic fluctuations. Spectral analysis
of scalar magnetic parameters allows the detection of long-term period oscillations of the
Earth’s axis, the angle of inclination of the Earth’s axis to the plane of the ecliptic, and
eccentricity. This method gives a possibility to define absolute ages of sediments with
accuracy in the order of 20,000 to 400,000 years.

In this paper, the application of mathematical methods to solve some critical problems
of cyclostratigraphy and paleogeography of Eastern Paratethys Maeotian sediments is
proposed. It should be noted that Eastern Paratethys has, for many years, been the research
subject of one of the authors of the present paper. The study is aimed at the analysis of
sedimentation processes of the Eastern Paratethys by the identification of stable oscillation
cycles in the magnetic susceptibility data. To identify such cycles (periods), the authors
developed a mathematical algorithm that is based on the concept of discrete mathematical
analysis (DMA). DMA is an innovative mathematical approach to the analysis of discrete
geological and geophysical data that was developed at the Geophysical Center of the
Russian Academy of Sciences [4].

DMA is a series of algorithms united by a common formal basis: fuzzy comparisons
of numbers, a measure of proximity in discrete spaces, and a discrete limit. DMA was
developed to create discrete equivalents of the concepts of classical mathematical analysis:
for example, limit, continuity, smoothness, connectivity, monotonicity, and extremum.
DMA methods and algorithms have proven to be useful in numerous studies related to
the processing and analysis of various geological [5], geophysical [6,7], geomagnetic [8–12],
seismological [13], and other data [14].

2. Materials and Methods

The modern development stages of geology show a clear trend towards solving
problems using more and more complex mathematical approaches. So simple statistics
is being replaced by multi-dimensional methods. The concept of stochastic processes
changed our understanding of geological history and led to the development of geostatistics.
Nonlinear models are replacing linear ones. The introduction of fractal sizes has led to
the notion of chaotic behavior. The above methods contribute to the development of
cyclostratigraphic studies. Here we should note that cyclic sequences are predictable [1].

The most frequently used mathematical methods in geology can be roughly divided
into three groups:
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• Time series analysis, including spectral analysis (Fourier, spectrogram, and wavelet
analysis), autocorrelation, cross-correlation, smoothing, filtering, and extremum search.

• Multivariate data analysis, including multivariate distributions and cluster analysis.
• Statistical methods, such as statistical distributions, correlation, regression, and chi-

square tests.
• Neural networks (including deep learning neural networks).

2.1. Classical Spectral Methods

Of the groups of mathematical methods listed above, the group ‘time series analy-
sis’, especially spectral analysis, is important for solving cyclostratigraphy problems. A
brief description of the spectral methods most commonly used in cyclostratigraphy is
provided below.

Any time series can be analyzed in terms of its description in the frequency domain.
The classical way to detect frequency components in time series is Fourier spectral analysis.
The importance of each frequency component in the time series is established using paired
sine and cosine waves. Cyclostratigraphic data are discrete. For this reason, a discrete
Fourier transform is applied. In a discrete Fourier transform, a time series is multiplied,
point by point, by a cosine wave of a specific frequency. The results are summed and
multiplied by a constant (2/N, where N is the number of points in the data series). This cal-
culation gives the average amplitude of the cosine frequency component. The calculations
continue assuming half the spectrum exists as a mirror image of the actual spectrum at
‘negative frequencies’. Since negative frequencies have no physical meaning for time series
observations, the average amplitude must be doubled using a constant. The time series is
then multiplied by a sine wave of the same frequency. The results are again summed and
multiplied by a constant. For each frequency component investigated, the relative size of
the average amplitude of the sine and cosine waves determines the average phase of the
time series oscillations. Fourier transform can be considered as reorganizing time series
data to a different location based on frequency.

To summarize, the Fourier transform is a mathematical operation that takes any wave-
form and breaks it down into separate sinusoidal components with different frequencies
and amplitudes. The components are then presented as peaks in the frequency spectrum.

Spectral analysis of data series can be performed using the periodogram method. The
periodogram is the square of the modulus of the amplitude of the Fourier spectrum. The
Lomb periodogram is a frequency analysis technique for non-uniform data series. It is more
suitable for cyclostratigraphic data than the Fourier transform. The Lomb periodogram
is invariant concerning the time scale shift, and its statistical properties for non-uniform
samples are equivalent to the Fourier transform properties for uniform samples. Frequency
analysis by the Lomb method solves the problem of detecting oscillatory processes in data
series. However, to study the evolution of the observed phenomena a time-frequency anal-
ysis is required. In this analysis, a subset of the sample is selected by a sliding observation
window. When using an observation window, the data series is multiplied by a specific
weight function [15].

Time series spectra are often characterized by a continuous decrease in spectral ampli-
tude with increasing frequency (red noise). Additionally, time series are often unevenly
distributed in time, making it difficult to estimate their red noise spectra. The REDFIT math-
ematical method [16] is an advanced version of the simple periodogram that solves this
problem by directly fitting the first-order autoregressive process to unevenly distributed
time series. In this way, the method avoids interpolation in the time domain and its in-
evitable shift. REDFIT is used to test if peaks in the spectrum of a time series are significant
against a background of red noise from a first-order autoregressive process.

2.2. DMA-Algorithm for the Identification of Periods in Data Arrays

Within the framework of this study, the authors have developed a mathematical
algorithm to identify periods (stable cycles) in data arrays. The algorithm is based on the
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DMA concept. DMA was briefly discussed above. The developed algorithm makes it
possible to evaluate the consistency of any positive number as the period of the original
function. The best answers, if they exist, are declared the identified periods. For simplicity
of presentation, below we will call the algorithm developed here the DMA-algorithm. Let’s
move on to a rigorous mathematical description of the DMA-algorithm.

Suppose that a function f is given on the segment [a, b], and we want to understand
what periods it has. The period T, ideal for f, is defined as follows: T is the period for f if ∀t,
t + T ∈ [a, b] is true f (t) = f (t + T). In reality, the function f may not have any ideal period T,
but it may have approximate periods. A description of approximate periods and how to
determine them is provided below.

It is clear that the applicant for the period T must lie in the interval (0, (b − a)/2).
For such a T and t ∈ [a, a + T), we denote by {f, T, t} the finite sequence {f (t), f (t + T),
f (t + 2T), . . . }. Firstly, it is necessary to understand to what extent the sequence {f, T, t} can
be considered constant, i.e., to determine the exponent of its constancy C{f, T, t} ≥ 0. The
equality C{f, T, t} = 0 must correspond to the constancy of the sequence {f, T, t }.

Here we present three different constructions of the exponent C{f, T, t}.
The first construction is the variance D of the sequence {f, T, t} relative to the usual or

average median:
C{f, T, t} = D{f, T, t} or C{f, T, t} = Dm{f, T, t}. (1)

The second and third constructions suppose the determination of the modulus of the
difference sequence |∆{f, T, t}| for sequence {f, T, t}:

|∆{f, T, t}| = {|f (t + T) − f (t)|, |f (t + 2T) − f (t + T)|, . . . }. (2)

The question of the constancy of {f, T, t} is reduced to the question of the triviality of
|∆{f, T, t}|.

The second construction is the Kolmogorov mean Mp with a positive exponent p of
the sequence |∆{f, T, t}|:

C{f, T, t} = Mp|∆{f, T, t}|. (3)

As mentioned previously, using the Kolmogorov mean Mp, C indicates the proximity
of the sequence |∆{f, T, t}| to zero.

Another solution is given by the third construction, using the distribution function
F|∆{f, T, t}|:

C{f, T, t} = α(|∆{f, T, t}|), (4)

where α(|∆{f, T, t}|) is α-quantile of the distribution F|∆{f, T, t}|.
The estimate C{f, T, t} characterizes T as a period on the sequence {t, t + T, t + 2T, . . . }.
The next stage is the development of a unified estimate T as a period independent

of t. Such an estimate C(f, T) should be an indicator of the smallness of the set (C(f, T, t),
t ∈ [a, a + T)). For this, we again use the Kolmogorov mean Mp:

C(f, T) = Mp(C(f, T, t), t ∈ [a, a + T)), p ≥ 0. (5)

The final stage is the search for strong minima of the estimate C(f, T). Provided that
they exist, we can obtain the necessary periods for the function f using the apparatus of
minimality measures [4].

2.3. Time Series for the Demonstration of the Efficiency of the Algorithm

Figure 1 shows the time series that represents a series of oxygen isotopes of calcite in
the shells of Pliocene and Pleistocene benthic foraminifera collected from 57 core samples
worldwide [17]. This series contains the last 400,000 years of the record in 1000 year
increments. This time series is comprehensively studied in numerous papers [17]. For this
reason, we applied it below to demonstrate the efficiency of the described algorithms.
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2.4. Magnetic Susceptibility Data of Zhelezny Rog Cape

The objects of cyclostratigraphical study are deep-water sediments in the section
of the Zhelezny Rog Cape of the Taman Peninsula, Black Sea Coast (N 45◦11′06.1′′,
E 36◦74′48.4′′) [18,19]. Zhelezny Rog is a reference section of the Maeotian-Pontian and
Pontian sediments of the European part of the Russian Federation.

Sediments of the Upper Maeotian, Upper and Lower Pontian up to 145 m were studied
by the authors. The base of the Upper Maeotian is marked with a layer of clay breccia char-
acterized by a homogeneous composition of clays and breccia clay matrix, and of the host
sedimentary rocks, reflecting the underwater-colluvial origin of the considered sediments.

According to a micropaleontological study, the Upper Maeotian sediments are cycli-
cally structured due to the influence of short-term inflows of seawater.

Beds with a monospecific assemblage of Actinocyclus octanarius diatoms are identified
in the transitional layers between the Maeotian and Pontian [18,19]. Higher in the section,
the number of diatoms is reduced.

The aleurite and non-calcareous clays occur higher and indicate the introduction of a
river suspension and the stagnation of bottom waters. Subsequently, regression has led to
the sandy clays deposition with a high kaolinite concentration.

The beginning of the Late Pontian is characterized by the breccia clays combined with
horizons of shell-detrital limestones. The second half of the Late Pontian sediments consist
of cyclic shallow-water clay.

In the present paper, we apply classical spectral methods and developed a DMA-
algorithm to identify periods in magnetic susceptibility data of the Pontian (the total
thickness of the sediments is 41.2 m; Figure 2a) and Lower Maeotian deposits (the total
thickness of the deposits is 30 m; Figure 2b) of the Zhelezny Rog Cape. Measurements of
the magnetic susceptibility of rocks were carried out using a field kappameter across the
strike of the layers at regular intervals of 20 cm. Three measurements were taken at each
point to ensure accuracy. For each point, the average susceptibility was calculated from the
three measured values. The averaged magnetic susceptibility values are shown in Figure 2.
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Figure 2. Magnetic susceptibility of deposits of the Zhelezny Rog Cape section: (a) Lower-Upper
Pontian; (b) Lower Maeotian.

3. Results
3.1. Demonstration of the Efficiency of the Algorithms

Figure 3a shows the Fourier and Lomb periodograms for the time series in Figure 1,
which was previously normalized and centered. The Fourier periodogram is shown in blue,
the Lomb periodogram is shown in red [20], and the spectrum obtained by the REDFIT
method is shown in green in Figure 3b. Let us consider the observed Milankovitch cycles.
Figure 3a shows that all six main peaks in the Fourier and Lomb periodograms are located
at the frequencies (in decreasing order of spectral power): 0.0094, 0.0250, 0.0153, 0.0432,
0.0184, and 0.0339. This corresponds to the periods: 106,380 (eccentricity), 40,000 (tilt cycle),
65,360, 23,150 (precession), 54,350 and 29,500 years.
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The coincidence of the frequency maxima of the Fourier and Lomb periodograms
(Figure 3a) can be explained by several factors. Firstly, the initial data have a uniform
temporal distribution of observations. For data such as these, in the absence of white noise,
there is an identical coincidence of the Fourier and Lomb periodograms [21]. Secondly,
the differences in periodograms are caused by the presence of minor noise in the original
data. The Lomb method [15] better distinguishes periods of 106,380 and 65,360 years from
this noise.

The REDFIT spectrum (Figure 3b) shows five peaks at the frequencies (in descending
order of spectral power): 0.0094, 0.0250, 0.0163, 0.0425, and 0.0325. Note that the two main
peaks in the REDFIT spectrum are located at the same frequencies as the main peaks in
the Fourier and Lomb periodograms. In this case, two REDFIT peaks are shifted in the
frequency domain, and one peak combines two Fourier and Lomb peaks. The discrepancies
may be because REDFIT considers the spectrum of red noise in the time series, which is not
accounted for in the Fourier and Lomb transforms.
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The results shown in Figure 3 demonstrate that spectral methods for studying time
series are valuable tools in mathematical geology, particularly in cyclostratigraphy for
detecting orbital periodicities.

On the example of time series presented in Figure 1, the efficiency of the developed
DMA-algorithm is also demonstrated. Figure 4 shows the calculated constancy exponent
of the series in blue and its smoothed version in red. As mentioned previously, the
required periods of the time series are the points of the minimum of the constancy exponent
C(f, T). Figure 4 shows that the strong periods are 115,000, 44,000 and 85,800 years. Weakly
expressed periods are 58,600 and 67,600 years. Note that the identified periods are relatively
close to the periods defined by spectral methods. Four out of five periods in Figure 4 closely
match the periods in Figure 3. A possible explanation for the appearance of the 85,800 years
period may be that it is a multiple of the 44,000 years period.
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The results shown in Figure 4 and their comparison with results obtained in Figure 3
indicate that the proposed DMA-algorithm for determining the periods of time series can
be applied in cyclostratigraphy tasks.

3.2. Identification of Periods in Magnetic Susceptibility Data

Figure 5 shows the results of applying spectral methods to the magnetic susceptibility
data for the Pontian deposits (Figure 2a) of the Zhelezny Rog Cape. Of the three promi-
nent peaks on the Lomb periodogram, two peaks fall within the 95% confidence interval
(Figure 5a). These peaks are located at frequencies of 0.0425 and 0.2519, corresponding
to periods of 23.53 m and 3.97 m, respectively. This result is confirmed by the Fourier
periodogram (Figure 5a), where the main peaks are located at frequencies of 0.0437 and
0.2519 periods of 22.88 m and 3.97 m. In contrast to the example described above (Figure 3a),
the Fourier and Lomb periodograms in Figure 5a differ slightly. These differences can be
explained by white noise in the original data (Figure 2a).

Figure 5b shows the spectrum obtained using the REDFIT algorithm. Two peaks fall
within the 95% confidence interval. They occur at frequencies of 0.0444 and 0.2525, which
correspond to the periods of 22.52 m and 3.96 m. These periods coincide with the periods
identified by the Fourier and Lomb periodograms.
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Figure 5. The results of applying spectral methods to the magnetic susceptibility data from the
Lower-Upper Pontian deposits of the Zhelezny Rog Cape section (Figure 2a): (a) Fourier and Lomb
periodograms (the black bold solid line indicates the 95% confidence interval for the Lomb peri-
odogram); (b) the spectrum constructed by the REDFIT algorithm (the black bold solid line indicates
the 95% confidence interval).

Figure 6 shows the Fourier and Lomb periodograms and the REDFIT spectrum for the
magnetic susceptibility data from the Lower Maeotian deposits (Figure 2b). Only one peak
of the Lomb periodogram falls within the 95% confidence interval (Figure 6a). This peak
is located at a frequency of 0.1408, which corresponds to a period of 7.1 m. This result is
partially confirmed by the Fourier periodogram, where the main peak is at a frequency of
0.1516 (period 6.6 m). We are inclined to believe that the differences in the periodograms
can be explained by noise in the data. The REDFIT spectrum is shown in Figure 6b. In this
spectrum, just one peak is located in the 95% confidence interval. It occurs at a frequency
of 0.1497, corresponding to a period of 6.68 m. The similarity in the periods obtained from
the Fourier periodogram and the REDFIT spectrum may indicate more white noise than
red noise in the initial data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 11 
 

Figure 5b shows the spectrum obtained using the REDFIT algorithm. Two peaks fall 
within the 95% confidence interval. They occur at frequencies of 0.0444 and 0.2525, which 
correspond to the periods of 22.52 m and 3.96 m. These periods coincide with the periods 
identified by the Fourier and Lomb periodograms. 

  
(a) (b) 

Figure 5. The results of applying spectral methods to the magnetic susceptibility data from the 
Lower-Upper Pontian deposits of the Zhelezny Rog Cape section (Figure 2a): (a) Fourier and Lomb 
periodograms (the black bold solid line indicates the 95% confidence interval for the Lomb periodo-
gram); (b) the spectrum constructed by the REDFIT algorithm (the black bold solid line indicates 
the 95% confidence interval). 

Figure 6 shows the Fourier and Lomb periodograms and the REDFIT spectrum for 
the magnetic susceptibility data from the Lower Maeotian deposits (Figure 2b). Only one 
peak of the Lomb periodogram falls within the 95% confidence interval (Figure 6a). This 
peak is located at a frequency of 0.1408, which corresponds to a period of 7.1 m. This result 
is partially confirmed by the Fourier periodogram, where the main peak is at a frequency 
of 0.1516 (period 6.6 m). We are inclined to believe that the differences in the periodo-
grams can be explained by noise in the data. The REDFIT spectrum is shown in Figure 6b. 
In this spectrum, just one peak is located in the 95% confidence interval. It occurs at a 
frequency of 0.1497, corresponding to a period of 6.68 m. The similarity in the periods 
obtained from the Fourier periodogram and the REDFIT spectrum may indicate more 
white noise than red noise in the initial data. 

  

(a) (b) 

Figure 6. The results of applying spectral methods to the magnetic susceptibility data of the Lower 
Maeotian deposits of the Zhelezny Rog Cape section (Figure 2b): (a) Fourier and Lomb periodo-
grams (the black bold solid line indicates the 95% confidence interval for the Lomb periodogram); 
(b) the spectrum constructed by the REDFIT algorithm (the black bold dotted line indicates the 95% 
confidence interval). 

To identify periods, the developed DMA-algorithm is applied. In Figure 7, the calcu-
lated constancy values for the magnetic susceptibility data of the Pontian and Lower Me-
otian deposits are shown in blue. As discussed previously, periods are considered to be 
the points of ‘global’ minima of the constancy exponent C(f, T). For this reason, the 

Figure 6. The results of applying spectral methods to the magnetic susceptibility data of the Lower
Maeotian deposits of the Zhelezny Rog Cape section (Figure 2b): (a) Fourier and Lomb periodograms
(the black bold solid line indicates the 95% confidence interval for the Lomb periodogram); (b) the
spectrum constructed by the REDFIT algorithm (the black bold dotted line indicates the 95% confi-
dence interval).

To identify periods, the developed DMA-algorithm is applied. In Figure 7, the cal-
culated constancy values for the magnetic susceptibility data of the Pontian and Lower
Meotian deposits are shown in blue. As discussed previously, periods are considered to
be the points of ‘global’ minima of the constancy exponent C(f, T). For this reason, the
calculated constancy exponents were ‘strongly’ smoothed to obtain their global trends. The
smoothed constancy exponents are shown as red lines in Figure 7. Figure 7a shows that the
prominent period in the magnetic susceptibility data series of the Pontian deposits is 3.6 m.
The minimum of the constancy exponent at 15.2 m can be considered a ‘weak’ period. The
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absence of the ~23 m period in Figure 7a is due to the algorithm considering values in half
of the studied segment to be contenders for the period, which in this case is 41.2 m. For the
Lower Meotian deposits, only one period of 7 m can be distinguished (Figure 7b). Strong
periods in Figure 7 emerge as very close to the periods obtained using spectral methods
of analyzing data series. In the case of a ‘softer’ smoothing of the constancy exponent
(Figure 7), weaker periods can be obtained. In Figures 5 and 6, these were not valid above
the 95% confidence intervals or could not be obtained due to the low spatial resolution of
the initial data.
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4. Conclusions

This paper presents new field data on the magnetic susceptibility of the Pontian and
Lower Maeotian rocks of the Black Sea Basin (Paratethys), collected within the Zhelezny
Rog section (Taman Peninsula, Russia). To identify stable periods in these data, the authors
used both classical spectral algorithms and the DMA-algorithm developed in this paper.

In the studied interval, a 71-m-long sedimentary sequence, spectral analysis revealed
statistically significant signals with some high peaks. These signals correspond to the
precession and obliquity cycles. It should be noted that the 3.6 m peak corresponds to the
precession periodicity (19–24 thousand years). The 7 m peak corresponds to the periods
of changes in the angle of inclination of the Earth’s axis (41,000 years). The 15.2 m peak
corresponds to the 100,000 year cycles; however, its validity is questionable due to the
length of the interval (15 × 3 = 45 m). The 23 m peak is not valid, as the sampling interval
is 41.2 m (cycle lengths are valid when they are three times the thickness of the interval:
23 × 3 = 69 m).

In the conclusion of the article, a few more words should be said about the mathemati-
cal apparatus, DMA [4]. It is the basis for the authors algorithm for the identification of
periods in cyclostratigraphic data. The ideological mathematical basis of DMA-analysis
allows the creation of algorithms for knowledge acquisition from geological and geophysi-
cal data. Based on fuzzy sets and fuzzy logic, DMA makes it possible to convey PC expert
knowledge about the structure, morphology, monotony, etc. of studied data series. DMA
enables a systematic approach to the analysis of complex data series of Earth sciences.
Thereby DMA is a part of modern applied systems analysis [22].

Author Contributions: Conceptualization, A.I.R., B.A.D. and A.A.O.; data curation, A.A.O. and
A.I.R.; methodology, A.I.R., B.A.D. and A.A.O.; software, B.A.D.; formal analysis, B.A.D. and B.V.D.;
validation, A.I.R.; resources, A.I.R.; writing—original draft preparation, B.A.D., A.A.O. and B.V.D.;
writing—review and editing, B.A.D., A.A.O., A.I.R. and B.V.D.; supervision, A.I.R.; project admin-



Appl. Sci. 2022, 12, 580 10 of 10

istration, A.I.R. and A.A.O.; funding Acquisition, A.I.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (project No. 19-77-10075).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to employees of the Geophysical Center of the Russian
Academy of Sciences, Sergey Agayan, Shamil Bogoutdinov and Dmitry Kudin for assistance with
developing the algorithm and implementing the program code. This work employed data provided
by the Shared Research Facility «Analytical Geomagnetic Data Center» of the Geophysical Center of
RAS (http://ckp.gcras.ru/ (accessed on 15 December 2021)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schwarzacher, W. Mathematical geology and the development of cyclostratigraphy. Geoinformatics 1993, 4, 353–356. [CrossRef]
2. Foucault, A. Sedimentary record of orbital cycles, methodology, results and perspectives. Bull. Soc. Geol. Fr. 1992, 163, 325–335.
3. Strasser, A.; Hilgen, F.J.; Heckel, P.H. Cyclostratigraphy—Concepts, definitions and applications. Newsl. Stratigr. 2006, 42, 75–114.

[CrossRef]
4. Agayan, S.M.; Bogoutdinov, S.R.; Krasnoperov, R.I. Short introduction into DMA. Russ. J. Earth Sci. 2018, 18, ES2001. [CrossRef]
5. Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R.; Soloviev, A.A. Discrete mathematical analysis and applications in geology and

geophysics. Vestn. KRAUNTs Nauk. Zemle 2010, 2, 109–125.
6. Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R. Discrete mathematical analysis and monitoring of volcanoes. Inzh. Ekol. 2008, 5,

26–31.
7. Widiwijayanti, C.; Mikhailov, V.; Diament, M.; Deplus, C.; Louat, R.; Tikhotsky, S.; Gvishiani, A. Structure and evolution of the

Molucca Sea area: Constraints based on interpretation of a combined sea-surface and satellite gravity dataset. Earth Planet. Sci.
Lett. 2003, 215, 135–150. [CrossRef]

8. Bogoutdinov, S.R.; Gvishiani, A.D.; Agayan, S.M.; Soloviev, A.A.; Kihn, E. Recognition of disturbances with specified morphology
in time series. Part 1: Spikes on magnetograms of the worldwide INTERMAGNET network. Izv. Phys. Solid Earth 2010, 46,
1004–1016. [CrossRef]

9. Gvishiani, A.; Soloviev, A.; Krasnoperov, R.; Lukianova, R. Automated Hardware and Software System for Monitoring the Earth’s
Magnetic Environment. Data Sci. J. 2016, 15, 18. [CrossRef]

10. Soloviev, A.A.; Bogoutdinov, S.R.; Agayan, S.M.; Gvishiani, A.D.; Kihn, E. Detection of hardware failures at INTERMAGNET
observatories: Application of artificial intelligence techniques to geomagnetic records study. Russ. J. Earth Sci. 2009, 11, ES2006.
[CrossRef]

11. Gvishiani, A.D.; Lukianova, R.Y. Geoinformatics and observations of the Earth’s magnetic field: The Russian segment. Izv. Phys.
Solid Earth 2015, 51, 157–175. [CrossRef]

12. Gvishiani, A.D.; Mikhailov, V.O.; Agayan, S.M.; Bogoutdinov, S.R.; Graeva, E.M.; Diament, M.; Galdeano, A. Artificial intelligence
algorithms for magnetic anomaly clustering. Izv. Phys. Solid Earth 2002, 38, 545–559.

13. Gvishiani, A.D.; Dzeboev, B.A.; Agayan, S.M. FCAZm intelligent recognition system for locating areas prone to strong earth-
quakes in the Andean and Caucasian mountain belts. Izv. Phys. Solid Earth 2016, 52, 461–491. [CrossRef]

14. Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R.; Zlotnicki, J.; Bonnin, J. Mathematical methods of geoinformatics. III. Fuzzy
comparisons and recognition of anomalies in time series. Cybern. Syst. Anal. 2008, 44, 309–323. [CrossRef]

15. Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [CrossRef]
16. Schulz, M.; Mudelsee, M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput.

Geosci. 2002, 28, 421–426. [CrossRef]
17. Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 2005,

20, 1–17. [CrossRef]
18. Rybkina, A.I.; Rostovtseva, Y.V. Astronomically-tuned cyclicity in Upper Maeotian deposits of the Eastern Paratethys (Zheleznyi

Rog Section, Taman). Mosc. Univ. Geol. Bull. 2014, 69, 341–346. [CrossRef]
19. Rostovtseva, Y.V.; Rybkina, A.I. The Messinian event in the Paratethys: Astronomical tuning of the Black Sea Pontian. Mar. Pet.

Geol. 2017, 80, 321–332. [CrossRef]
20. Hammer, Ø.; Harper, D.A.T. Paleontological Data Analysis; Blackwell Publishing: Hoboken, NJ, USA, 2005; Volume 351. [CrossRef]
21. Carbonell, M.; Oliver, R.; Ballester, J.L. Power spectra of gapped time series: A comparison of several methods. Astron. Astrophys.

1992, 264, 350–360.
22. Zgurovsky, M.Z.; Pankratova, N.D. System Analysis: Theory and Applications (Data and Knowledge in a Changing World); Springer:

Berlin/Heidelberg, Germany, 2007; Volume 447. [CrossRef]

http://ckp.gcras.ru/
http://doi.org/10.6010/geoinformatics1990.4.3_353
http://doi.org/10.1127/0078-0421/2006/0042-0075
http://doi.org/10.2205/2018ES000618
http://doi.org/10.1016/S0012-821X(03)00416-3
http://doi.org/10.1134/S1069351310110091
http://doi.org/10.5334/dsj-2016-018
http://doi.org/10.2205/2009ES000387
http://doi.org/10.1134/S1069351315020044
http://doi.org/10.1134/S1069351316040017
http://doi.org/10.1007/s10559-008-9009-9
http://doi.org/10.1007/BF00648343
http://doi.org/10.1016/S0098-3004(01)00044-9
http://doi.org/10.1029/2004PA001071
http://doi.org/10.3103/S0145875214050081
http://doi.org/10.1016/j.marpetgeo.2016.12.005
http://doi.org/10.1002/jqs.1107
http://doi.org/10.1007/978-3-540-48880-4

	Introduction 
	Materials and Methods 
	Classical Spectral Methods 
	DMA-Algorithm for the Identification of Periods in Data Arrays 
	Time Series for the Demonstration of the Efficiency of the Algorithm 
	Magnetic Susceptibility Data of Zhelezny Rog Cape 

	Results 
	Demonstration of the Efficiency of the Algorithms 
	Identification of Periods in Magnetic Susceptibility Data 

	Conclusions 
	References

