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Abstract: COVID-19 athletes reported persistent and residual symptoms many weeks after initial
infection, including cough, fatigue, and neuromuscular disorders. Poor neuromuscular control may
cause inefficient movement strategies increasing anterior cruciate ligament load. This is particularly
relevant in female athletes, who show a 3-time higher risk than male counterparts. Aim is to evaluate
the impairment in thigh muscles activation, body composition, and physical performance after
COVID-19 in volleyball athletes. We recruited a cohort of female professional players from the
same team. We assessed the pre-activation time of Rectus Femoris (RF), Vastus Medialis (VM),
Medial Hamstring (MH), and Lateral Hamstring (LH) before (T0) and after (T1) COVID-19 infection,
bioelectrical impedance analysis (BIA), and jump tests. We included 12 athletes with COVID-19
infection diagnosis in January 2021. At T1 we found a significant (p < 0.05) delay (ms) of the activation
time of RF (426 ± 188 vs. 152 ± 106); VM (363 ± 192 vs. 140 ± 96); BF (229 ± 60 vs. 150 ± 63); MH
(231 ± 88 vs. 203 ± 89), and a significant reduction of body composition at BIA. The neuromotor
imbalance of the knee stabilizer muscle in female athletes after COVID-19 infection determines a
deficit of knee stabilization. Physicians should consider neuromuscular and metabolic sequelae to
identify athletes at higher risk of injury and set up specific neuromuscular rehabilitation protocols.

Keywords: COVID-19; volley; sports; rehabilitation; electromyography; muscle activity; knee; body
composition; ACL

1. Introduction

Anterior cruciate ligament (ACL) injury is one of the most frequent and significant
sport related diseases, with a high prevalence in young and active individuals [1]. Female
athletes have a 3-time greater incidence of ACL injury than male subjects [2]. This disparity
in injury rates is most likely multifactorial and attributable to intrinsic factors, such as
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the configuration of the intercondylar notch, the loose joint, the differences in anatomic
alignment and hormones influence on ligamentous tissue. Furthermore, even extrinsic
factors (e.g., muscle imbalances, playing surface, use of orthoses) might play a role in the
higher ACL injury risk in female athletes [3,4].

However, the insufficient neuromuscular control during dynamic movements is con-
sidered the main risk factor for ACL injury in athletes [5], with a consequent motion
asymmetry and inefficient movement strategies [6]. This factor is particularly relevant in fe-
male subjects, showing typical muscular recruitment characteristics such as the preferential
recruitment of the quadriceps over the hamstrings, the shorter quadriceps latency periods
and an unbalanced quadriceps-to-hamstrings strength ratio [7–10]. In this context, Hewett
et al. [11] highlighted the importance of a dynamic neuromuscular control of the knee
to prevent ACL injuries. On the other hand, when the system is altered, the preparatory
contraction of the thigh muscles might stiffen the knee joint [7,12–14].

Therefore, an effective training to reduce these injuries is mandatory in sports in-
volving rapid stopping, cutting and changing of direction (i.e., soccer, basketball, and
volleyball) [15]. In fact, about 70–80% of ACL injuries are the consequences of non-contact
mechanism associated with landing from a jump, changing of direction or sudden decel-
eration [1,3,15]. ACL injury is also related to a higher risk of a knee re-injury [12] and
long-term disabilities (i.e., early osteoarthritis) that should be adequately managed [16,17].

COVID-19 pandemic has recently been spreading worldwide with a negative impact
on all forms of sport, especially in its first wave [18,19]. Indeed, in all the categories, the
need to socially distance and stop the spread of disease meant cancellation of routine
practices and competitive events [18]. However, in the slow return to normality, National
governing bodies and International Federations have published specific protocols focusing
on return-to-play, aimed to guarantee the safety of all sports professionals [18].

Despite COVID-19 clinical manifestations are mainly respiratory, major cardiac compli-
cations have been also reported, leading to acute myocarditis [20–23]. Moreover, COVID-19
positive athletes might present persistent and residual symptoms many weeks to months
after initial infection, including cough, tachycardia, extreme fatigue and neuromuscular
disorders [24,25]. Lastly, COVID-19 could be responsible for a decline of efficiency of
neuromuscular system, changes of body mass and composition and a consequent loss in
terms of performance and endurance with a higher risk of injury [5].

A neuromuscular involvement in COVID-19 patients has been widely described
in literature, due to the presence of impairments of peripheral nerves, neuromuscular
junction, muscles and cranial nerves [26]. As highlighted by Huang et colleagues in a
cohort of 2469 patients, even 6 months after acute COVID-19 infection, 63% of the subjects
showed fatigue or muscle weakness [27]. Recently, a systematic review and metanalysis
focused on neurological manifestations in COVID-19 infection showing that myalgia was
the most frequent neurological symptom in patients with COVID-19 infection, suggesting
a possible deep impact of the disease on the neuromuscular system [28]. Furthermore,
an observational study on 214 COVID-19 patients reported peripheral nervous system
involvement in up to 9% of patients [29]. Although the association between COVID-19 and
some peripheral nerve disorders such as Guillain-Barré syndrome has been debated [30],
a link between COVID-19 and peripheral nerve disorders has been widely suggested [31].
At least one third of the COVID-19 patients showed elevation of creatine kinase levels and
COVID-19 associated myopathies are reported in literature [32]. Early reports showed
considerable musculoskeletal sequelae in COVID-19 patients [33] and electromyography
(EMG) studies showed various combinations of neuropathic or myopathic changes [34].

On the other hand, peripheral nerve injury developed after COVID-19 could depend
on “a molecular mimicry” mechanism. The transcriptome of SARS-CoV-2 presents molecu-
lar similarities with several human protein epitopes, causing a cytokine storm and various
autoantibodies, potentially culminating in an autoimmune state leading to an aberrant
attack on healthy host tissue. The autoimmune cascade caused by COVID-19 may occur
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through multiple pathways including molecular mimicry, epitope spreading, bystander
activation, autoantibodies production and increase of effector B-cells [35].

Moreover, Anker et al. [36] reported that patients with COVID-19 are prone to develop
significant weight loss that could affect most of all muscle mass. More in detail, weight loss
might be caused by a massive inflammatory reaction that disturbs tissue homeostasis and
is boosted by concomitant malnutrition and immobilization [36].

Thus, it is reasonable to hypothesize that COVID-19 could have a negative influence
on the neuromuscular system, body composition and performance increasing the injury
risk and decreasing the performance in team sports [37,38].

In this context, surface EMG (sEMG) integrated with inertial measurement unit (IMU)
provides an insight into how the neuromuscular system behaves [39]. More in detail, it is
possible to determine the timing of muscles excitation, describing when a muscle “turns
on” [39,40] and to record muscle activity of the quadriceps and hamstrings to determine
the recruitment pattern and the time of pre-activation as the time of initial contraction in
preparation of landing [41,42]. Moreover, bioelectrical impedance analysis (BIA) represents
an accurate method in the assessment of athletes body composition when compared with
reference techniques (dual X–ray absorptiometry (DXA)) [43].

Therefore, the present observational study aims to characterize the impairment of
thigh muscles neuromuscular activation, muscle mass and physical performance in female
volley athletes after COVID-19 infection.

2. Materials and Methods
2.1. Participants

We retrospectively assessed medical records of professional Southern Italy team fe-
male volleyball players team participating to the 2020–2021 University Sport Screening
Program for ACL injury performed by the Physical and Rehabilitative Medicine Unit of the
University “Magna Graecia”, Catanzaro, Italy. We included elite athletes aged more than
18 years, with a 5-year experience in the young leagues; d) diagnosis of COVID-19 in the
same period (January 2021). Exclusion criteria were previous (two years) surgery at lower
extremity; lower limb pathologies or unsolved musculoskeletal syndromes with direct
consequences on sports participation; participation in ACL exercise prevention program;
d) history of previous neuromuscular disorders. Subjects were a sked to read and sign an
informed consent.

All researchers involved were educated in protecting the privacy of the participants.
This study was accepted by the local Institutional Review Board (61/10 p. 392), respecting
the Declaration of Helsinki and the ethical guidelines of the re-sponsible governmental
organization and.

2.2. Outcome Measures

The primary outcome was the pre-activation time of the knee stabilizer muscles of the
dominant leg: rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), and medial
hamstrings (MH) were evaluated through sEMG. We placed the electrodes on the dominant
leg [41,42], according to the recommendations of the sEMG recommendations for Not-
Invasive Assessment of Muscles (SENIAM) [44]. The knee stabilizer muscles’ time of pre-
activation is computed as the interval of time between the beginning of muscle activation
and the contact with the floor, evaluated by sEMG (FREE EMG 1000; BTS Bioengineering
Spa, Garbagnate M.se-Milano, ITA), through 80 mm bipolar surface electrodes (Ambu,
Neuroline, Ballerup, Denmark) [45]. Raw sEMG sample recording frequency was 1000 Hz.
An IMU (G-sensor, BTS Bioengineering Spa, Garbagnate M.se-Milano, ITA) provided
kinematic data. We positioned the elastic band containing the IMU on lumbar vertebrae
(L5). IMU signal provided the exact time of floor contact that we used as reference to
calculate muscle pre-activation. These signals were elaborated using sEMG Analyzer
software (BTS Bioengineering Spa, Garbagnate M.se-Milano, ITA) through the “drop fall”
protocol [46]. Each athlete was asked to move vertically, without controlling the land,
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from a 32 cm platform. All these evaluations were performed by a physician with a 5-year
expertise in sEMG measurement (Figure 1).
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Figure 1. sEMG signal of vastus medialis (green line) of one athlete. Pre-activation time is measured
as the interval time between the activation of the muscle (dashed line) and the floor contact.

Body composition was assessed as secondary outcome, through the BIA (Akern
s.r.l, Montacchiello, Pisa, Italy) evaluating: body cellular mass-BCM, fat mass (%), fat
mass weight (kg), free fat mass weight (kg), muscle mass (kg), extra-cellular mass-ECM
(kg), ECM/BCM ratio, phase angle (◦), total body water (kg), intracellular water (kg),
extra-cellular water (kg), O2 consumption (mL/min), and basal metabolic rate (kcal). Two
low-impedance electrodes were positioned on the right hand and on the corresponding foot.

Lastly, we assessed the power of the lower limb muscles, through counter movement
jump (CMJ), and squat jump (SJ) tests. CMJ assessed the ability to rapidly generate power
in stretch-shortening cycle activities, while the SJ assessed the ability to quickly produce
power in concentric movements [47].

More in detail, we considered the functional tests at the baseline (T0), 8 days before
the COVID-19 positive nasopharyngeal swabs, and at return-to-training (T1) 3 days after
the COVID-19 negative conversion at the RT-PCR test (see Figure 2 for further details).

2.3. Statistical Analysis

Data were analyzed with R software (version 3.5.1; R Foundation for Statistical Com-
puting, Vienna, Austria). We used Shapiro–Wilk for testing normality of data. Considering
the pre-activation time (assessed in ms) as primary outcome, the minimum sample size
(n = 10) was calculated based on a previous study performed by our group [41], taking
into account a potential 10% drop-out rate. Mean and standard deviation were used to
describe the data, t-Student test was used for significance testing, as appropriate for paired
samples, and Pearson’s r for parametric correlations. Plots were outlined using Graph
PRISM (version 4.0 for Windows; GraphPad Software, San Diego, CA, USA). We calculated
a post-hoc power analysis for the main outcomes considered.
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Figure 2. Timeline of this retrospective study on volleyball athletes affected by COVID-19.

3. Results

We included 12 athletes, mean aged 20.5± 6.2 years, with a mean height of 180.8 ± 7.9 cm,
of the same team competing in the Second Division of the Italian National Volley Champi-
onship. All the athletes had COVID-19 mild-infection in the same frame time (January 2021)
and they were isolated for 25 days. Paracetamol was administered for symptoms control.
The most prevalent symptom was fever reported by 7 athletes, followed by headache (6 ath-
letes), loss of taste or smell (5 athletes), muscle aches (4 athletes), and cough (2 athletes).
The mean duration of symptoms was 4.0 ± 2.1 days.

The electromyographic analysis of the knee stabilizer muscles showed at T1 a signifi-
cant delay of the RF activation time (426 ± 188 vs. 152 ± 106 ms; p = 0.001); VM (363 ± 192
vs. 140 ± 96 ms; p = 0.019); BF (229 ± 60 vs. 150 ± 63; p = 0.006); MH (T0: 231 ± 88 vs.
203 ± 89 ms; p = 0.011). Further details are shown in Table 1.

Table 1. Differences in pre-activation time (ms) of knee stabilizer muscles before COVID-19 infection
(T0) and at the return-to-training day (T1) comparing the same study population (n = 12).

T0 T1 p Values T1-T0

RF (ms) 426 ± 188 152 ± 106 0.001 *
VM (ms) 363 ± 192 140 ± 96 0.019
BF (ms) 229 ± 60 150 ± 63 0.006 *

MH (ms) 231 ± 88 203 ± 89 0.011 *
Continuous variables are expressed as means ± standard deviations. Statistical analysis performed to assess
intra-group differences was paired sample t-test; * = p < 0.0125. Abbreviations: RF: rectus femoris; VF: vastus
medialis; BF: biceps femoris; MH: medial hamstrings.

At T1 the BIA showed a statistically significant reduction of muscle mass (41.24 ± 3.06
vs. 39.38 ± 2.63 kg; p = 0.003); fat mass weight (19.82 ± 4.45 vs. 18.4 ± 4.04 kg; p = 0.009),
ECM (22.36 ± 1.98 vs. 23.43 ± 2.38 kg; p = 0.035), BCM (32.92 ± 4.53 vs. 31.27 ± 3.81 kg;
p = 0.007), and phase angle (7.81 ± 0.72 vs. 7.02 ± 0.44 degrees; p = 0.003). Further details
on the BIA evaluation are depicted by Table 2.
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Table 2. Bioelectrical impedance analysis of female volleyball athletes (n = 10) before COVID-19
infection (T0) and at the return-to-training day (T1).

T0 T1 p Values T1-T0

BCM (kg) 32.9 ± 4.5 31.3 ± 3.8 0.007 *
Fat Mass % 25.8 ± 4.1 24.5 ± 3.5 0.093

Fat Mass Weight (kg) 19.8 ± 4.4 18.4 ± 4.0 0.009 *
Free Fat Mass Weight (kg) 56.5 ± 3.6 55.8 ± 4.1 0.386

Muscle Mass (kg) 41.2 ± 3.1 39.4 ± 2.6 0.003 *
ECM (kg) 22.4 ± 1.98 23.4 ± 2.4 0.035 *

ECM/BCM ratio 0.6 ± 0.2 0.7 ± 0.2 0.002 *
Phase Angle (◦) 7.8 ± 0.7 7.0 ± 0.4 0.003 *

Total Body Water (kg) 41.4 ± 2.4 38.5 ± 4.2 0.025 *
Intracellular Water (kg) 24.8 ± 3.3 22.9 ± 3.2 0.007 *
Extracellular Water (kg) 16.4 ± 1.4 17.1 ± 1.7 0.051

O2 consumption (mL/min) 272 ± 26 262 ± 69.6 0.952
Basal metabolic rate (kcal) 1878 ± 146 1780 ± 126 0.004 *

Continuous variables are expressed as means ± standard deviations. Statistical analysis performed to assess
intra-group differences was paired sample t-test; * = p < 0.05. Abbreviations: BCM = body cellular mass;
ECM = extracellular mass.

At T1 we found a negative trend, even though not significant, in terms of CMJ flight
time (0.56 ± 0.04 vs. 0.55 ± 0.03 s; p = 0.113) and height (35.7 ± 12.3 vs. 35.2 ± 11.9 cm;
p = 0.103); and SJ (flight time 0.467 ± 0.15 vs. 0.461 ± 0.14 s; p = 0.144) and height
(32.04 ± 5.13 vs. 31.25 ± 4.67 cm; p = 0.140) after COVID-19.

4. Discussion

This retrospective study investigated the effects of COVID-19 infection on neuromus-
cular activation pattern of the knee stabilizer muscle in professional volleyball female
players. The athletes enrolled had only mild COVID-19 symptoms, thus, our study mainly
focused on the consequent athletic condition impairment. To the best of our knowledge,
this is the first study investigating the effects of COVID-19 on neuromuscular system in a
cluster of athletes at high risk of ACL injury.

We found a significant delay in the muscular activation time of VM, RF, MH, and
LH at the return-to-training compared with their own values before COVID-19 infection.
Moreover, in the athletes who reported fever there was a significant reduction of the phase
angle at the BIA. Neuromuscular activation patterns and the rate of recruitment of thigh
muscle fibers, particularly quadriceps and hamstrings, play a key role in providing dynamic
stability and reducing the risk of injury [7,48]. MH and LH are a dynamic ACL agonist,
with various tendon insertions that can be used selectively to control the limb during
functional task [49–51]. Thus, a delay in hamstring activation does not contrast the anterior
displacement of the tibia, increasing anterior tibial shear force and magnify ACL loading
during sport specific task [16]. The VM and RF through their indirect connection to the
patellar ligament, which runs in the center of the two femoral condyles, have a stabilizing
moment in both varus and valgus conditions [17]. Therefore, a delay in quadriceps muscle
activation represents a dynamic instability of the knee during the initial phase of the cutting
movements, from the pre-contact to the acceptance of weight phase [17]. Moreover, the
late activation of VM and an unbalanced mediolateral quadriceps musculature recruitment
pattern increases the apparent valgus dynamic position of the knee, increasing ACL load at
landing after a jump [46,52].

The electrophysiological changes documented in COVID-19 athletes could increase the
ACL injury risk. Moreover, according to Nepal et al. [53] electromyography plays a key role
in COVID-19 to evidence myopathic and neuropathic changes, although performing com-
plete electrophysiological examination, especially in patients with worst conditions [26],
was extremely challenging during the pandemic. In this context, Agergaard and col-
leagues [54], used quantitative EMG studies and found myopathic changes in 11 (55%) of
20 patients examined, complaining long term fatigue after COVID-19 infection, The authors
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hypothesized that myopathy rather than neuropathy could be a possible explanation of
physical fatigue in long-term COVID-19 patients even in non-hospitalized ones.

There are several reports about the specific tropism of COVID-19 for neural and mus-
cular tissue, including peripheral nerve, neuromuscular junction and muscle tissue [21,26].
Potential nervous system infections could be caused by the direct entrance of the virus via
the lamina cribrosa or, through systemic circulatory dissemination subsequent lungs infec-
tion, leading to a higher risk of developing transient or persistent neuromuscular and/or
neurological sequelae [55]. COVID-19 might lead to neurological sequelae by attacking
the central and peripheric nervous system in several ways, including vascular, inflamma-
tory and/or direct neuronal injury, damaging dopaminergic system, basal ganglia and
limbic system [55]. Indeed, neuromuscular complications of COVID-19 might be directly or
indirectly related to coronavirus infection [25]; thus, it is possible that the virus may be neu-
rotropic and could directly infect and damage motor neurons and peripheral nerves, with
symptoms developed after an interval of 12–20 days after COVID-19 infection onset [26].
Likewise, as many as a third of patients infected with other coronavirus infections showed
myalgia, elevated CKs and rhabdomyolysis suggesting that coronavirus infections may
cause a viral myositis [25,26]. Moreover, levels of LDH above the normative were found
in subject with myalgia and fatigue [56], and elevated levels of myoglobin are reported in
patients with severe COVID-19 infection [37]. Whether the creatine kinase levels elevation
and myopathic damage are supposed to be caused by toxic effects of cytokines, viral infec-
tion of muscle, or other mechanisms is still unclear, but data from muscle-biopsy advise an
important pathophysiologic responsibility of severe immune activation commonly featured
in COVID-19 patients [57]. The affinity of COVID-19 for neural tissue could in part explain
the alteration of neuromuscular recruitment pattern of the knee stabilizer muscle caused by
an immune-mediated disease of peripheral nerve myelin sheath or Schwann cells due to the
glycoproteins on the surface of the virus that resemble glycoconjugates in human nervous
tissue [26,58]. The antibodies formed against the viral surface glycoproteins act against
the glycoconjugates on the neural tissue and cause a chronic inflammatory demyelinating
polyneuropathy [26,59] that results in an alteration of propagation of action potentials by
saltatory conduction [60], leading to an alteration of timing of muscular activation.

Moreover, the COVID-19 influenced the athletes’ body composition with a weight loss,
an increase of ECM/BCM ratio and a reduction of phase angle that are useful markers for
sarcopenia or malnutrition [61,62]. Anker et al. [36] reported that body wasting in patients
with COVID-19 is determined by several factors, including loss of taste and appetite,
immobilization, inflammation and fever, catabolic–anabolic imbalance, and COVID-19
organ-specific complications [36]. In particular, Di Filippo et al. [63] reported that patients
with mild COVID-19 managed at home might suffer from malnutrition and alterations of
smell and taste, as well as fatigue and lack of appetite, which are common symptoms that
could affect food intake. In this context, we found an interesting association between the
loss of taste and poor nutritional outcomes: this symptom, reported by more than 40% of
the athletes enrolled in this study, is significantly correlated with weight loss, reduction of
muscle mass and ICW.

It is essential to ensure an adequate protein intake for athletes to provide a net an-
abolic effect thanks to the synergistic interaction between exercise and macronutrient
consumption [64]. More in detail, an acute amino acids feeding significantly increases the
rate of muscle protein synthesis [64,65], most of all in the hours right before and during
exercise, maximizing muscle repair and enhancing strength- and hypertrophy-related adap-
tations [66,67]. This could be achieved through a higher activation (phosphorylation) of
mTOR pathway (a key signaling protein present in myocytes that is linked to the synthesis
of muscle proteins) and its downstream mRNA translational signaling proteins (i.e., p70s6
kinase and eIF4BP) that are strongly related to muscle hypertrophy [68,69]. Moreover,
phase angle has recently emerged as a sensitive indicator of cellular health, with higher
values reflecting cell membrane integrity of living tissue [70], and is correlated positively
with maximum muscle power output, handgrip strength and peak expiratory flow [71].
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This worsening of metabolic outcomes could explain the negative trend of explosive power
of the lower limbs showed in our results that could have a further effect in increasing
the risk of injury in these athletes [72]. The retraining procedures should consider all the
neuromuscular and nutritional impairments before return-to-competition, addressing these
systemic changes for enhancing sports performance and reducing the risk of injury in
athletes affected by COVID-19.

Taking into account these findings, early rehabilitative interventions are crucial to re-
duce the possible neurological sequelae in these subjects [55]. Muscle deconditioning occurs
very early with bed rest, involving a decline in muscle mass, strength and aerobic efficiency
and a prompt and effective management of neuromuscular weakness could improve the
patient’s status [55]. Thus, we recommended a neuromuscular training protocol to enhance
unconscious motor responses through the simultaneous stimulation of afferent signals
and central mechanisms responsible for dynamic joint control. We proposed exercises
specifically designed to induce compensatory changes in muscle activation patterns and
the main treatment goals were improving the ability to produce a fast and adequate muscle
activation pattern, increasing dynamic joint stability and restoring movement patterns
and abilities essential during sports activities [73,74]. This could be obtained introducing
structured neuromuscular rehabilitative programs including perturbation, balance training
and strength exercises, focusing on a higher consciousness and control of knees and ankles
during all the sport related-activities in order to improve muscle reactivity via the muscle
spindle that quickly identifies unexpected perturbations [41].

This study presents some limitations: first, the limited sample size that could not allow
an adequate external generalizability; second, sEMG measurement could be influenced
by muscle crosstalk, albeit the most appropriate electrode size and electrode placement
were carefully selected; third, there are various factors that can affect BIA results, such as
temperature, and sensitivity to conductive surface of electrodes. Further study limitations
that should be noticed are the post-hoc nature of our analysis and the use of patient-
reported symptoms.

5. Conclusions

Taken together, our findings suggested that the deficit of quadriceps varus/valgus
stabilization during ACL stressful movements could lead to an increased risk of injury
in female professional volleyball players after COVID-19. The early detection of this
neuromuscular imbalance at knee stabilizer muscles might be useful to define the best
training strategy for these athletes. Physician should pay attention on neuromuscular and
metabolic issues after COVID-19 infection to identify athletes with a higher risk of injury
and set up tailored and effective neuromuscular rehabilitation protocols.
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