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Abstract: Nowadays, technology makes it possible to admire objects and artworks exhibited all over
the world remotely. We have been able to appreciate this convenience even more in the last period,
in which the pandemic has forced us into our homes for a long time. However, visiting art sites in
person remains a truly unique experience. Even during on-site visits, technology can help make them
much more satisfactory, by assisting visitors during the fruition of cultural and artistic resources. To
this aim, it is necessary to monitor the active user for acquiring information about their behavior.
We, therefore, need systems able to monitor and analyze visitor behavior. The literature proposes
several techniques for the timing and tracking of museum visitors. In this article, we propose a novel
approach to indoor tracking that can represent a promising and non-expensive solution for some
of the critical issues that remain. In particular, the system we propose relies on low-cost equipment
(i.e., simple badges and off-the-shelf RGB cameras) and harnesses one of the most recent deep neural
networks (i.e., Faster R-CNN) for detecting specific objects in an image or a video sequence with high
accuracy. An experimental evaluation performed in a real scenario, namely, the “Exhibition of Fake
Art” at Roma Tre University, allowed us to test our system on site. The collected data has proven to
be accurate and helpful for gathering insightful information on visitor behavior.

Keywords: cultural heritage fruition; human factors in artificial intelligence; museum visitors analy-
sis; computer vision; machine learning; deep neural networks

1. Introduction

The fruition modalities of cultural heritage sites can benefit from advanced technolo-
gies and methodologies of data analysis that propose solutions aimed at visitor engagement.
These proposals must cleverly balance the different needs of a large and diverse set of
visitors and the peculiarities of the specific site. It is necessary to understand how visitors
use the different spaces within a museum and how their behavior can help identify the
strengths and weaknesses of the cultural offerings and, consequently, possible engagement
strategies for museum institutions. An in-depth analysis of visitor behavior would stim-
ulate new ways of promoting artworks. It would also serve as a spur for implementing
more appropriate measures for museum security and visitor care. Moreover, collecting
data about visitor behavior would allow museum curators and staff members to offer
stakeholders a better settlement, both in displaying and narrating the artworks and in
terms of marketing-related services. There are many studies on audience engagement.
Some of them promote the integration of visitor tracking technology with mobile devices
that users carry with them [1,2]. Other studies analyze user tracking to examine the flow of
visits through complex and expensive tracking systems [3–8].

In this paper, we propose to collect visitor data through accurate, non-intrusive, cheap,
and anonymity-preserving tools. The approach is based on computer vision techniques and
leverages off-the-shelf RGB cameras and badges such as those provided free to attendees by
event and conference organizers. Therefore, the overall cost of the entire instrumentation is
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reduced, which is certainly a significant advantage over other state-of-the-art technologies.
The methodology is based on deep learning, more specifically, methods and techniques for
image detection and classification through Convolutional Neural Networks (CNNs) capable
of providing excellent performance in terms of accuracy. Our approach can represent the
solution to some of the criticalities shown by the other visitor localization technologies in
the museum environment. With the proposed setting, the estimate of the visitor position is
extremely accurate (on the order of 10−2 m). Moreover, the intrusiveness of the proposed
approach is minimal. The user is not required to wear additional devices such as active and
passive sensors, Personal Digital Assistants (PDAs), smartphones, or portable Graphics
Processing Units (GPUs), but a simple badge. Another advantage of our solution is that
the coverage is guaranteed at a low cost, through simple commercial RGB cameras or
any video surveillance system present in most national and international museums and
exhibitions. Lastly, the collected videos can be processed using a free platform such as the
Google Colaboratory environment, thus allowing museum curators and staff to save the
cost of hardware and system usage. The contributions of this paper are as follows:

• The analysis of the state of the art to identify the main problems in the timing and
tracking of users in indoor environments (i.e., high intrusiveness, low accuracy, high
cost, and high consumption);

• The design of a novel, low-cost, and highly accurate system to overcome the afore-
mentioned problems;

• The development of a user timing and tracking system capable of providing data
useful both for museum curators and staff (e.g., the possibility to analyze and monitor
how visitors enjoy museum objects) and for the visitors themselves (e.g., the possibility
to receive personalized suggestions during the visit).

We propose a deep learning-based approach to comprehensively and accurately col-
lect visitor experience data. Specifically, we describe in detail the characteristics of its
architecture and the experimental results obtained. We also illustrate a case study in a real
environment and finally show how the collected data can be stored and used to provide
valuable information relating to the behavior of each visitor.

This paper is structured as follows. In Section 2, we briefly review current technologies
used to monitor visitors, focusing on computer vision approaches. In Section 3, we present
the proposed system for detecting the exact visitor location anytime. In Section 4, we report
the experimental results of the proposed system and the analysis of the data collected in
the “Exhibition of Fake Art” at Roma Tre University. In Section 5, we discuss the obtained
findings. Finally, in Section 6, we draw our conclusions and identify some of the possible
uses of the data collected through the proposed system.

2. State of the Art

Nowadays, technology is increasingly exploited to improve users’ quality of life any-
where and anytime, when they use local transport services [9] or visit points of interest [10].
In particular, the possibility of providing museum curators and staff members with a
system to track visitor behavior for improving the service offered is a widely investigated
topic. In [11], the authors propose a computer vision algorithm based on Kinect and RGB-D
camera. They track groups of visitors at the National Museum of Emerging Science and
Innovation (Miraikan) in Tokyo, Japan, to identify the leader and study their dynamics.
In [12], the authors present an IoT- (Internet of Things) based system to measure and under-
stand visitor dynamics at the Galleria Borghese museum in Rome, Italy. A similar approach
is described in [5], in which the authors report the results of a case study conducted at the
CoBrA Museum of Modem Art in Amstelveen, the Netherlands. Tracking can be also used
to understand how the flow of visitors inside a museum is oriented. In [13], the authors
propose a method based on LIDAR to identify human beings and track their positions,
body orientation, and movement trajectories in any public space. The system can accurately
track the position of the visitor inside the museum. It has been tested at the Ohara Museum
of Modern Arts in the Kurashiki area of Okayama Prefecture, Japan. In [3], Lanir et al.
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propose a visual guide for museum curators and staff. Their system can show routes of
interest and hotspots, and analyze visitor behavior. It has been tested at the Hecht Museum,
University of Haifa, Israel. There are already numerous thorough and exhaustive works
that review the main indoor localization technologies (e.g., see [14–19]). On the other hand,
fewer works are focused on analyzing the technologies for the localization of museum
visitors. The goal of our study is to propose a tracking system easy to use by museum
curators and staff. Moreover, it has to capture as much information as possible about
visitor behavior in real time. Finally, it should be ready to accommodate several further
developments like visitors’ micro-expressions recognition when looking at an artwork
and subsequent recommendation. For this reason, we now analyze the hardware most
commonly used for this aim by examining the strengths and weaknesses of the principal
indoor localization technologies.

2.1. Indoor Localization Technologies

In the following, we report the most used technologies for indoor tracking.

• WiFi. This technology is extensively used for network connection of various devices
in public and private environments. Initially, its maximum coverage was about 100 m,
today it has been extended to over 1 km with the IEEE 802.11ah protocol, published
in 2017, specifically designed for Internet of Things (IoT) services [20]. The fact that
it is supported by almost all the electronic devices on the market makes it one of
the most used technologies for indoor localization, without the need for additional
infrastructure. However, its characteristics of wide coverage and high throughput
yield to a more suitable usage for communication than localization, because of its
low accuracy and interference, which make it necessary to use complex processing
algorithms.

• Bluetooth. This technology is used for wireless connection between mobile and fixed
devices within relatively small distances. The latest version, called Bluetooth Low
Energy (BLE), provides improved performance in terms of coverage and throughput,
with low power consumption [21]. Recently, two BLE-based protocols have been
proposed: Eddystone (by Google Inc.) and iBeacons (by Apple Inc.). They are intended
more for proximity-based services than localization, due to poor accuracy and high
sensitivity to noise.

• Infrared. Among others, the IR technology was the first one to be widely used in
many projects (e.g., see [8,22]). However, it has several limitations [23]. Firstly, it
requires the presence of visible IR emitters and a line of sight between the emitter
and receiver. Lastly, the nature of the IR signal requires accurate calibration of the
parameters of the IR emitters and the active involvement of visitors in the process of
locating their position.

• Radio-Frequency Identification. This technology is used to transfer data between a
reader and a tag capable of communicating on default radio frequency [24]. There are
two types of RFID systems: Active and passive. The first one operates with microwave
and Ultra High Frequency (UHF) ranges, and it is characterized by low cost and ease
of integration into the objects to be tracked. However, their low accuracy and poor
integration in portable devices make them unsuitable for indoor location purposes.
Passive RFID systems can operate without a battery but have significant limits in
terms of coverage, which makes them unsuitable for indoor location purposes.

• IEEE 802.15.4. This technology is mostly used in wireless sensor networks and is
characterized by good energy efficiency, low cost, but also by low throughput [25].
This standard is not available on most devices on the market and for this particular
reason, it is not suitable for the indoor localization of users.

• Ultra Wideband. This technology is mainly used in short-distance communication
systems and is characterized by low energy consumption [14]. The main character-
istics of the UWB technology are the robustness to interference and the possibility
to penetrate various materials. For these reasons, it is extremely suitable for indoor



Appl. Sci. 2022, 12, 533 4 of 21

localization. However, due to its limited implementation in portable devices, it cannot
be widely used. The UWB problems have been extensively analyzed by the authors
of [26] and in practical scenarios, the Non-Line-of-Sight (NLOS) propagation can be
the main issue of this technology.

• Visible Light. Indoor localization technology based on visible light can be real-
ized using different types of sensors. The most common are Light-Emitting Diodes
(LEDs) [27]. The use of LEDs for indoor localization has numerous advantages over
other technologies. First of all, emitters and sensors are very popular considering their
low cost. They are also resistant to changes in humidity and they have low energy
consumption. The main disadvantage of LEDs is that a line of sight between them is
required [18]. Another type of sensor used in visible light systems is Light Detection
and Ranging Localization (LIDAR). This sensor is able to provide information relating
to the contour of surrounding objects. When combined with inertial sensors, LIDAR-
based tracking systems can provide accurate results [28]. In order to properly work,
the LIDAR-based tracking system needs at least one sensor in each room. Because of
that, this particular technology would be extremely expensive for large museums.

• Acoustic Signal. This technology can localize the user by capturing acoustic signals
emitted from sound sources using a microphone sensor [29]. The acoustic signal
localization is accurate only when audible band acoustic signals (i.e., <20 kHz) are
used. For these signals, sufficiently low transmission power is required not to cause
unwanted noise. This aspect, coupled with the need for additional infrastructure,
results in that localization based on acoustic signals is not widely used.

• Ultrasound. This technology allows us to compute the distance between a transmitter
and a receiver by measuring the time of flight of ultrasonic signals (i.e., >20 kHz) [30].
Indoor localization based on ultrasound is very accurate. However, the measurement
process can be heavily influenced by significant changes in temperature and humidity,
as well as by ambient noise.

Hence, the solutions above are inaccurate, expensive, or very complex to implement.
We, therefore, focus on computer vision, which can represent a non-intrusive solution for
the user already accustomed to security cameras.

2.2. Red-Green-Blue (RGB) Video-Based Techniques

Several noteworthy approaches to user timing and tracking rely on RGB video-based
models and methods. These techniques are already applied to other fields (e.g., see [31])
such as motion analysis, motion capture, and in general, to most activities related to virtual
reality. Here, through RGB cameras, we can collect visual information that can be used to
estimate where the visitor is. To achieve this goal, two capture methods can be used. The
first one is based on visitor recognition, the second one relies on artwork recognition. The
positioning of the camera, therefore, assumes a fundamental role in the implementation of
these systems.

Recent work described in [32] takes advantage of computer vision and content-based
image retrieval technique to detect visitor behavior. From frames recorded by multiple
cameras installed in exhibition chambers, visitors are tracked by an object detector and
also modeled with a deep learning technique. The system classifies each person by their
appearance, grounded on color similarity as determined by measuring the distances of the
distributions. Currently, the system is extremely time-consuming and needs to be enhanced
to be applicable.

In [11], the authors propose a computer vision algorithm based on Kinect and RGB-
D camera. They track visitor groups in a museum to identify the leader and study its
dynamics. They also analyze the body language and the reciprocal position of the group
leader to the rest of the group. The final goal of this study is the replacement of the group
leader (typically, the guide in a museum) with a robot. They have installed four Kinect
V1 sensors in some rooms at the National Museum of Emerging Science and Innovation
(Miraikan) in Tokyo, Japan, and for two months they recorded videos of visitor groups
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interacting with the museum guides during visits. The motion is detected by computing
the difference between bounding boxes of two consecutive frames. The experimentation
has been carried out by manually annotating and comparing the motion of the group and
the guide with the algorithm results. The main issues with this approach are the inaccuracy
of the results when people are too close to the camera and occlusion problems. Moreover,
the categorization through bounding boxes has an average accuracy of 70–75%, which can
improve with the application of the exponential motion algorithm they propose.

The Kinect sensor is proposed as a tracking solution in [33] as well. The authors
use a particular process to estimate the gaze direction from face direction measurements.
In their work, they discuss the method for gazed object estimations using face direction
measurements and object detection. By measuring the face direction and detecting the
object at the same time using a Kinect sensor, they can estimate what the visitors are
looking at.

A different solution is SeeForMe [4]. It is a real-time computer vision system that
can run on wearable devices to perform object classification and artwork recognition. It
uses a video camera on the audio guide to identify artworks. This smart audio guide
equipped with a vision system has been tested at the Bargello Museum in Florence. A
CNN for object classification and identification runs on an NVIDIA portable GPU. Also,
a voice detection module can determine the context (user alone, accompanied, etc.) and
stop the guide when, for example, the visitor is talking to someone. Experimental trials
were performed with a training set of 300 people and 300 images. Up to 5 m, there is
maximum Precision and Recall (with Recall up to 0.8). Through various adjustments to the
algorithm, they succeeded in having almost all works recognized, and only 22 of them were
not recognized. The System Usability Scale (SUS) questionnaire, filled in by the sample,
revealed only the problem of the intrusiveness of the guide during the visit, and the hassle
of having to manage the menu. The SUS questionnaire showed good usability. Moreover,
the camera must be necessarily placed in a shirt pocket, at chest height, which is a rather
limiting constraint.

In [34], an approach in line with the spirit of our proposal is proposed: To collect as
much data on user behavior as possible such as itineraries, the number of entries, the flow
of visitors, and time spent in front of works. The authors use video cameras with infrared
sensors and re-ID (person re-identification). The main difference with our approach is that,
while the person re-identification needs a preprocessing phase of the generated videos, in
our case the preprocessing is done on the badge before it is given to the user. In this way,
we can monitor in real-time the movement of each visitor. This difference is significant
because we can imagine using the extracted data also to propose new tools that support
both the visitor (e.g., recommender systems [35,36]) and the museum curators and staff
(e.g., visitor flow analysis [37]).

3. Proposed Method

Image classification and object identification technologies have become much more
successful as a result of recent advancements in the field of deep learning [38]. More
specifically, CNN models [39–41] can easily attain accuracy values near to 100% on the
training set. In other terms, these models can give the correct prediction, with almost
certainty, when they are asked to predict the class of an element of the training set. Thanks
to this, it is possible to train such models to recognize an arbitrary, single object, with very
high confidence. Based on the above observations, we developed the following idea for
tracking museum visitors [42]. A CNN model is trained for recognizing a set of unique and
distinct objects. The objects to be recognized are badges, like the ones used in events and
conferences (see Figure 1). It should be clear that there will be a fixed number N of distinct
badges. Therefore, our model will be trained in order to recognize N different classes:
One for each of the N distinct badges. In the research literature, there exist two different
types of object detectors [43]: Detectors of specific instances of objects and detectors of
broad categories of objects. The former ones aim to detect instances of a particular object
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(e.g., the Colosseum, Joe Biden’s face, or the neighbor’s cat), thus addressing a matching
problem. The latter ones aim to detect instances of specific categories of objects (e.g., cars,
humans, or cats). In our scenario, badge detection falls into the first type of object detection.
Furthermore, the model is also trained for the detection (but not the recognition, for privacy
reasons) of visitors’ faces (see Figure 2). Therefore, face detection falls into the second type
of object detection.

Figure 1. One of the badges used in the experimental trials.

Figure 2. Recognized objects (i.e., badges and faces) in a frame of a 720p video. In this case, the
camera is positioned above the artwork of interest, at a height of 2.20 m from the floor.

At the beginning of their visit, the visitor is invited to wear one of the badges on which
a CNN model is trained. This model, as confirmed by the experimental results reported in
Section 4.1, can recognize badges accurately. To this aim, it is required that RGB cameras are
installed inside the museum environment. In our case, simple, inexpensive, off-the-shelf
RGB cameras are sufficient (in our experimental tests, we used a Logitech HD Webcam
CS25 camera and a smartphone Honor View 10 Lite camera). The frame rate of the videos
captured by the Logitech camera is eight fps (frames per second) and 30 fps for those
captured by the smartphone camera. It should be noted that the value of the frame rate
does not affect the accuracy of the model. A higher frame rate increments the amount of
collected data but has the drawback to increase the number of computational resources and
storage needed. These cameras should be strategically placed inside the museum premises
in a way that the badge worn by the active visitor is always visible by at least one camera.
A simple assumption is to install one camera in every point of interest of the museum or
on each side of every room, at a height that minimizes the possibility that another visitor
put herself in front of the active visitor wearing the badge, thus making it not visible from
the camera. Since the RGB cameras are inexpensive, the use of more cameras concerning
the simple aforementioned assumption should not result in a substantial increase in the
installation cost. Another, more sophisticated approach, to optimally position the cameras
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inside the museum, is to resort to classical algorithms like those used for solving the Art
Gallery Problem [44,45]. Once the recorded video is acquired by cameras, it is given in input
to the model to detect the visitor’s badge and face inside each video frame. The detection
process consists of the following steps. For each video frame and for each object in the video
frame, the model provides a score 0 < p ≤ 1, expressing the likelihood of an object being
detected, the class c of the object, and a 4-dimensional vector containing the coordinates
of the upper left and the lower right vertices of the box inside the video frame where the
object c is detected. Therefore, for each video frame, the output of the detection process
consists in a set of triples (ci, pi, bi). Hereafter, vector bi will be referred to as the bounding
box of the object of class ci and we will denote the coordinates of the upper left and lower
right corners of the bounding box by (bi(x1), bi(y1)) and (bi(x2), bi(y2)), respectively. If
the value of p for a class c is higher than a prefixed threshold σ (we empirically set σ = 0.8
in our experimental tests), we assume that the object of class c is detected inside the video
frame. The value of σ is a hyperparameter of the system. For high values of the σ parameter,
we can have a high number of false negatives, whilst, for low values, we can have a high
number of false positives.

3.1. Computation of the Exact Visitor Position

To compute the visitor’s spatial position from the bounding box of the detected
badge, it is first necessary to calibrate the camera or cameras used. Generally speaking,
the procedure of camera calibration consists of the estimation-with acceptable accuracy
for the specific application-of the extrinsic (i.e., rotation matrix and translation vector)
and intrinsic parameters (i.e., image center, focal length, skew, and lens distortion) of the
camera [46]. This process is fundamental for most computer vision applications, especially
when metric information related to the scene is required, as is our case. Once the camera
has been calibrated, it is possible to determine the angular amplitude α of each pixel of
the camera [47]. This can be done with a simple computation consisting in counting the
number m of pixels in a video frame (see Figure 3b) of a unit length yardstick put in front
of the camera at a unit distance (see Figure 3a). Then, the angular amplitude α of a single
pixel can be expressed as follows:

α =
2 arctan(0.5)

m
. (1)

Knowing the angular amplitude of the pixel and the real dimensions of the badge
(in our case they are L = 10.4 cm and H = 14.0 cm), it is straightforward to compute the
distance ` of the badge from the camera, which can be done as follows (see Figure 4a):

` =
H

2 tan
(αmy

2

) (2)

where my = |b(y1)− b(y2)| is the number of pixels of the height of the badge bounding
box in the video frame (see Figure 4b). In Equation (2), we can also replace the term my
with the term mx = |b(x1)− b(x2)| and H with L. As above, we can compute the angle β
(respectively, γ) that the badge forms with the vertical (respectively, horizontal) centerline
of the video frame. Thus, the triple (`, β, γ) corresponds to the polar coordinates of the
badge in the camera reference. The visitor position inside the museum can be obtained by
adding the values of the camera coordinates in the museum reference. Knowing the video
frame rate, we can also determine the exact time and length of the museum visit and all
other temporal information such as how much time a visitor spent in front of a specific
artwork and so on.
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Figure 3. Computation of the angular amplitude of a pixel; (a) a unit length yardstick in front of the
camera at a unit distance; (b) the corresponding number m of pixels in a video frame.

Figure 4. Computation of the distance between the badge and the camera; (a) a badge in front of the
camera; (b) the corresponding number mx ×my of pixels in a video frame.

3.2. Experimental Settings

We evaluated several possible designs of the badge during the experimental trials.
One requirement of the design is that the badge should be easily and effectively detected
by the system. Another requirement is that each visitor who gets a badge should be easily
distinguished from all other visitors wearing badges, in order to be able to track back the
visit of a single visitor and distinguish their track from the track of any other visitor. This
requirement could be easily satisfied when all the badges are distinct. In order to satisfy
those requirements, we eventually chose a design in which a rectangular badge is split into
four parts that can be in one of eight different colors (see the badge shown in Figure 1).
Therefore, the number of different possible badges is equal to the number of dispositions of

four colors taken from a set of eight, which is equal to
8!
4!

= 1680. If one splits the badge
into six equal-sized parts, then the number of dispositions of six colors taken from a set of

eight is
8!
2!

= 20,160. This shows that our design can be easily scaled for ten of thousands
of different badges. For the sake of simplicity, we limited the experiments to the design of
the badge shown in Figure 1. Furthermore, we trained our model to recognize 12 different
badges. Thus, the model can recognize 12 different classes plus the face class. The training
set was built first by manually annotating a dataset of about 300 pictures all containing
the same badge. The training process with this single badge proved to be particularly
efficient. This allowed us to automatically annotate all the other elements in the training
set. The images of the training set were extracted from a set of 36 videos (three videos
for each badge) from different angles, at 8 fps, 24 of them were about two minutes long,
and the other 12, six minutes long, sampling a frame every two. In the first 24 videos,
there was only one badge in each frame. In the last 12 videos, there were always two
badges in each frame so that all possible pairs of badges were present in one frame. We
inspected exhaustively all the automatically annotated images in order to assure the quality
of the outcome. However, the accuracy of the model was so high (see Section 4) that very
few manual corrections were needed to the automatic annotation process. In other terms,
only about one of a thousand images required us to manually insert a missed annotation
or delete a false positive annotation. Eventually, we produced a set composed of more
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than 30,000 annotated pictures containing 12 different badges or, equivalently, about 2500
pictures for each different badge.

3.3. Model Implementation

For implementing the system, we used the Faster Region-based Convolutional Neural
Network (Faster R-CNN) model [48]. The reason was that preliminary studies (e.g., see [38])
showed that the Faster R-CNN model is effective and accurate in relation to other popular
deep learning frameworks. The architecture of the proposed system is shown in Figure 5.

Figure 5. The architecture of the proposed system relies on a Faster Region-based Convolutional
Neural Network (Faster R-CNN).

Specifically, the image taken by the RGB camera is given as an input to a backbone
network, that is, a typical pre-trained convolutional network, which returns a feature map.
We chose a 50-layer Residual Network (ResNet-50) as the backbone of our architecture
because residual networks can usually achieve better performance than most other back-
bones [49]. The features are then sent in parallel to two different components of the Faster
R-CNN architecture:

• A Region Proposal Network (RPN) that is used to determine the position of the image
in which a potential object could be (i.e., at this stage we do not yet know what the
object is, but only that there may be an object in a certain position of the image);

• A Region of Interest (RoI) pooling layer that is used to extract fixed size windows
from the feature map before giving the RoI input to the fully connected layers. This
component makes use of max pooling to convert the features within any valid RoI
into a small feature map with a fixed spatial extension of height H × width W.

The output is then given as an input to two fully connected layers: One for the
classification of the object and one for the prediction of the bounding box coordinates to
obtain the final locations. The most important hyperparameters (e.g., the batch size and
other optimization parameters) were left to the values suggested in [48]. Through grid
search, we selected the best values for the learning rate and the scheduler that reduces
the learning rate at a specific number of epochs. We chose Stochastic Gradient Descent
(SGD) as an optimization algorithm. Another hyperparameter that we changed from the
suggested value was the one that specifies the minimum dimension in pixels of the input
image. Based on this parameter, the input image is resized in a way that at least one of
its dimensions is equal to the parameter, before being fed to the CNN for the forward
pass. The suggested value of the parameter was 800 pixels, but we increased it to 960
pixels. The reason was that when a visitor is far from the camera, the spatial dimension
of the badge in the frame could be very little, making the detection difficult. In an ad hoc
experiment, we analyzed all the dimensions of all the annotated boxes and we found that
in no case was the dimension of any bounding box lower than 32× 32. The minimum
dimension detected (of the order of 40× 40 pixels) has been encountered for the badges
when the visitor was approximately 3.5 m far from the camera. In our opinion, this allows
for training a model in order to detect badges that are at five or more meters of distance
from the camera. We later augmented the dataset by randomly shrinking each picture
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by a factor between 0.3 and 0.5 (chosen randomly). This data augmentation enabled the
model to detect badges located up to 6 m far from the camera, thus avoiding the need of
adding other images to the training set. As a backbone, we employed a ResNet-50 network
(where 50 is the number of convolutional layers in the network) that had already undergone
two previous pretraining: One with the ImageNet [50] dataset and a second one, with the
COCO [51] dataset containing about 90 classes. The authors of [52] strongly recommend
the pretraining of the backbone on both datasets because empirical evidence shows that a
network that had only been pretrained with the ImageNet dataset was much less accurate.
Therefore, in order to verify if the ResNet-34 network (with only 34 convolutional layers)
was faster but at the same time maintained, the same performance in terms of Accuracy
and Precision, it was necessary to pretrain the ResNet-34 network with the COCO data
set. Using the ResNet-34 network confirmed the boost in speed while maintaining an
almost equal level of accuracy. Note that if Accuracy and Precision are the most important
system performance metrics (instead of detection speed), the use of ResNet-100, or even
ResNet-150, could improve system Precision. The pretrained model, as well as the pdf file
with the trained badges, are available online (https://colab.research.google.com/drive/1-
Kr0c6dOuMUdoShJjbLhqaVtM9b-gwc6?usp=sharing (accessed on 13 October 2021)).

4. Experimental Results
4.1. Performance Analysis

In order to assess the performance of the proposed system, we employed the detection
evaluation metrics used in the most popular competitions, such as the COCO Detection
Challenge (https://competitions.codalab.org/competitions/20794 (accessed on 13 October
2021)). Before illustrating these metrics, however, it is necessary to introduce some fun-
damental concepts. The goal of an object detector is to predict the position of objects of
a certain class in an image or a video with a high degree of confidence. For this purpose,
object detectors place bounding boxes in the image to identify the positions of the detected
objects. A detection can, therefore, be represented by three features: The class of the object,
the bounding box that contains it, and the confidence score. The Confidence Score is
defined as the probability that a bounding box contains an object. It is, hence, usually a
value between 0 and 1 that expresses how confident the model is about the prediction [53].
Another fundamental concept is that of Intersection over Union (IoU), which is defined as
the ratio between the area of the intersection between a predicted bounding box (Bp) and a
ground-truth bounding box (Bgt) and the area of their union:

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
. (3)

We have a perfect match when IoU = 1, while if the bounding boxes do not overlap at
all, we have IoU = 0. Therefore, IoU values near to 1 are significantly better. Confidence
Score and Intersection over Union are used to evaluate a detection. Specifically, there is a
True Positive (TP) when:

1. The confidence score is higher than a given threshold value;
2. The predicted class is the same as that of the ground-truth;
3. The predicted bounding box has an IoU higher than a threshold value (e.g., 0.75).

On the other hand, there is a False Positive (FP) if one of the last two conditions is not
valid. In the event that multiple predictions match the same ground-truth, the one with
the highest confidence score is considered a TP, whilst all the others are considered as false
positives. We have a False Negative (FN) when the Confidence Score of a detection of a
supposed ground-truth is lower than the threshold value, whilst we have a true negative
(TN) when the Confidence Score of a detection of anything is lower than the threshold
value. True negatives, however, are usually not taken into account in evaluating object
detection algorithms. Based on the previous definitions, it is possible to define the Precision
as follows:

https://colab.research.google.com/drive/1-Kr0c6dOuMUdoShJjbLhqaVtM9b-gwc6?usp=sharing
https://colab.research.google.com/drive/1-Kr0c6dOuMUdoShJjbLhqaVtM9b-gwc6?usp=sharing
https://competitions.codalab.org/competitions/20794
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Precision =
TP

TP + FP
(4)

and Recall as follows:

Recall =
TP

TP + FN
. (5)

By setting the threshold for the Confidence Score at different values, we can obtain
different pairs of Precision-Recall, which can be plotted on a graph in the form of Precision-
Recall curves. It is possible to summarize the shape of these curves through a single
numerical value, known as Average Precision (AP) [54]. This value is defined as the Precision
averaged over a set of eleven Recall values equally spaced [0, 0.1, 0.2, . . . , 1]:

AP =
1

11 ∑
r∈{0,0.1,...,1}

pinterp(r). (6)

The Precision value for each Recall level is interpolated considering the maximum
Precision calculated for a system for which the corresponding Recall exceeds r:

pinterp(r) = max
r̃:r̃≥r

p(r̃) (7)

where p(r̃) is the Precision measured at Recall r̃. The purpose of the interpolation is to
reduce the impact of wiggles in the Precision-Recall curves due to small variations in
the classification of the retrieved objects. For a system to obtain a high value of Average
Precision, it must therefore have a high Precision value at all levels of Recall. This penalizes
systems capable of achieving high Precision only in retrieving a subset of objects. Normally,
this particular curve is used to compare one system to another, but when it comes to
performance analysis, it shows how a system is performing when its parameters are
changed. As mentioned above, there is another type of curve known as Recall-IoU curves,
which are the basis of another metric used to evaluate the performance of a detector,
namely, the Average Recall (AR) [55]. Such curves are obtained by plotting the Recall values
corresponding to the IoU values ∈ [0.5, 1.0]. The Average Recall is defined as the Recall
averaged over all IoU values ∈ [0.5, 1.0]. It can be calculated as twice the area under the
Recall-IoU curve:

AR = 2
∫ 1

0.5
Recall(o)do (8)

where o is IoU and Recall(o) is the corresponding value of Recall. There exist several
variants of the metrics above. Among the others,

• AP@IoU=0.50:.5:.95 is the AP value averaged over 10 different IoU threshold values
(i.e., 0.50, 0.55, 0.60, . . . , 0.95).

Furthermore, there is also Average Precision calculated for different object scales. So,
we have:

• AP@ area = small, which represents AP for objects that cover an area less than 322 pix-
els;

• AP@ area = medium, which represents AP for objects that cover an area higher than
322 pixels but lower than 962 pixels;

• AP@ area = large, which represents AP for objects that cover an area higher than
962 pixels;

• AP@ area = all, which represents AP for objects of any size.

The area is given by the number of pixels present in the segmentation mask. Finally,
we have AP calculated for different detection numbers per image, defined as follows:

• AP@ maxDets = 1, which represents AP given 1 detection per image;
• AP@ maxDets = 10, which represents AP given 10 detections per image;
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• AP@ maxDets = 100, which represents AP given 100 detections per image.

The same variants of the Average Precision metric also apply to the Average Recall.
Before presenting the experimental results, it is necessary to describe the test set used. To
evaluate the performance of our system using the metrics introduced above, we randomly
selected 300 images from 10 videos containing a total of 13 object classes (12 specific badges
+ the face object). Figure 6 shows the values of the Average Precision metric on the test set
for our object detector as the number of epochs increases.

Figure 6. Average Precision of the proposed system on the test set.

It can be noted that there are high AP values already with a low number of epochs.
We have only reported the value of AP@ maxDets = 100, as the values for maxDets = 1 and
maxDets = 10 are the same as above. Furthermore, we have not reported the value of AP@
area = small, because we excluded a priori the detection of badges that are too small, that is,
worn by visitors at such a distance from the point of interest that they cannot be considered
in its surroundings. Figure 7 shows the trend of the Average Recall values on the test set as
the number of epochs increases.

Figure 7. Average Recall of the proposed system on the test set.

Also in this case, the values are already high after a few epochs. The experimental
analysis was performed on an NVIDIA QUADRO P2000 GPU capable of analyzing 4 frames
per second. This system can, therefore, be used to perform a real-time analysis with fine
tuning and optimization of the parameters.

4.2. Data Analysis

In this section, we report some of the analyses that can be carried out on the un-
filtered data collected through the proposed object detection system. For this purpose,
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we use the data collected in a real scenario, namely, the “Exhibition of Fake Art” (https:
//www.facebook.com/indifesadellabellezza/ (accessed on 13 October 2021)) of Roma Tre
University. For each frame captured by the camera, the system provides the following
information in output:

• The coordinates in pixels of the four corners of the bounding box that contains
the object;

• The class of the recognized object;
• The confidence score of the detection.

From this data, the system can derive the center in pixels of the badge and its distance
in meters from the camera (see Section 3.1). Obviously, it is possible to map the data in
pixels to geometric coordinates and vice versa, only after camera calibration. Graphing this
data not only makes its analysis more effective but also facilitates the use of information
by the museum staff and all the operators in the field interested in making the museum
data-driven. The system, therefore, not only allows information on the individual user or
groups of users to be obtained but also provides the information needed to better manage
the visitor flow in the various rooms [56]. The following graphs are taken from a video
in which four visitors are present in the room. Specifically, the visitors are in front of the
artwork and the camera is positioned above it at a height of 2.20 m (Figure 2 shows a frame
of the video).

One of the possible analyses can be performed on the trajectories followed by visitors
in the room. For example, in the scatterplot shown in Figure 8 it can be observed how the
behavior followed by the green visitor (badge_3) differs from the other three, as the visitor
tends to remain in the same position.

Figure 8. 2D scatterplot of four visitors in the sketched environment.

Figure 9 reports the processing output on the initial video frame.
The data from the monitoring of different environments could be easily integrated

with each other to provide heatmaps. This analysis could also be useful for the museum
staff to identify any problems in the fruition of the artworks, due, for example, to their
arrangement or lighting.

https://www.facebook.com/indifesadellabellezza/
https://www.facebook.com/indifesadellabellezza/
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Figure 9. 2D scatterplot of Figure 8 reported on one of the video frames.

From the video analysis, it is possible to easily obtain temporal information by know-
ing the number of frames per second captured by the camera. For example, from the graph
shown in Figure 10, it is possible to obtain accurate and complete information relating both
to the time spent by the visitor in front of a specific artwork and to their distance from it.
The data collected confirm the differences in the behavior of the four monitored visitors.
In particular, the green visitor slightly changes their position and remains in front of the
artwork throughout the video, while the blue visitor is detected only from a certain instant
of time and tends to change position more often to finally exit the framing of the camera.

Figure 10. Badge-camera distance as a function of the time (related to four visitors) obtained through
polynomial regression of order five.

The information collected can be further integrated with each other to generate 3D
scatterplots like the one shown in Figure 11. The accuracy and completeness of the data are
such that it can be supplied as input to graphic libraries such as Plotly’s Python graphing
library or advanced tools like Blender to generate particularly expressive and informative
3D heatmaps.
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Figure 11. 3D scatterplot of four visitors.

4.3. Database with Collected Data

In order to make the analysis of data collection easy and at the same time effective,
we propose the following database implementation and give some sample queries that
could cover the most basic and useful needs when a museum staff member wants to extract
useful information about visitor behavior from the database. The data collected through
the proposed system can be stored in a data structure that supports spatial and temporal
analyses of visitor behavior, such as those seen in Section 4.2. Let us suppose, for example,
that we have m cameras and n badges. Each camera detects, at a generic timestamp,
a badge at certain coordinates from the camera. We can store all those detections in a
database composed of two tables. The first table, called position, has attributes (TIMESTMP,
CAMERA_ID, BADGE_ID, X, Y, Z) and the second table, called camera, has attributes
(CAMERA_ID, CT, X, Y, Z). A single tuple (t, c_id, b_id, x, y, z) of position represents a
detection at timestamp t from the camera c_id of the badge b_id at coordinates x, y, z with
respect to camera c_id. A single tuple (c_id, ct, x, y, z) of camera represents the coordinates
x, y, z of the camera c_id in relation to the museum. The value ct is the time period of a
frame. If f is the frame rate of the camera, then we have ct = 1/ f . For the sake of simplicity,
hereafter, we suppose that ct assumes the same value for all cameras (i.e., 1/24 s), but all
the discussion can be extended with simple and minimal modifications to the general case,
in which cameras can have different frame rates. We note that, whilst the table position is
fed by the detections of the model, the table camera is determined and created in advance
by the system supervisor. For instance, it can be convenient to create the view dist_positions
using the SQL Listing A1, shown in Appendix A.

In order to build the track of a visitor wearing the badge b_id in the time lapses
between timestamp t0 and timestamp t1, that is, the ordered timestamp sequence of the
visitor positions, we may execute the SQL Listing A2.

We also add to the database another table called grid with attributes (GRID_ID, X, Y,
Z), in which for each tuple (g_id, x, y, z), x and y represent the coordinates of the lower-left
corner of a square inside the museum and z is the height of the floor (with respect to the
museum) to which the square is referred. The width w of each square of the grid can be
set, for example, to 0.5 m. Furthermore, we suppose that the badge is located somewhere
between the ground floor, whose height is the coordinate z of the square and z = 2.7 m. In
order to build a heatmap, that is, a visual indication that shows where the visitors spend
more or less of the time in a given grid square inside the museum, we associate with each
square element g of the grid a value that represents the sum of the number of seconds any
visitor was present inside the square g in the time between t0 and t1. Listing A3 returns
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such values for all elements of the grid. Moreover, through Listing A4 we can detect how
much time a person, identified by the badge b_id, stationed or passed in front of an artwork
of the museum. We assume that the constants AX, AY, AW, and AH are given as parameters
of the query and they represent what we consider as the space in front of the artwork and
AZ the height of the floor (with respect to the museum) of this rectangle.

5. Discussion

In this paper, we reviewed some of the most authoritative and recent works proposed
in the literature for indoor localization, focusing on those deployable in museum environ-
ments. As we saw in Section 2, each technology has pros and cons. Consequently, we have
proposed a solution that requires simple badges and off-the-shelf RGB cameras and relies
on deep learning techniques to monitor visitors and their behavior. The source code of the
proposed system is available online (see Section 3). The main advantages of such a solution
consist in the low cost of the instrumentation and the accuracy ensured by the detection and
classification procedures based on the latest generation of Convolutional Neural Networks.
As for the first point, the system leverages inexpensive badges and off-the-shelf cameras,
which makes it economically viable. As for the second aspect, in Section 3, we have seen
that the accuracy of our approach in estimating the visitor position can be pushed on the
order of 10−2 m. In this regard, it should be noted that the operation of the Faster R-CNN,
on which our system relies, does not depend on the number of objects to be recognized
within the image. Therefore, the model accuracy is not affected if, in an image, there is only
one badge or there are one hundred badges to be recognized. In our experimental trials, we
limited ourselves to 12 badges because the SARS-CoV-2 restrictions did not allow us to test
our system with more users. Anyway, the performance in terms of Average Precision and
Average Recall remained unchanged when there were 12 badges to be recognized within
the frame or when there was only one. What could instead be affected is system efficiency,
if the number of region proposals in output from the Region Proposal Network significantly
increases. We performed our experimental evaluation using an NVIDIA QUADRO P2000
GPU, which allowed us to process four frames per second even when the badges to be
recognized were 12. However, it is reasonable to expect that if the badges to be recognized
within an image become hundreds, more performing hardware solutions are needed (e.g.,
based on the use of several GPUs in parallel) if we want to preserve the real-time nature of
the process.

However, the possible advantages are not limited to those mentioned above. First of
all, the intrusiveness of the proposed approach is minimal. It is sufficient for the visitor
to wear a simple badge like those provided free of charge by the organizers of events
and conferences to be identified and tracked by the proposed technology. Therefore, no
active involvement of the visitor is needed, nor are they required to bring additional
devices such as active and passive sensors, PDAs, smartphones, or portable GPUs. As
a result, our technology is not affected by power consumption issues. Another positive
aspect of our solution is its coverage. It is sufficient that in each point of interest there is a
commercial camera to make recognition possible. Moreover, the visitor timing and tracking
system could also exploit visual data from any video surveillance systems present in most
national and international museums and exhibitions. A further benefit of our solution is
the possibility of integrating additional functionalities into it. As seen in Section 4.1, our
system can efficiently capture other visitor aspects in addition to the badge worn. More
specifically, the system can associate the visitor’s face with their badge through a simple
correlation (see Figure 12).
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Figure 12. Correlation between face and badge positioning.

We emphasize once again that our system does not make the recognition of the
visitor’s face, but only its detection, for privacy reasons. In other terms, the mapping
occurs only between face and badge, and not between face and visitor. The detected
face can be analyzed to derive further information. It has been shown in the research
literature (e.g., see [57,58]) how it is possible to analyze the user’s micro facial expressions
to infer information relating to emotions during the visit to predict their valence, arousal,
and engagement. This information can be used to suggest objects [59] and personalized
itineraries [60] based on these factors. For example, the exhibition could be organized by
providing at its beginning the display of objects and artworks specially selected to derive the
visitor’s tastes without having to administer ad hoc questionnaires. We tested the system in
a real scenario, that is, at the “Exhibition of Fake Art” at Roma Tre University. However, our
experimental trials have been carried out with a low number of visitors due to SARS-CoV-2
restrictions. Generally speaking, occlusions can occur in overcrowded environments. Some
noteworthy solutions have been proposed in the literature (e.g., see [61]). In our case, this
problem can be mitigated by using several RGB cameras positioned in strategic positions,
as shown in Figure 13, where the RGB camera is located at 4.20 m from the floor.

Figure 13. Another frame with the objects recognized by the model. It should be noted that, in this
case, the camera is positioned higher than in the scene shown in Figure 2. It is now positioned at
4.20 m from the floor, but this does not affect the object detection and classification process.

Our system makes use of low-cost cameras, so the use of a large number of visual
sensors would not involve a significant increase in costs.
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6. Conclusions and Future Directions

Visiting museums and exhibitions around the world can indeed be an unforgettable ex-
perience. For over a century, studies have been published that show the possible relevance
of their role in modern society and analyze the visitor behavior (e.g., see [62–66]. Current
technology can make a decisive contribution in further improving the visitor experience,
customizing it based on users’ tastes and interests [2,67]. To achieve this goal, the first step
is to automatically acquire information about the active user. This information can then be
used for various purposes, among which:

• Provide visitors with personalized services such as recommendations of points of
interest and additional textual and multimedia content [68];

• Analyze the individual and social behavior of visitors;
• Improve artwork arrangement;
• Optimize visitors’ flow.

Therefore, in addition to testing our system in museums and exhibitions with a high
number of visitors, we plan to concentrate our next research efforts on the design and the
realization of tools that can derive the maximum benefit from the data collected through
the system proposed herein.

To conclude, in this paper, we presented a deep learning-based approach to collect
data regarding the visitor’s experience in an accurate and comprehensive way. The solution
we propose makes use of low-cost equipment (i.e., off-the-shelf RGB cameras) and requires
the visitor to wear a simple badge, thus being non-intrusive. We do hope that our research
efforts will contribute to making the museum visiting experience even more enjoyable,
thus persuading more and more people to leave the comfort of their homes and experience
cultural heritage on site.
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Appendix A. SQL Queries

This appendix contains all the queries described in Section 4.3.

Listing A1: View creation.
1 CREATE VIEW dist_positions AS
2 SELECT DISTINCT P.TIMESTMP , P.BADGE_ID , C.CT
3 /* Changing the reference system */
4 P.X + C.X AS X,
5 P.Y + C.Y AS Y,
6 P.Z + C.Z AS Z
7 FROM positions P, camera C
8 WHERE P.CAMERA_ID = C.CAMERA_ID
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Listing A2: Badge positions tracking.
1 SELECT TIMESTMP , BADGE_ID , X , Y, Z
2 FROM dist_positions
3 WHERE BADGE_ID = bid AND
4 P.TIMESTMP BETWEEN t_0 AND t_1
5 ORDER BY TIMESTMP

Listing A3: Heatmap.
1 SELECT G.GRID_ID , SUM(P.CT)
2 FROM grid G LEFT JOIN dist_positions P ON
3 WHERE P.TIMESTMP BETWEEN t_0 AND t_1 AND
4 P.X BETWEEN G.X AND G.X + 0.499 AND
5 P.Y BETWEEN G.Y AND G.Y + 0.499 AND
6 P.Z BETWEEN G.Z AND G.Z + 2.70
7 GROUP BY G.GRID_ID

Listing A4: Badge time tracking.
1 SELECT SUM(CT)
2 FROM dist_positions
3 WHERE TIMESTMP BETWEEN t_0 AND t_1 AND
4 X BETWEEN AX AND AX + AW AND
5 Y BETWEEN AY AND AY + AH AND
6 Z BETWEEN AZ AND AZ + 2.70 AND
7 BADGE_ID = bid
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