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Abstract: Ports are important hubs in logistics and supply chain systems, where the majority of the
available data is still not being fully exploited. Container throughput is the amount of work done by
the TEU and the ability to handle containers at a minimal cost. This capacity of container throughput
is the most important part of the scale of services, which is a crucial factor in selecting port terminals.
At the port container terminal, it is necessary to allocate an appropriate number of available quay
cranes to the berth before container ships arrive at the port container terminal. Predicting the size of
a ship is especially important for calculating the number of quay cranes that should be allocated to
ships that will eventually dock at the port terminal. Machine learning techniques are flexible tools
for utilizing and unlocking the value of the data. In this paper, we used neighborhood component
analysis as a tool for feature selection and state-of-the-art machine learning algorithms for multiclass
classification. The paper proposes a novel two-stage approach for estimating and predicting vessel
size based on container capacity. Our proposed approach revealed seven unique features of port data,
which are the essential parameters for the identification of the vessel size. We obtained the highest
average classification accuracy of 97.6% with the linear support vector machine classifier. This study
paves a new direction for research in port logistics incorporating machine learning.

Keywords: port logistics; vessel size; Twenty-foot Equivalent Unit (TEU); machine learning; feature
engineering; classification

1. Introduction

A port is a place where ships are safely entered, anchored, and moored, natural or
artificial, and various logistics activities are performed as a connection point between sea
and land transportation. A container terminal is a place where cargo is loaded on a ship
or cargo is unloaded from a ship, stored in a yard, and the loading and unloading of
containers takes place. It is a connection point between land and sea transportation so that
bulk cargo can be handled quickly and efficiently. It has a comprehensive system in which
various systems, such as the export system, and information and management system, are
organically operated.

According to the “ACT ON THE DEVELOPMENT, MANAGEMENT, ETC. OF MARI-
NAS” of Korea, “a port is defined as a port equipped with facilities for entering and leaving
ships, loading and unloading people, and loading and unloading cargo.” In other words, a
port is a starting point for maritime transportation and is defined as a connection point that
connects the flow of cargo to each port, city, and factory using transportation means such
as air, rail, and waterways [1].

Container throughput is the amount of work done by the TEU (Twenty-foot Equivalent
Units) and the ability to handle containers at a minimal cost. This capacity of container
throughput is the most important part of the scale of services provided by port terminals
and is the most important factor in selecting port terminals for shipping companies. In
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addition, to improve container throughput, many container terminals are making efforts to
provide various services through the introduction and operation of the latest equipment.

At the port container terminal, it is necessary to allocate an appropriate number
of available quay cranes to the berth before container ships arrive at the port container
terminal. The reason is that it is necessary to increase the operational efficiency of limited
quay cranes and to ship on more ships. However, if container ships fail to arrive at the
container terminal on time, complex problems arise that require the reallocation of existing
planned quay cranes and the rearrangement of ships [2]. Therefore, in the future, it is
necessary to allocate a quay crane in consideration of various future situations based on
existing past data. Chatterjee and Cho show a way to solve various problems arising from
port container terminals by analyzing real-time operation data generated by the terminals
through a cloud system, as well as suggesting ways to streamline operations [3].

Predicting the size of a ship is very important for calculating the number of QCs that
should be allocated to ships that will eventually dock at the port terminal. The reason is
that, although the available QCs for each port terminal are limited, by optimally allocating
the QC allocation according to the quantity of container loading and unloading, the goal is
to increase the utilization of QC equipment and process containers within a set time for
ships docked at the container terminal.

In many aspects, from berth scheduling to quay allocation, it is clear that artificial
intelligence (AI) and machine learning (ML) are essential tools for port administration. As
an alternative, ML is required for transportation systems to offer intelligent responses to
a range of circumstances. Although optimization and simulation modeling has received
a lot of attention in port studies, ML has contributed to the development of more com-
plex prediction models for enhanced port operations. To evaluate the benefits of ML to
port operations, we carried out this research. Steenken et al. (2004) defined and clas-
sified the main logistics activities and functions in container terminals and described a
review of techniques for their optimization [4]. Bierwirth and Meisel (2011) reviewed the
pertinent literature for identifying appropriate methods that help in modeling problems
related to berth allocation and quay scheduling. New classification methods for issues
with berth allocation and quay crane scheduling were devised. A special emphasis was
placed on integrated solution methods, which are becoming more significant for terminal
management [5]. Gharehgozli et al. (2015) reviewed the existing survey articles on con-
tainer terminal operations. They mostly focused on two things: firstly, modern container
terminal skills, and secondly, new operational research (OR) guidelines and models for
present research fields [6].

In a study by Xie and Huynh (2010), two kernel-based ML methods were presented as
Gaussian processes and ε-support vector machines. To assess their relative performance,
they were contrasted with the multilayer feedforward neural network (MLFNN) model,
which was applied in earlier investigations. Data from the Port of Houston’s Bayport and
Barbours Cut container terminals were used to build the model [7]. Gosasang et al. (2011)
investigated the use of Linear Regression and Multilayer Perceptron to forecast future
container throughput at Bangkok Port. The Bank of Thailand, the Office of the National
Economic and Social Development Board, the World Bank, the Ministry of the Interior, and
the Energy Policy and Planning Office were contacted to identify the factors impacting
cargo throughput at the Bangkok Port. These variables were included in the forecasting
MLP and linear regression models, which produced a projection of cargo throughput. The
outcomes were then evaluated using mean absolute error and root mean squared error [8].

AI and ML are necessary for port management in many ways, from berth scheduling
to quay allocation. According to the literature, there are few publications on the topic, and
the most common application of machine learning techniques is to predict various port
characteristics. Meanwhile, growing examples of prescriptive and autonomous machine
learning approaches are seen in the literature. However, to the best of our knowledge,
we find no study involving machine learning and feature engineering to overcome the
challenge of predicting the vessel size based on container capacity.
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In this paper, we used neighborhood component analysis (NCA) as a tool for feature
selection and state-of-the-art machine learning algorithms for multiclass classification. The
paper proposes a novel two-stage approach for estimating and predicting vessel size based
on container capacity. To the best of our knowledge, for the first time, NCA is employed to
select the best set of features in the area of port management. Alongside this, our proposed
two-stage model is also novel in its kind.

2. Theoretical Background

When a container ship arrives at the quay, it carries out the loading and unloading of
containers. The Figure 1 shows the unloading operation procedure.
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Figure 1. Workflow diagram for the port terminal.

In the unloading operation, the shipping supervisor is notified of the operation in-
structions, and after moving to the work location, the container is transported and moved,
and loaded to the yard tractor. The unloading operation performs the reverse procedure
of the unloading operation. In order to allocate QCs, both facility and operational aspects
should be considered. In terms of facilities, quay walls, storage, gates, and loading and
unloading equipment are included, and in terms of operation, the labor productivity of
container port operators is included. To allocate a smooth QC in a container terminal, it
is necessary to secure an appropriate size for carrying out the quantitative loading and to
allocate the QC berth within the scope of not overloading the operation. After checking
the availability of the berth of the arriving vessel, if all berths are occupied, it is placed
on standby. Cho et al. examined how national research and development (R&D) in the
domain of logistics has changed recently in the Republic of Korea [2]. Kim et al. examined
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waves, tide level and sea level fluctuations, design variable estimation, and morphological
changes in several studies that applied ML in coastal engineering [9].

3. Materials and Methods
3.1. Dataset Details

The data considered in this study are based on one month’s data carried out at the
actual container terminal operating in the new port of Busan Port. In addition, the existing
data considered a total of 718 operational data. A total of 39 parameters were defined in
this study. Figure 2 shows the number of the vessels arrived at quay crane at different time.
The following data show some of the operation data considered in this study.
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Figure 2. Count of vessels arrived at QC at various arrival times.

The results of the loading and unloading work in the port can be derived from a total
of 39 parameters, as shown in Table 1, based on the number of quay cranes assigned to each
ship and the processing results for each port equipment. Table 2 shows all the parameters
considered for these study before applying.

Table 1. Sample of input data showing each vehicle’s total stay time in the port.

ID Arrival Time Departure Time Total Stay Time (s)

ANEA002/20XX 20XX-03-05 01:03:00 20XX-03-05 18:00:00 61,020

ANEA003/20XX 20XX-03-12 00:40:00 20XX-03-12 19:00:00 66,000

ANEA003/20XX 20XX-03-12 00:40:00 20XX-03-12 19:00:00 66,000

ANEA003/20XX 20XX-03-12 00:40:00 20XX-03-12 19:00:00 66,000

ANEA003/20XX 20XX-03-12 00:40:00 20XX-03-12 19:00:00 66,000

ANEA004/20XX 20XX-03-20 12:53:00 20XX-03-21 10:00:00 76,020

ANEA004/20XX 20XX-03-20 12:53:00 20XX-03-21 10:00:00 76,020

ANEA004/20XX 20XX-03-20 12:53:00 20XX-03-21 10:00:00 76,020

ANEA004/20XX 20XX-03-20 12:53:00 20XX-03-21 10:00:00 76,020

ANEA005/20XX 20XX-03-29 23:38:00 20XX-03-31 00:00:00 87,720

ANEA005/20XX 20XX-03-29 23:38:00 20XX-03-31 00:00:00 87,720

ANEA005/20XX 20XX-03-29 23:38:00 20XX-03-31 00:00:00 87,720
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Table 1. Cont.

ID Arrival Time Departure Time Total Stay Time (s)

ANEA005/20XX 20XX-03-29 23:38:00 20XX-03-31 00:00:00 87,720

APXX003/20XX 20XX-03-28 07:00:00 20XX-03-29 09:00:00 93,600

APXX003/20XX 20XX-03-28 07:00:00 20XX-03-29 09:00:00 93,600

APXX003/20XX 20XX-03-28 07:00:00 20XX-03-29 09:00:00 93,600

APXX003/20XX 20XX-03-28 07:00:00 20XX-03-29 09:00:00 93,600

APXX003/20XX 20XX-03-28 07:00:00 20XX-03-29 09:00:00 93,600

ATGI002/20XX 20XX-03-19 01:58:00 20XX-03-20 02:00:00 86,520

ATGI002/20XX 20XX-03-19 01:58:00 20XX-03-20 02:00:00 86,520

ATGI002/20XX 20XX-03-19 01:58:00 20XX-03-20 02:00:00 86,520

ATGI002/20XX 20XX-03-19 01:58:00 20XX-03-20 02:00:00 86,520

ATGI002/20XX 20XX-03-19 01:58:00 20XX-03-20 02:00:00 86,520

ATGI003/20XX 20XX-03-28 09:20:00 20XX-03-29 04:00:00 67,200

ATGI003/20XX 20XX-03-28 09:20:00 20XX-03-29 04:00:00 67,200

ATGI003/20XX 20XX-03-28 09:20:00 20XX-03-29 04:00:00 67,200

ATGI003/20XX 20XX-03-28 09:20:00 20XX-03-29 04:00:00 67,200

ATSO006/20XX 20XX-02-28 16:30:00 20XX-03-01 10:00:00 63,000

ATSO006/20XX 20XX-02-28 16:30:00 20XX-03-01 10:00:00 63,000

ATSO006/20XX 20XX-02-28 16:30:00 20XX-03-01 10:00:00 63,000

ATSO007/20XX 20XX-03-08 20:52:00 20XX-03-09 18:00:00 76,080

ATSO007/20XX 20XX-03-08 20:52:00 20XX-03-09 18:00:00 76,080

Table 2. Port data terminologies and their definitions.

Number Parameters Definition

1 IMPORT_BOXES Number of Import Boxes

2 EXPORT_BOXES Number of Export Boxes

3 TEU Number of TEU

4 Bay Number of Bays in Yard

5 TIERS Number of Tiers in Yard

6 Discharging (%) The ratio of Discharging Containers

7 4000% Discharging Number of Discharging Containers

8 MTY Discharging Number of Empty Discharging Containers

9 Reefer Discharging Number of Reefer Discharging Containers

10 Dangerous Discharging Number of Dangerous Discharging Containers

11 Over Discharging Number of Over Discharging Containers

12 % Loading The ratio of Loading Containers

13 4000% Loading Number of Loading Containers

14 MTY Loading Number of Empty Loading Containers

15 Reefer Loading Number of Reefer Loading Containers

16 Dangerous Loading Number of Dangerous Loading Containers

17 Over Loading Number of Over Loading Containers
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Table 2. Cont.

Number Parameters Definition

18 2000% Discharging single lift Number of Discharging Single Containers

19 2000% Discharging twin Number of Discharging Two Containers

20 4000% Discharging single Number of Discharging Single Containers

21 2000% Loading Single lift Number of Loading Single Containers

22 4000% Loading twin Number of Loading Two Containers

23 Loading single Number of Loading Single Containers

24 DS Number of Discharging Containers

25 20BOX Number of 20ft Containers

26 40BOX Number of 40ft Containers

27 MTY Number of Empty Containers

28 IMDG Number of International Maritime Dangerous Goods Containers

29 REEFER Number of Reefer Containers

30 OOG Number of Discharging Gages

31 TW Number of Twin Containers (Two 20ft Containers)

32 LD Number of Loading Containers

33 L_20BOX Number of Loading 20boxes

34 L_40BOX Number of Loading 40boxes

35 L_MTY Number of Loading MTY Containers

36 L_IMDG Number of Loading IMDG Containers

37 L_REEFER Number of Loading Reefer Containers

38 L_OOG Number of Loading OOG Containers

39 L_TW Number of Loading TW (Twin Containers)

3.2. Methodology

In this paper, we propose a two-stage model consisting of a feature selection method
in the first stage, followed by the application of state-of-the-art machine learning algo-
rithms in the second stage (as shown in Figure 3). The first stage employs neighborhood
component analysis as a tool for feature selection. As mentioned, the dataset contains
39 parameters, describing the three different kinds of vessels based on their size. The
proposed two-stage feature-selection-cum-classification approach is meant to identify the
most relevant parameters to estimate the vessel size, instead of using all the unnecessary pa-
rameters. In the second stage, we applied advanced machine learning algorithms as a tool
for classification. The classification process estimates the efficacy of the identified features
(or parameters) selected at stage I. In stage II of the proposed framework, we used
11 classifiers, chosen as per the data compatibility.

3.2.1. Stage I: Feature Selection

In stage I of our approach, we employed NCA for the identification of the relevant
parameters useful for proper classification of the vessel size based on container capacity. In
this study, the number of quay crane berths allocated using machine learning is calculated
based on the arrival time data of container ships operated in existing container terminals,
and quay crane berth allocation is performed in consideration of various characteristics
of container ship arrival times. A study was conducted to calculate future data based on
existing data through machine learning, and a total of 11 machine learning techniques were
applied to find the efficacy of the identified features.
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A supervised learning technique called neighborhood components analysis divides
multivariate data into discrete groups based on a predetermined distance measure. It per-
forms the same functions as the K-nearest neighbors method and directly applies the related
idea of stochastic nearest neighbors. It is a non-parametric strategy for feature selection that
aims to increase the predictive power of regression and classification algorithms [10,11].

By identifying a linear transformation of the input data such that the average leave-one-
out (LOO) classification performance is maximized in the converted space, neighborhood
components analysis seeks to “learn” a distance measure. The main idea behind the
approach is that, by creating a differentiable objective function for matrix A and using
an iterative solution such as conjugate gradient descent, one may find a matrix A that
corresponds to the transformation. The ability to calculate the number of k classes as a
function of A up to a scalar constant is one advantage of this technique. Thus, the problem
of model selection is addressed by this use of this method.

Consider predicting a single data point’s class label based on the agreement of its
k-nearest neighbors using a certain distance measure. This method of categorization is
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called leave-one-out cross-validation. Assume a problem of multiclass classification with n
observations in the training set, as shown in Equation (1):

S = {(xi, yi), i = 1, 2, . . . , n} (1)

where xi ∈ Rp stands for feature vectors, yi ∈ {1, 2, . . . , c} stands for class labels, and c
denotes the classes.

The goal is to develop a classifier f : Rp→ {1, 2, . . . , c} that takes a feature vector as
input and predicts the true label of x using the formula f (x).

Suppose a randomized classifier that:

- As the reference point for x, Re f (x) is chosen at random from S.
- Label x using the reference point’s label Re f (x).

This method is comparable to a 1 − NN classifier in which the reference point is
selected as the new point’s close neighbor. Every point in S has a chance of being picked as
the reference point, since in NCA, the reference point is chosen at random [11].

The closer xj is to x, as determined by the distance function dw, the higher the chance
P
(

Re f (x) = xj | S
)

that point xj is chosen from S as the reference point for x. Here, the
distance function dw is shown in Equation (2):

dw
(

xi, xj
)
=

p

∑
r=1

w2
r
∣∣xir − xjr

∣∣ (2)

where wr signifies the feature weights. Let us say in Equation (3),

P
(

Re f (x) = xj
∣∣s) α k

(
dw

(
x, xj

))
(3)

where k signifies a random kernel that assumes big values when dw(x, xj) is irrelevant
(Equation (4)). Presume it is

k(z) = exp
(
− z

σ

)
(4)

The goal of neighborhood component analysis is to maximize F(w) concerning w,
shown in Equation (5).

F(w) =
1
n ∑n

i=1Fi(w) (5)

The collection of closest neighbors Ci, however, might alter significantly after all the
points have been subjected to a linear transformation. Particularly, any objective function
f (∗) based on the neighbors of a point is piecewise-constant and, hence, not differentiable,
since the set of neighbors for a point might experience discrete changes in response to
smooth changes in the components of A [11].

3.2.2. Stage II: Classification

Stage II of the proposed approach deals with the application of advanced ML algo-
rithms as a tool for classification. The features identified after the application of NCA are
fed into each of the classifiers to measure the efficacy of the selected features. Here, we used
11 state-of-the-art machine learning classifiers [12,13], namely, Decision Tree (DT), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Linear Support
Vector Machine (L-SVM), Quadratic Support Vector Machine (Q-SVM), Cubic Support
Vector Machine (C-SVM), Gaussian Support Vector Machine (G-SVM), K-Nearest Neigh-
bours (k-NN), Boosted Tree Ensemble (BSE), Bagged Tree Ensemble (BGE), and Subspace
Discriminant Ensemble (SDE). Here, instead of using the generic algorithms, we tuned the
hyperparameters of all the algorithms to provide optimal results.

A decision tree is a tree structure that constructs classification or regression models. It
progressively divides a dataset into smaller and smaller sections, while also developing an
associated decision tree. The result is a tree containing leaf nodes and decision nodes [14].
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In this study, we used a tuned decision tree, where we took the Gini Diversity Index
as a split criterion, with a maximum number of 100 splits and fine tree type.

Linear Discriminant Analysis is a linear classification model. Data from a D dimensional
feature space are projected using LDA into a D’ (D > D’) dimensional space to increase
variability across classes, while minimizing variability within classes. LDA works well
while dealing with multiclass classification [15].

Here, in the case of linear discriminant analysis, we used the “full” covariance structure.

Quadratic Discriminant Analysis is a generative model. According to QDA, each class is
thought to have a Gaussian distribution. The fraction of data points that belong to the class
is the class-specific prior. The average of the input variables that are part of the class makes
up the mean vector particular to that class. Simply put, the covariance of the class-specific
vectors makes up the class-specific covariance matrix [16].

In this work, we have used a “full” covariance structure in the case of quadratic
discriminant analysis.

Linear Support Vector Machine is a linear model that may be used to solve classification
and regression issues. It can handle linear and non-linear problems and is useful for a wide
range of practical applications. The concept of SVM is straightforward: The method draws
a line or a hyperplane to divide the data into classes [17].

In this experiment, we tuned the hyperparameters of the linear SVM for the betterment
of the classification results. To obtain the optimal results, we considered the “Linear Kernel”
with an “automatic” kernel scaling, keeping the box constraint level as 1, and considering
the multiclass method as one vs one.

Quadratic kernel-free non-linear support vector machine (Q-SVM) is a quadratic decision
function capable of separating data non-linearly. The geometrical margin is shown to be
equal to the inverse of the gradient of the decision function’s norm. The equation of the
quadratic function is the functional margin. It is demonstrated that Q-SVM may be used in
a quadratic optimization context [17].

Here, in this study, we tuned the hyperparameters of the SVM for the betterment of the
classification results. To obtain the optimal results, we considered the “Quadratic Kernel”
with an “automatic” kernel scaling, keeping the box constraint level as 1, and considering
the multiclass method as one vs one.

Cubic support vector machine (C-SVM): when dealing with a memory space constraint,
C-SVM is an effective SVM approach because it locates a hyperplane in a multidimensional
space that best separates the classes, whereas Q-SVM has low memory utilization for binary
classification and high memory utilization for multiclass classification during its training
phase. Prediction speed is also fast for binary classification but sluggish for multiclass
classification [17].

In this experiment, we tuned the hyperparameters of the SVM for the betterment of the
classification results. To obtain the optimal results, we have considered the “cubic Kernel”
with an “automatic” kernel scaling, keeping the box constraint level as 1, and considering
the multiclass method as one vs one.

Gaussian support vector machine (G-SVM) is another prominent Kernel approach used
in Support Vector Machine models, using the Gaussian RBF (Radial Basis Function). The
RBF kernel is a function whose value is proportional to the distance between the origin and
some point [17].

We tuned the hyperparameters of the SVM for the betterment of the classification
results. To obtain the optimal results, we have considered the “Gaussian Kernel” with
an “automatic” kernel scaling, keeping the box constraint level as 1, and considering the
multiclass method as one vs one.
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K-nearest neighbor (k-NN) is a variant of k-nearest neighbors. The selection of the hyper-
parameter k is one of several factors that influence the performance of the KNN algorithm.
If k is too little, the algorithm becomes more susceptible to outliers [18].

In this experiment, to optimize the algorithm, we tuned the k-NN model with a
hyperparameter tuning, empirically. In this study, we used the Cosine variant of the k-NN
classifier, with the number of neighbors as 10, considering the distance weight as “equal”
and the distance metric as “cosine”.

Boosted trees ensemble learner (BSE) is used to reduce training time errors. Boosting is an
ensemble learning strategy that combines a group of weak learners into strong learners. A
random sample of data is chosen, fitted with a model, and then trained sequentially—that
is, each model attempts to compensate for the shortcomings of its predecessor [19,20].

This study attempts to employ the ensemble learner to check the variability of the
results for the selected set of features. We also tuned the hyperparameters of the BSE
learner during the training phase of the model. Here, we considered the ensemble method
as “AdaBoost”, learner type as “decision tree”, the maximum number of allowed splits as
20, the number of learners as 30, and the rate of learning as 0.1.

Bagged trees ensemble learner (BSE) is an acronym for Bootstrap Aggregation; it is an
ensemble method, which is essentially a mechanism for overlaying diverse models, data,
and methods. [20].

Here, in this study, for the hyperparameter tuning of the BSE, we set the following
hyperparameter for the optimal result condition. Here, we used the ensemble type as
“Bag”, learner type as “Decision tree”, and the number of learners as 30.

Subspace Discriminant Ensemble learner (SDE): The majority voting rule was utilized
to create the subspace discriminant ensemble, which employed the random subspace
ensemble approach with 30 linear discriminant learners and two subspace dimensions [21].

Cross-Validation Method

A statistical technique called cross-validation is used to evaluate the competence
of machine learning models. Since it is simple to comprehend, simple to implement,
and produces ability estimates that often have a smaller bias than other approaches, it is
frequently used in applied machine learning to compare and select a model for a specific
predictive modeling issue. The process contains a single parameter, k, that designates
how many groups should be created from a given data sample. As a result, the process is
frequently referred to as k-fold cross-validation. If k is decided to be a certain value, k in
reference to the model may be replaced by that value.

This study incorporates the k-fold cross-validation method for training and validating
the trained model. Here, we used a 10-fold cross-validation method, where nine folds were
taken for training and one fold for testing. In this study, for every iteration, around 10% of
the total samples were hidden from all the training data, which were considered unseen
testing samples, and others were used for training. This process was repeated 10 times to
avoid any possibilities of bias in the study.

Evaluation Metrics

In this study, we used three metrics for the purpose of evaluating the efficacy of our
proposed approach. The three evaluation metrics used are accuracy, receiver operating
characteristics (ROC) curve, and area under curve (AUC).

1. Accuracy: One parameter for assessing classification models is accuracy. The per-
centage of predictions that our model correctly predicted is known as accuracy. The
following is the actual definition of accuracy (as shown in Equation (6)):

Accuracy =
TP + TN

TP + FP + TN + FN
(6)
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where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False
Negatives.

2. Receiver Operating Characteristics (ROC): The receiver operating characteristic curve
is a chart that displays how well a classification model performs across all categoriza-
tion levels. Two parameters are shown on this curve:

True Positive Rate (TPR) =
TP

TP + FN
(7)

False Positive Rate (FPR) =
FP

FP + TN
(8)

TPR (Equation (7)) vs. FPR (Equation (8)) are shown on a ROC curve at various classifi-
cation levels. More items are classified as positive when the classification threshold is
lowered, which raises the number of both False Positives and True Positives.

3. Area Under Curve (AUC): Integral calculus is used to calculate the AUC; it measures
the full two-dimensional region beneath the entire ROC curve from (0,0) to (1,1).
An overall assessment of performance across all potential classification criteria is
provided by the AUC. The AUC may be seen as the likelihood that the model values a
randomly chosen positive example higher than a randomly chosen negative example.

4. Results

With the help of the proposed two-staged approach, we obtained the set of most
relevant parameters or features out of 39 inputted features. These seven features are
capable of distinguishing the type of vessel in terms of size while considering the container
capacity. Our proposed feature selection method revealed the set of seven unique features,
which are as follows:

- Import box
- 4000% Loading
- Loading single
- 20_Box
- 40_Box
- TW
- LD

The qualitative details of these seven identified features are mentioned above in the
Dataset Details section. In addition, we obtained impressive results in terms of classification
accuracy while performing the multiclass classifiers, as mentioned above. We obtained the
highest average classification accuracy of 97.6% with the linear support vector machine
classifier. While applying the decision tree classifier, we obtained an accuracy of 87.5%,
whereas, while applying the ensemble tree with the boosted and bagged methods, we
obtained a high accuracy of 90.4% and 92.6%, respectively. Other than the linear kernel,
all kernels of the support vector machine showed promising results. We obtained 96.8%,
95.5%, and 93.9% accuracy with quadratic, cubic, and Gaussian kernels of the support
vector machine, respectively. The complete classification results are shown in Table 3,
where accuracy and the AUC for each algorithm are given.

Alongside this, here we show the ROC curve and the confusion matrix for each of the
classifiers. Figure 4 depicts the confusion matrix for each of the algorithms used. Here,
the order of appearance of sub-figures (from left to right) is a = Decision Tree (Model 6.1),
b = Linear Discriminant Analysis (Model 6.4), c = Quadratic Discriminant Analysis (Model
6.5), d = Linear Support Vector Machine (Model 6.6), e = Quadratic Support Vector Machine
(Model 6.7), f = Cubic Support Vector Machine (Model 6.8), g = Gaussian Support Vector
Machine (Model 6.10), h = K-Nearest Neighbor (Model 6.15), i = Boosted Tree Ensemble
(Model 6.18), j = Bagged Tree Ensemble (Model 6.19), and k = Subspace Discriminant
Ensemble Learner (Model 6.20). From the confusion matrix, we can note down the cases
of true classes and predicted classes; thereby, we are able to trace the true positive rate
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(TPR) and false positive rate (FPR). Our results showpromising results in terms of correct
prediction of vessel size. Figure 5 depicts the ROC curves for each of the algorithms used.
The order of the appearance of each subfigure is the same as in Figure 4.

Table 3. Results show the classification accuracy and area under curve (AUC) for each of the classifiers.
DT = Decision Tree, LDA = Linear Discriminant Analysis, QDA = Quadratic Discriminant Analysis, L-
SVM = Linear Support Vector Machine, Q-SVM = Quadratic Support Vector Machine, C-SVM = Cubic
Support Vector Machine, G-SVM = Gaussian Support Vector Machine, k-NN = K-Nearest Neighbor,
BSE = Boosted Tree Ensemble, BGE = Bagged Tree Ensemble, and SDE = Subspace Discriminant
Ensemble Learner.

DT LDA QDA L-SVM Q-SVM C-SVM G-SVM k-NN BSE BGE SDE

Accuracy 87.50% 90.90% 92.60% 97.60% 96.80% 95.50% 93.90% 91.40% 90.40% 92.60% 91.80%

AUC 0.95 1 0.99 1 1 1 1 0.98 0.99 0.99 1
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right): a = Decision Tree (Model 6.1), b = Linear Discriminant Analysis (Model 6.4), c = Quadratic
Discriminant Analysis (Model 6.5), d = Linear Support Vector Machine (Model 6.6), e = Quadratic
Support Vector Machine (Model 6.7), f = Cubic Support Vector Machine (Model 6.8), g = Gaussian
Support Vector Machine (Model 6.10), h = K-Nearest Neighbor (Model 6.15), i = Boosted Tree
Ensemble (Model 6.18), j = Bagged Tree Ensemble (Model 6.19), and k = Subspace Discriminant
Ensemble Learner (Model 6.20).

5. Discussion

Ports are important hubs in logistics and supply chain systems, where the majority of
the available data is still not being fully exploited. Machine learning techniques are flexible
tools for utilizing and unlocking the value of the data. The port sector is significantly
behind other forms of transportation in this change, which is surprising given the rapidly
expanding usage of machine learning as a tool for data-driven prediction.

In this paper, we proposed a two-stage model consisting of a feature selection method
involving neighborhood component analysis, followed by a classification task using 11 state-
of-the-art machine learning algorithms. In step I of the proposed approach, we obtained
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seven unique features, which are the essential parameters for the identification of the vessel
size. The selected features are Import box, 4000% Loading, Loading single, 20_Box, 40_Box,
TW, and LD. Here, the container capacity plays a vital role in distinguishing the size of
the vessel. Out of these seven features, we also made an effort to tune the algorithm with
different permutations. However, we found that the set of these seven parameters can
achieve high classification accuracy. It is worth mentioning that we achieved the highest
classification accuracy of 97.6% and AUC = 1 with the support vector machine classifier
with a linear kernel. Alongside this, we also achieved promising classification accuracies
with other algorithms (as shown in Table 3).

Figures 3 and 4 show the confusion matrixes and the ROC curves for all the state-of-
the-art machine learning algorithms used in this study. The promising results, as shown in
the figures, prove the efficacy of our proposed method. Most of the ML classifiers showed
high classification accuracy for these seven distinct parameters. The AUC values of 1 or
close to one signify the classifiers are well-trained and well-chosen for this dataset.

The finally selected 7 out of 39 parameters are essential data derived through the
quantitative work of berthed ships, and these data are the basic items for calculating the
operational performance and throughput of the port terminal.

The seven parameters selected through this study are ultimately used as the basic data
for the calculation of throughput performed at the container terminal. QC allocation predic-
tion for each ship was performed through the seven parameters derived in this study. In the
future, container terminals are changing into unmanned and automated ports. Therefore, it
will be possible to use basic data to calculate the container throughput in the unmanned
automated port and the number of ships that can be handled in the unmanned automated
port through the seven parameters presented in this study. This study, which incorporates
a machine learning-based study, paves the way for future research in port logistics.

6. Conclusions

Whenever container ships arrive at the port container terminal, it is important to
assign an adequate number of available quay cranes to the berth. To allocate quay cranes
to ships that will eventually dock at the port terminal, it is particularly crucial to predict
the size of a ship. In this study, we chose features using neighborhood component analysis
and classified classes using cutting-edge machine learning techniques. To estimate and
anticipate the vessel size based on container capacity, the research suggests an innovative
two-stage technique. Our suggested method identified seven distinctive characteristics of
port data that are crucial indicators of vessel size.
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