
Citation: Zhao, J.; Ma, Y.; Xia, Y.; Dai,

M.; Chen, P.; Long, T.; Shao, S.; Li, F.;

Li, Y.; Zeng, F. A Novel Fault-Tolerant

Approach for Dynamic Redundant

Path Selection Service Migration in

Vehicular Edge Computing. Appl. Sci.

2022, 12, 9987. https://doi.org/

10.3390/app12199987

Academic Editor: Ming Liu

Received: 12 August 2022

Accepted: 27 September 2022

Published: 4 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Novel Fault-Tolerant Approach for Dynamic Redundant Path
Selection Service Migration in Vehicular Edge Computing
Jiale Zhao 1 , Yong Ma 2,* , Yunni Xia 1,* , Mengxuan Dai 2 , Peng Chen 3 , Tingyan Long 1, Shiyun Shao 4,
Fan Li 5, Yin Li 6 and Feng Zeng 7

1 School of Computer, Chongqing University, Chongqing 400044, China
2 School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China
3 School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
4 Department of Computer Science and Operations Research, University of Montreal,

Montreal, QC H3T 1N8, Canada
5 Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense,

Sichuan University, Chengdu 610065, China
6 Institute of Software Application Technology, Guangzhou and Chinese Academy of Sciences,

Guangzhou 511458, China
7 Discovery Technology (Shen Zhen) Limited, Shenzhen 518126, China
* Correspondence: may@jxnu.edu.cn (Y.M.); pentaxm42@cqu.edu.cn (Y.X.)

Abstract: Vehicular Edge Computing (VEC) provides users with low-latency and highly responsive
services by deploying Edge Servers (ESs) close to applications. In practice, vehicles are usually moving
rapidly. To ensure the continuity of services, edge service migration technology is in high need, by
which an application, infrastructure or any edge-hosted applications or services are not locked into a
single vendor and allowed to shift between different edge resource vendors. Nevertheless, due to
their complex and dynamic nature, real edge computing environments are error and fault prone and
thus the reliability of edge service migrations can be easily compromised if the proactive measures
are not taken to counter failures at different levels. In this paper, we propose a novel fault-tolerant
approach for Dynamic Redundant Path Selection service migration (DRPS). The DRPS approach
consists of path selection algorithm and service migration algorithm. The path selection algorithm
is capable of evaluating time-varying failure rates of ESs by leveraging a sliding window-based
model and identifying a set of service migration paths. The service migration algorithm incorporates
resubmission and replication mechanisms as well and decides edge service migration schemes by
choosing multiple redundant migration paths. We also conduct extensive simulations and show that
our proposed method outperforms traditional solutions by 17.45%, 13.17%, and 7.22% in terms of
ACT, TCR, and AFC, respectively.

Keywords: vehicular edge computing; service migration; fault-tolerant; dynamic redundant path
selection; time-varying failure rates

1. Introduction

Mobile Edge Computing (MEC) is of great significance in real-time computing services
among various branches [1–5]. Many typical computation-intensive applications, e.g., face
identification, interactive game, auto navigation, augmented reality, and remote control
aircraft, benefit from the mobile edge computing paradigm and its capability of handling
distributed computing with high speed and scale [6–9]. Due to the popularization of
new energy technologies, Vehicle Edge Computing (VEC) technology based on intelligent
vehicles has received extensive attention [10]. While vehicles always move around, limited
coverage of each ES can result in the dramatic drop of Quality of Service (QoS) or even
service interruption [11]. To this end, service needs to be transferred from the source ES
to the target one (the closest one), i.e., service migration in vehicular edge computing [12].

Appl. Sci. 2022, 12, 9987. https://doi.org/10.3390/app12199987 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199987
https://doi.org/10.3390/app12199987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5895-9148
https://orcid.org/0000-0003-3549-9035
https://orcid.org/0000-0001-9024-732X
https://orcid.org/0000-0002-8485-1077
https://orcid.org/0000-0001-5221-3655
https://doi.org/10.3390/app12199987
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199987?type=check_update&version=3

Appl. Sci. 2022, 12, 9987 2 of 18

In practice, edge service migration is in high need, by which an application, infrastructure
or any edge-hosted applications or services are allowed to shift between different resource
vendors or edge nodes when the original vendors or nodes are non-functional or over-
loaded [13,14].

As the edge computing systems continue to grow in scale and complexity, it is of critical
importance to ensure the stability, availability, and reliability in such systems. However, due
to its intrinsic dynamic and decentralized nature, the edge computing infrastructure itself
is fault and error prone [15]. The reliability of edge service migration can therefore be easily
compromised if the proactive measures are not taken to tackle against the possible failures
occurring at varying levels of the edge computing system. To guarantee reliable service
migration, and as a countermeasure for faults and failures, the edge service providers have
to enforce fault tolerance [16–19].

Among various fault tolerance strategies in this direction, replication and resubmission
are two widely used ones that are proved to be highly capable in mobile edge comput-
ing [20]. The replication-based fault-tolerance refers to the technique of running multiple
redundant replicates for each and every service. Thus, if one part of the system goes wrong,
it has other instances that can be placed instead of it to keep it running. Although run-
ning redundant replicas generally increases the operational overhead, it effectively pre-
vents failures of components or individual resources from interrupting system-level task
flows, thereby improving the efficiency of service execution. The resubmission-based
fault-tolerance refers to re-executing a failed task on the same or another processing unit.
Although re-executing a task costs extra time, it can improve the system resource uti-
lization and effectively prevent the service interruption caused by task execution failure.
Researchers have proposed many fault-tolerant schemes based on replication and resub-
mission [16,21–26].

This paper focuses on service migration in VEC environments and proposes a novel
fault-tolerant approach for dynamic redundant path selection service migration in mobile
edge computing, called DRPS, by synthesizing the replication and resubmission-based
fault-tolerance techniques.

The main contributions of the paper are as follows:

• It presents the VEC system of a fault-tolerant environment, including the service
migration model, and edge server fault model for the first time.

• Propose a path selection algorithm that combines the sliding window model to evalu-
ate the time-varying failure rate of ESs and obtain the high-quality migration path.

• Propose a service migration algorithm. To cope with edge node failure in the VEC
environment, this paper uses the advantages of replication and resubmission strategies
to ensure the reliability of service migration.

• To verify the performance of the DRPS approach, we also conducted simulation exper-
iments on two real edge computing datasets. The experimental results demonstrate
that, compared with the traditional method, our proposed DRPS approach has a better
task completion rate and average task completion time.

The remaining chapters of this paper are structured as follows. In Section 2, we review
related work and analyze its limitations. The system model and problem description are
presented in Section 3. In Section 4, we describe the proposed DRPS approach in detail. We
describe experiments based on the real mobile edge computing dataset and analyze the
results in Section 5. Finally, Section 6 presents the main conclusions and future work.

2. Related Work

The path selection problem stems from the basic trade off between the cost of service
migration (transmission cost and migration cost) and the improvement of users’ expec-
tation on QoS that can be achieved after migration. Recently, extensive efforts are paid
to enforcing QoS guarantees and fault tolerance in edge service migrations [27]. For in-
stance, Machen et al. [28] proposed a layered migration framework that divided the base
package into three layers: base layer, application layer, and instance layer. A copy of

Appl. Sci. 2022, 12, 9987 3 of 18

the base layer is stored on each ES, so it is unnecessary to transfer it on every migration.
The application layer contains the basic data information required for service operation.
The running state of the service is placed in the instance layer. When migrating a service,
the application layer is first migrated, then the service is suspended, and the instance
layer is transferred to the target ES. Finally, the base layer, application layer, and instance
layer are combined in the target ES to reconstruct the running service. Ha et al. [29]
performed delta encoding, deduplication, and data compression operations in sequence
before service data migration to reduce the amount of data that needs to be transmitted,
thereby improving the efficiency of service migration. However, the data will be distorted
to a certain extent after being compressed, and the compression time of the data will also
affect the QoS of service migration. Zhao et al. [30] proposed an optimization method for
user overhead and provider operating costs in a large-scale edge computing environment.
Firstly, the network and user movement space are modeled. Then, random global search
schemes such as simulated annealing, tabu search, greedy algorithm, and binary search
are combined to search for the best path for migration, thereby reducing data migration
overhead and saving costs. Qiao et al. [31] proposed a collaborative edge caching scheme
to jointly optimize task placement and migration in vehicle edge computing. This scheme
formulates the joint optimization problem as a dual-time-scale Markov Decision Process
(MDP) according to the relationship between the task migration time scale and the vehicle
movement time scale, which minimizes the task migration cost while satisfying the task
migration delay constraint. However, when the MDP state space is large, the cost function
and transition probability of MDP may change with time, and the processing capacity
of ES is limited, and the resulting problems become difficult to solve. Wang et al. [32]
approximate the underlying state space by the distance between users and service loca-
tions, which is much faster than traditional methods based on standard value or policy
iteration and can efficiently compute service migration policies for 2D mobility models.
Representing task migration as an online multidimensional integer linear programming
problem, Peng et al. [33] proposed a decentralized reactive method that generates online
migration decisions by employing a dynamic learning mechanism. Different from [33],
Liang et al. [34] first relax the binary constraints of the transfer decision, and transform
the problem into a series of convex problems that can be optimally solved. Then, a round-
ing method for binary decision solution recovery based on the nature of the problem is
proposed to maximize the weighted unloading rate for all users while minimizing the
migration cost as much as possible.

In recent years, with the rise of the third wave of artificial intelligence technology,
many researchers have begun to combine Reinforcement Learning (RL) technology to
deal with the problem of service migration. Gao et al. [35] designed a reinforcement
learning-based framework for a single-user edge computing service migration system,
which first assumed that the user’s moving trajectory was fixed and known, and then
used RL methods to find the optimal communication path between two edge servers
for service migration. For the multi-user random motion scenario, Chen et al. [36] used
the container as the target of service migration to minimize the average perceived delay
of users and the average system energy, and proposed a Deep Reinforcement Learning
algorithm based such a Multi-user Server Migration strategy (DRLMSM). The DRLMSM
algorithm uses Software Defined Network (SDN) to arbitrarily segment traffic on any path,
and allows multiple containers to be migrated simultaneously through multiple routing
paths, enabling quick decision-making in unstable MEC environments. Chen et al. [37]
applied containers in industrial Internet edge computing, and proposed an Improved
Genetic-Simulated Annealing Algorithm (IGSAA). The algorithm can solve the problems
of container deployment failure and slow deployment caused by hardware failure by
improving the initialization, crossover, and mutation operations of the genetic algorithm,
so that the edge computing system can still provide services when the container deployment
fails, and the reliability of the service is improved. Similar to [31], Li et al. [38] also use edge
caching technology and proposed a cooperative edge caching strategy based on the energy-

Appl. Sci. 2022, 12, 9987 4 of 18

delay balance to solve the problem of service interruption caused by user movement. First,
the cache value model is trained by deep learning, and the content with higher potential
cache value is selected for caching in the region, then the service migration problem is
modeled as MDP, and finally the Deep Q-Network (DQN) algorithm to find the optimal
solution of the model. Although deep reinforcement learning can adapt to complex state-
space environments, it is difficult for a single super-agent to learn large-scale decentralized
policies as the number of participants grows exponentially. Therefore, Yuan et al. [39]
proposed a Multi-Agent Deep Reinforcement Learning (MADRL) algorithm, decomposes
a single overall agent into multiple simpler agents to reduce the dimensionality of state
space and action space, and constructs a deep q-network based on bi-branch convolution to
minimize service migration cost and migration time. However, most of the above methods
ignore the impact of ESs performance fluctuations in edge computing on service migration.

Long et al. [40] synthesized the Primary-Backup (PB) and DQN models for developing
a novel fault-tolerant service composition method. Wang et al. [41] extended the traditional
PB fault-tolerant model based on the idea of containers, and reduced the delay by changing
the execution time of task copies to achieve reliable task services. An adaptive adjustment
mechanism of container resources is also proposed, which can adaptively supplement the
resources of ESs with insufficient processing capability during task execution, so as to
improve the resource utilization of edge nodes. Tuli et al. [42] proposed a service migration
strategy that can proactively predict failures (PreGAN) based on Generative Adversarial
Networks (GAN) to achieve active fault tolerance in containerized edge deployments. Pre-
GAN uses Graph Attention Networks (GAT) and Gated Recurrent Unit (GRU) for feature
extraction, and a multi-head attention and a prototype prediction decoder to detect and clas-
sify faults. PreGAN utilizes a generator model to utilize anomaly class prototypes to output
a delta scheduling decision to correct faults and improve QoS. Xu et al. [43] considered
time and cost, and the Pareto optimal method was used to select several suitable migration
paths for simultaneous migration to achieve the purpose of fault tolerance. Still, the change
of ESs failure rate was not considered. To avoid single points of failure and data loss, ES
can replicate data to alternate hosts for fault tolerance, but replicating data at the speed that
data arrives is inefficient and will consume significant network bandwidth resources. Thus,
Wang et al. [44] proposed a fault-tolerant method that adaptively replicates data according
to the application’s requirements for data loss and latency to meet the required level of
data loss tolerance and timeliness. Jhawar et al. [45] proposed to ensure the QoS of the
system through a fault-tolerant strategy provided by a third party. However, it is difficult
and impractical for ordinary users to choose a suitable third-party service. Different from
the above research that adopted a single fault tolerance strategy, Plankensteiner et al. [46]
proposed a replication and resubmitted each service in edge computing simultaneously
and adjusted the size of the copy by using the impact of service resubmission to make a
trade-off between the two fault tolerance strategies. Similarly, Yao et al. [47] proposed a
fault-tolerant scheduling algorithm for the workflow based on unbalanced resources by
combining two fault-tolerant strategies of replication and resubmission, assuming that the
failure rate of ESs is fixed.

It can be observed that, although the current research on service migration has made
some important progress, existing studies are still limited in several ways:

• The performance fluctuations of ES are not taken into account. In the VEC environ-
ment, the processing capability and operational stability of ES are always affected by
natural or human factors, but the existing research has not fully considered this issue.

• The fault tolerance mechanism is single. Each fault tolerance mechanism has its
applicable scenarios and shortcomings. Most of the existing researches are based on
one fault tolerance mechanism for service migration, which is difficult to apply to
other scenarios.

The above limitations could be well avoided by using the DRPS approach proposed in
this paper.

Appl. Sci. 2022, 12, 9987 5 of 18

3. System Model and Problem Description

In this section, the architecture of the proposed VEC environment for service migration
is described. The environment consists of a base station, network router, and edge user
(vehicle). Key notations are given in Table 1.

Table 1. Summary of notations.

Notation Definition

B The set of base stations
N The set of network routers
R The set of tasks
Mri The set of Migration paths for task ri
MTi The Migration time of task ri
bi The i-th base station in B
ni The i-th network router in N
ri The i-th task in R
mri

j The j-th Migration path in Mri

lb
i The coordinates of bi
f b
i The signal coverage radius of bi

eb
i The edge server of bi

cb
i The residual computing power of ei

swb
i The task information performed on the ei in the recent period

ln
i The coordinates of ni
f n
i The failure rate of ni

ar
i The arrival time of ri

dr
i The amount of data transmitted in ri

tdr
i The maximum tolerable time of ri

lr
i The coordinates of ri
pr

i The amount of calculation of ri

tj
i The execution time of task ri on ej

tj′
i The normalized data of tj

i
yj

i The number of edge servers in mri
j

bwxy The bandwidth between node x and node y
dr′

i The calculation result of dr
i

β The channel bandwidth of the base station
ρi The signal transmission power of ri
λ2 The Gaussian noise power of the device

3.1. System Model

As illustrated in Figure 1, in an VEC environment, ESs are deployed on signal Base
Stations (BSs) near users. This paper uses the set B = {b1, b2, ..., bm} to represent m BSs
deployed in an area, each BS is represented by a triple (lb

i , f b
i , eb

i), where lb
i represents

the geographic location of the BS bi, f b
i represents the signal coverage radius of the bi,

eb
i = (cb

i , swb
i) represents the ES in the bi, where cb

i represents the remaining computing
power of the eb

i . swb
i means the task information performed on the eb

i in the recent period.
Use the set N = {n1, n2, ..., nk} to represent k Network Routers (NRs) deployed in an
area; each NR is represented by a two-tuple (ln

i , f n
i), where ln

i represents the geographic
location of the NR ni, f n

i represents the failure rate of the ni, the failure rate is assumed to
be constant. Use the set R = {r1, r2, ..., rn} to represent the services that need to be migrated
of Edge Users (EUs). In this model, services are migrated in the form of tasks. Each task
is defined by a quintuple (ar

i , dr
i , tdr

i , lr
i , pr

i), where ar
i represents the arrival time of task ri,

dr
i represents the amount of data transmitted, tdr

i represents the maximum tolerable time,
and lr

i represents the user’s position; pr
i represents the amount of computation required to

complete task ri.

Appl. Sci. 2022, 12, 9987 6 of 18

Figure 1. Vehicle edge computing environment.

In the proposed system model, it is assumed that each BS is equipped with only one
ES, and the performance of all ES is exactly the same. BS can forward and compute tasks
(ES is responsible for the computation), while NR can only forward tasks and does not
participate in the computation of tasks. The failure rate of the BS is assumed to change
in real time, the failure rate of the NR remains constant all the time, and the EU always
communicates with the nearest BS.

This paper abstracts the transmission link between each node (ES and NR) in mobile
edge computing network into an undirected graph. It transforms the problem into how
to transmit tasks in the undirected graph efficiently. As illustrated in Figure 2, when EU
moves from left to right, the possible service migration paths are: ES1-NR1-NR5-ES5,
ES1-NR1-NR4-ES5, ES1-NR2-ES3-NR5-ES5, and so on. How to determine the direction
of EU motion belongs to the problem of trajectory prediction, which is not the content of
this paper. In this paper, we focus on the problem of task fault-tolerant migration when
the origin and destination of the EU are known. We set Mri = {mri

1 , mri
2 , ..., mri

s } is used
to represent s migration paths of a task ri, and each path mri

j is composed of a multiple
node. The performance of ESs in a real VEC environment is not constant. Still, it changes
dynamically with the influence of the time and external factors (e.g., weather, temperature,
etc.), which leads to the traditional shortest path-based service migration strategy not
always achieving better results. If the failure rate of NR1 in Figure 2 is much greater than
that of ES3, the migration effect of selecting the path ES1-NR2-ES3-NR5-ES5 is significantly
better than that of the paths ES1-NR1-NR5-ES5 and ES1-NR1-NR4-ES5.

Figure 2. Abstract VEC network structure.

Based on the sliding window mechanism, this paper updates the failure rate of each
ESs in real-time to ensure that the transmission path of each task is high-quality. The proba-
bility of a failure of task ri executed on edge server eb

j is:

Pj
i (F | tj′

i) =
Pj

i (t
j′

i | F)Pj
i (F)

Pj
i (t

j′
i)

(1)

Appl. Sci. 2022, 12, 9987 7 of 18

Pj
i (t

j′

i | F), Pj
i (F), and Pj

i (t
j′

i) can be calculated according to the data in the sliding

window swb
j of eb

j . Where F represents the migration failure, and tj′

i represents the execution

time tj
i of task ri on eb

j to normalize data, the normalization process is expressed as follows:

tj′

i =
tj
i − tmin

tmax − tmin
(2)

where tmax and tmin respectively represent the longest and shortest execution time of tasks
in swb

j on eb
j , and the execution time tj

i is calculated as follows:

tj
i =

pr
i

yk
i cb

j
(3)

where yk
i represents the number of ES in the migration path mri

k , pr
i represents the amount of

computation required to complete the task ri, and cb
j represents the remaining computation

force in eb
j .

MTk
i of the total time of service migration of task ri on path mri

k consists of task
calculation time Zk

i and data transmission time Dk
i :

MTk
i = Zk

i + Dk
i (4)

Since NR only forwards data and does not participate in calculation, all the tasks are
calculated in ES:

Zk
i =

yk
i

∑
x=1

tx
i + FZk

i (5)

where FZk
i represents the redundant calculation time, an optional item, and only needs to

be calculated when ES fails.
Dk

i consists of the following four parts:

Dk
i = DUk

i + DTk
i + DDk

i + FDk
i (6)

DUk
i represents the uplink transmission time of dr

i from user equipment to ES:

DUk
i =

dr
i

β log2(1 +
ρi
λ2)

(7)

where β is the channel bandwidth of the BS, ρi is the signal transmission power of the
mobile device, and λ2 is the Gaussian noise power of the device.

DTk
i represents the transit time of dr

i between ESs and NRs:

DTk
i = ∑

(x,y)∈m
ri
k

dr
i

bwxy
(8)

(x, y) ∈ mri
k represents the record of task ri from node x to node y, bwxy represents the

bandwidth between x and y.
DDk

i indicates the downlink transmission time for the data calculation result to be
returned from the ES to the user equipment:

DDk
i =

dr′
i

β log2(1 +
ρi
λ2)

(9)

where dr′
i represents the calculation result of task ri.

Appl. Sci. 2022, 12, 9987 8 of 18

FDk
i represents the redundant calculation time, an optional item, and only needs to be

calculated when ES or NR fails. In the actual scenario, EU must upload some instruction
information in addition to computing tasks, but the amount of data of this extra information
is small, so it is not considered in our model.

3.2. Problem Description

Based on the above system model, this paper aims to solve the following problems:
given an area where multiple ESs and NRs are deployed, the task will pass through h nodes
in the migration path p in this area, among which there are m ESs and how to choose the
appropriate migration path to reduce the failure rate of service ri migration to minimize
migration time, the problem can be described as:

Min :
m

∏
x=1

Px
i (F | tx′

i)
h−m

∏
y=1

f n
y (10)

Min : MTp
i (11)

s.t : g(ri) ∈ M (12)

h(ri) ∈ M (13)

MTp
i ≤ tdr

i (14)

0 ≤ Px
i (F | tx′

i) < 1 (15)

0 ≤ f n
y < 1 (16)

Functions g(ri) and h(ri) represent task ri arriving at source ES and migrating to target
ES, respectively, M represents the resource pool composed of m ESs, and MTp

i represents
the migration time of the task. As shown in (10) and (11), the problem to be solved in
this paper is to minimize the failure rate and migration time during task migration, where
(12) and (13) limit the data transmission between the user and the ES to the base station’s
within the signal coverage, (14) indicates that the task should be migrated within the
maximum tolerable time of the user, (15) and (16) indicate that the failure rates of ES and
NR are within a reasonable range.

4. DRPS: Fault-Tolerant Approach for Dynamic Redundant Path Selection
Service Migration

Based on the system model proposed in Section 3, for the service migration problem
in the VEC environment, this paper considers the performance fluctuation of ESs and
proposes a fault-tolerant approach called DRPS, which consists of path selection algorithm
and service migration algorithm. This section describes the method in detail.

4.1. Path Selection

In this paper, the service migration whose execution time does not exceed a certain
threshold is called a service migration success. Mobile users will not feel the change
of QoS obviously at this time. If the service migration time exceeds a certain threshold,
the service migration is considered a failure because mobile users can feel the decrease
of QoS obviously at this time. The traditional service migration [43] mainly studies the
migration of task data and does not consider the calculation of tasks during the migration
process. However, with the increase in the complexity of mobile applications, simple data
migration is gradually difficult to meet user needs. Therefore, this paper considers the case
where services are migrated and calculated simultaneously.

As shown in Algorithm 1, this paper uses the Dijkstra algorithm to find the migration
path between the source ES and the target ES. When looking for the migration path of task
ri, the weight of the ESs node in graph G is the failure rate of ri when it is executed on eb

j ,

i. e., Pj
i (F | tj′

i). First, initialize the migration path set Mri and weight graph G (lines 1–2),
then find the path mri with the lowest failure rate according to the Dijkstra algorithm,

Appl. Sci. 2022, 12, 9987 9 of 18

add mri to the set Mri , delete the data link in the path mri , and cyclically query the all
paths (lines 3–9), and finally determine whether the service is successfully migrated (lines
10–21). The task migration time MTi is the shortest migration time of task ri in all feasible
paths, which will be described in detail later. Algorithm 1 is based on Dijkstra, so the time
complexity is O(kn2), where k is the number of all feasible migration paths and n is the
number of all nodes in G.

Algorithm 1 Path Selection Algorithm

Input: Task ri; source edge server Bs; target edge server Bt.
Output: T or F, where T indicates that the task migration succeeded, and F indicates that

the task migration fail.
1: Initialize the set of migration paths Mri ← {}.
2: Abstracts the transmission link between Bs and Bt as a weighted graph G, and the failure

rate is the weight.
3: while True do
4: apply Dijkstra algorithm to the weighted graph G to find the shortest path mri from

Bs to Bt
5: if mri not exists then
6: break
7: else
8: Mri ← Mri ∪ {mri}
9: delete all nodes in path mri

10: end if
11: end while
12: if Mri == ∅ then
13: return F
14: else
15: compute the task migration time MTi
16: if MTi > tdr

i then
17: return F
18: else
19: return T
20: end if
21: end if

It should be noted that to ensure the success rate of service migration, the path selection
algorithm finds all feasible paths in G for migration, which is not suitable for all cases.
If all paths are found for migration in a dense network, the cost of migration will be
immeasurable. Still, with a slight modification of the path selection algorithm, it can be
applied to a broader range of situations; e.g., limiting the number of migration paths or
limiting the number of nodes in the migration path, etc., can be a good trade-off for the
problem of excessive migration costs.

4.2. Service Migration

As shown in Algorithm 2, the service migration algorithm first copies the task into
many copies and migrates in all feasible paths simultaneously. There is no need to worry
about the problem that ESs repeatedly calculates multiple identical tasks during the migra-
tion process. First of all, when searching for the migration path in Algorithm 1, all duplicate
data links have been deleted (line 9), so there will not be the same data links in the migration
path. Secondly, suppose two replicated tasks arrive at the same ES simultaneously (through
different links, although the probability of this happening is very low). In that case, the ES
will only calculate any one of the tasks and copy the calculation result, as both are sent to
the next different node, respectively. Because the two tasks are the same, the calculation
results are also the same, and the cost of copying the calculation results is meager, which
does not affect the final result. The significance of copying tasks to all migration paths
is to reduce the migration failure rate and speed up the migration. In service migration

Appl. Sci. 2022, 12, 9987 10 of 18

phase, the redundancy idea commonly used in fault tolerance mechanism is combined.
If the BS or NR in a certain path fails, other migration paths without failure can ensure the
successful migration of this task. The downside is obvious - it consumes more resources.
However, the user experience can be improved by making a trade-off between the number
of migration paths and the resource consumption.

Algorithm 2 Service Migration Algorithm

Input: Task ri; s feasible migration paths {mri
1 , mri

2 , ..., mri
s }.

Output: The task final migration time MTi.
1: Copy the tasks ri to be migrated into s copies;
2: do in parallel
3: compute the migration time mt1

i of task ri on path mri
1 . If the task is successfully

migrated first on this path, it will send a termination migration signal to other paths.
At this time MTi = mt1

i ;
4: compute the migration time mt2

i of task ri on path mri
2 . If the task is successfully

migrated first on this path, it will send a termination migration signal to other paths.
At this time MTi = mt2

i ;
5: ...
6: compute the migration time mts

i of task ri on path mri
s . If the task is successfully

migrated first on this path, it will send a termination migration signal to other paths.
At this time MTi = mts

i ;
7: return MTi

During task migration, if the ESs fails, the task will be rolled back to the previous node
and resend to the ES for processing. When the task on a path in Mri reaches the target ES
successfully, a termination instruction will be sent to terminate the service migration on
other paths to save costs. This is easy to implement because each task knows all migration
paths. The transfer time of the termination instruction is negligible, so it can quickly
terminate the migration of tasks on other paths. The service migration algorithm minimizes
the task migration time based on the above resubmission and replication strategy.

Algorithm 3 describes the migration process of tasks on each migration path and the
calculation method of migration time. The migration time consists of computation time
and transmission time. When the ES or NR fails and the migration fails, the task is rolled
back to the previous node for retransmission. If the source edge server fails, it means that
the task cannot be migrated at this time, that is, the migration fails. ES and NR will retain
the task information (task size, execution time, failure or failure duration, etc.) of tasks that
have been migrated on this device in the recent period to provide necessary information
for the next round of task migration. It should be noted that, as shown in lines 7–17 and
20–21, if a task fails to be rolled back, its final migration time will need to be added with
the rollback calculation time, which is reflected in the form of the redundant calculation
time in this model. Service migration is computed in parallel, so the time complexity is
O(n), where n represents the number of nodes in a single path.

Appl. Sci. 2022, 12, 9987 11 of 18

Algorithm 3 Service Migration Time

Input: Task ri; The migration path mri
s .

Output: The migration time mts
i of the task ri on path mri

s .

1: Initialize the task transfer time Dm
ri
s

i = 0

2: Initialize the task execution time Zm
ri
s

i = 0
3: for all n ∈ mri

s do
4: if n is the edge server then

5: Dm
ri
s

i = Dm
ri
s

i + Dn
i ← compute the task transfer time of ri on n according to (6)

6: Zm
ri
s

i = Zm
ri
s

i + Zn
i ← compute the task execution time of ri on n according to (5)

7: if n fail then
8: if n is source edge server then

9: Dm
ri
s

i = ∞
10: break
11: else
12: add the information of task ri to swb

n
13: roll back to the previous node
14: end if
15: else
16: add the information of task ri to swb

n
17: end if
18: else
19: Dm

ri
s

i = Dm
ri
s

i + Dn
i ← compute the task transfer time of ri on n according to (6)

20: if n fail then
21: roll back to the previous node
22: end if
23: end if
24: end for
25: return mts

i = Dm
ri
s

i + Zm
ri
s

i

5. Performance Evaluation

To verify the performance of the DRPS approach, this section uses two real mobile
edge computing datasets for simulation experiments. Two real datasets and experimental
settings are first introduced, followed by comparison algorithms and evaluation metrics.
Finally, the experimental results are summarized and analyzed.

5.1. Experiment Setting

The simulation experiment is based on the real edge environment data sets Telecom
(http://sguangwang.com/TelecomDataset.html, accessed on 3 August 2022) [48–50] and
Taxi (https://cse.hkust.edu.hk/scrg/, accessed on 3 August 2022) [51]. The Telecom
data set records the geographic location information of 3233 base stations in downtown
Shanghai, and the Taxi data set records the driving track information of 4316 taxis in
downtown Shanghai. To compare the performance of different algorithms objectively, this
section treats the two datasets as follows.

(1) As illustrated in Figure 3a, 80 base stations in Pudong Central Business District are se-
lected in the Telecom data set for simulation experiment, and 30 of them are randomly
chosen as network routers, which are only responsible for forwarding data without
calculation.The communication range of each base station and network router is set
as 250 meters, and the initial failure rate is evenly distributed between 0.1 and 0.15.
All base stations are equipped with the same ES specifications and support parallel
computing. The processed Telecom dataset is illustrated in Figure 3b, with circles rep-
resenting network routers, rectangles representing base stations, and red connection
lines representing data links.

http://sguangwang.com/TelecomDataset.html
https://cse.hkust.edu.hk/scrg/

Appl. Sci. 2022, 12, 9987 12 of 18

(2) In the Taxi dataset, the driving trajectories of 100, 300, 500, 700, and 900 taxis in the
Pudong Central Business District in the same period were selected as the movement
trajectories of edge users. The taxi drives at a constant speed. The base station closest
to the initial position of the taxi is set as the source base station, and the base station
closest to the taxi position after the maximum tolerable time is set as the target base
station. Each taxi only needs to migrate one task.

All simulation experiments were carried out on a computer with an 3.2GHz AMD
Ryzen 5800H processor and 16GB of RAM. All experimental codes were implemented on
in the PyCharm software using Python3.9.

(a) The base station distribution (b) Abstract base station network structure

Figure 3. Pudong Central Business District (The blue dots in (a) represent base stations; Black squares
in (b) indicate base stations, blue dots indicate network routers, and red lines indicate that devices
can communicate with each other).

5.2. Baseline Algorithms and Metrics

The proposed algorithm and four comparison algorithms are as follows.

(1) DRPS: It is the algorithm proposed in this paper. A novel fault-tolerant approach for
redundant-path-enabled service migration in mobile edge computing.

(2) DRPS/F: It is a simplified version of the DRPS approach, where the failure rate of ESs
is constant.

(3) Greedy-SP: It is a traditional greedy algorithm, which first finds the current closest
path and performs service migration based on the resubmission strategy.

(4) Greedy-CP: It is a traditional greedy algorithm, which first find ES with the most
remaining computing force within the current coverage range and performs service
migration based on the resubmission strategy.

(5) PLP [43]: It is based on weak Pareto optimization and selects multiple paths for
service migration.

The migration paths of the DRPS approach and the other four comparison algorithms
are illustrated in Figure 4. The movement paths of edge users (vehicles) are represented by
red dotted lines, and the migration paths of services are represented by solid lines. As can
be observed:

• As illustrated in Figure 4a, for independent tasks, the migration paths of DRPS and
DRPS/F approach are the same, because both algorithms choose the migration path
according to the failure rate of ES. However, for the task flow that is continuously
reached within a period of time, because the DRPS approach adjusts the failure rate
of ES dynamically, and the failure rate of the DRPS approach will be lower than that
of DRPS/F, which has also been confirmed in subsequent experiments.

• As illustrated in Figure 4b, PLP algorithm always selects the path with the least
time and consumption for migration, but it may increase migration time and energy
consumption due to the ES failure.

Appl. Sci. 2022, 12, 9987 13 of 18

• As illustrated in Figure 4c, the Greedy-SP algorithm selects the closest ES or NR for
service migration, but it is easy to fall into the local high-quality solution and cannot
find the high-quality migration path.

• As illustrated in Figure 4d, similar to Greedy-SP, Greedy-CP is also based on greedy
thinking, but it always prefers the ES with the highest remaining computing power
within the scope for service migration.

(a) (b)

(c) (d)

Figure 4. Service migration path in VEC environment (black squares indicate base stations, blue dots
indicate network routers, dotted lines indicate vehicle movement directions, and solid lines indicate
task migration paths.) (a) DRPS&DRPS/F; (b) PLP; (c) Greedy-SP; (d) Greedy-CP.

This section uses the following three indicators to evaluate the algorithm’s performance.

(1) Average Completion Time (ACT): Time to migrate services from source ES to target
ES, including data transfer time and task computation time.

(2) Task Completion Rate (TCR): The success rate of service migration. If the service is
migrated to the targeted ES within the user’s maximum tolerable time, the service is
successfully migrated.

(3) Average Failure Count (AFC): The number of service failures during migration.
The more failures, the higher the cost of the service migration.

It should be noted that because DRPS and DRPS/F choose multiple paths for service
migration simultaneously, DRPS and DRPS/F are subdivided into DRPS/OP, DRPS/AP,
DRPS/F/OP, and DRPS/F/AP in the experiment to evaluate the average failed times of
service migration. DRPS/AP and DRPS/F/AP indicate the average number of migration
failures in all migration paths, and DRPS/OP and DRPS/F/OP indicate the average number
of migration failures in successful migration paths.

Appl. Sci. 2022, 12, 9987 14 of 18

5.3. Experimental Results

As illustrated in Figure 5, the average completion time of the DRPS approach is the
lowest because the DRPS approach performs task migration on multiple paths simultane-
ously. When the task migration on one of the paths is successful, the tasks on the other
paths will be discarded to reduce the cost. The migration time of the DRPS/F approach is
the lowest after the DRPS approach because DRPS/F does not take into account the perfor-
mance fluctuations of ES, resulting in a higher failure rate of task migration than the DRPS
approach takes more time. The migration times of Greedy-SP, Greedy-CP, and PLP ap-
proach are similar and significantly higher than DRPS and DRPS/F approach. Because the
three do not consider the performance fluctuations of ES in the process of task migration,
the PLP algorithm is jointly optimized with Pareto, so the migration time is slightly lower
than the other two algorithms.

Figure 5. Results of the ACT.

Task completion rate is an important criterion to measure the migration algorithm. A
too long task migration time will affect QoS, but task migration failure will have serious
consequences. As illustrated in Figure 6, the TCR of the DRPS approach and the DRPS/F
approach is significantly higher than that of the other three algorithms. The reason is
similar to that of the ACT. The DRPS approach dynamically updates the failure rate of ES
in real-time, and the failure rate of each migration path is always the lowest. This ensures
that the TCR of the DRPS approach is always better than the comparison algorithm.

Figure 6. Results of the TCR.

The AFC can reflect the overhead of the algorithm. The higher the AFC, the more tasks
that need to be retransmitted during the migration process, and the greater the natural

Appl. Sci. 2022, 12, 9987 15 of 18

overhead. In order to measure the performance of the algorithm more accurately, we
further divide the DRPS approach and the DRPS/F approach into DRPS/OP, DRPS/AP,
DRPS/F/OP, and DRPS/F/AP. As illustrated in Figure 7, DRPS/OP and DRPS/F/OP
represent the AFC in the successful migration path. It can be observed that the performance
of DRPS/OP is better than other algorithms in five rounds of testing. DRPS/AP and
DRPS/F/AP represent the AFCs in all migration paths (including unfinished migration
paths), and it can be observed that their performance has decreased. Still, this performance
loss is accepted to ensure service migration’s reliability.

Figure 7. Results of the AFC.

As can be observed from Figures 5 and 6, with the increase in task volume, the per-
formance of DRPS approach remains stable without obvious fluctuation, indicating that
the DRPS approach has good robustness in ACT and TCR. Although the performance of
DRPS approach on AFC fluctuates with the increase in data volume, it is also within the
acceptable range.

Overall, as illustrated in Table 2, compared with the DRPS/F approach, the perfor-
mance of ACT and TCR of the DRPS approach is improved by 2.03% and 2.13%, respectively;
compared with Greedy-SP, the performance of ACT, TCR, and AFC is improved by 19.17%,
14.02%, and 4.18%, respectively; compared with Greedy-CP, the performance of ACT, TCR,
and AFC is improved by 22.41%, 15.61%, and 6.01%, respectively; compared with the
PLP algorithm, the performance of ACT, TCR, and AFC was enhanced by 17.45%, 13.17%,
and 7.22%, respectively; compared with the DRPS/F/OP and DRPS/F/OP approach,
the performance AFC was enhanced by 2.97% and 11.6%, respectively (compared with the
DRPS/OP). This is because the DRPS approach selects a set of paths for service migration
according to the real-time error rate of ESs, and combines replication and resubmission
strategies during the migration process to ensure that the service always has the least
migration time, compared with traditional PLP and Greedy, etc. The ACT, TCR, and AFC
performance of the DRPS approach has been significantly improved.

Table 2. Compared with baseline algorithms, the performance improvement of DRPS on three metrics.

DRPS/F Greedy-SP Greedy-CP PLP DRPS/F/OP DRPS/F/AP

ACT 2.03% 19.17% 22.41% 17.45% / /

TCR 2.13% 14.02% 15.61% 13.17% / /

AFC / 4.18% 6.01% 7.22% 2.97% 11.6%

Appl. Sci. 2022, 12, 9987 16 of 18

6. Conclusions

This paper proposes a fault-tolerant service migration approach (DRPS) for service mi-
gration in the VEC environment. Compared with the traditional service migration method,
DRPS firstly uses the sliding window mechanism to predict the failure rate of ESs in VEC,
then calculates a set of high-quality migration paths according to the type of migration
task, and, finally, combines the replication and resubmission strategies in the process of
service migration to ensure the migration efficiency. To verify the performance of DRPS,
we conduct simulation experiments based on two real edge computing datasets. The exper-
imental results show that compared with the traditional service migration method, DRPS
can significantly improve the task completion rate and the average task completion time.

The continuous development of artificial intelligence technology and data collabora-
tive processing has become a general trend to apply artificial intelligence technology in
VEC. In the next step, we plan to use artificial intelligence technology (e.g., deep learning,
reinforcement learning, etc.) with strong robustness and good generalization to solve
problems, e.g., load balancing scheduling and ES performance prediction in VEC to further
reduce transmission costs to improve the system QoS.

Author Contributions: Conceptualization, J.Z. and Y.X.; Data curation, J.Z., Y.M. and Y.X.; Formal
analysis, J.Z., Y.M., Y.X. and M.D.; Software, J.Z.; Writing—original draft, J.Z.; Supervision, Y.M.;
Funding acquisition, Y.X.; Validation, M.D.; Methodology, P.C. and S.S.; Investigation, P. C.; Resources
and Project administration, T.L.; Visualization, S.S.; Writing—review & editing, F.L., Y.L. and F.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Postgraduate Scientific Research and Innovation Founda-
tion of Chongqing under Grant No. CYB22064; This work is supported by the National Science
Foundations under Grant No 62162036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

1. Song, C.; Liu, M.; Cao, J.N.; Zheng, Y.; Gong, H.G.; Chen, G.H. Maximizing network lifetime based on transmission range
adjustment in wireless sensor networks. Comput. Commun. 2009, 11, 1316–1325. [CrossRef]

2. Xu, F.L.; Guo, S.; Jeong, J.; Yu, G.; Cao, Q.; Liu, M.; He, T. Utilizing shared vehicle trajectories for data forwarding in vehicular
networks. In Proceedings of the 2011 IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 441–445.

3. Liu, N.B.; Liu, M.; Wei, L.; Chen, G.H.; Cao, J.N. PVA in VANETs: Stopped cars are not silent. In Proceedings of the 2011 IEEE
INFOCOM, Shanghai, China, 10–15 April 2011; pp. 431–435.

4. Liu, M.; Gong, H.G.; Wen, Y.G.; Chen, G.H.; Cao, J.N. The last minute: Efficient data evacuation strategy for sensor networks in
post-disaster applications. In Proceedings of the 2011 IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 291–295.

5. Liu, N.B.; Liu, M.; Chen, G.H.; Cao, J.N. The sharing at roadside: Vehicular content distribution using parked vehicles. In
Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2641–2645.

6. Shi, W.S.; Zhang, X.Z.; Wang, Y.F.; Zhang, Q.Y. Edge computing: State-of-the-art and future directions. J. Comput. Res. Dev. 2019,
56, 69.

7. Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5G. ETSI White Paper
2015, 11, 1–16.

8. Deng, S.G.; Huang, L.T.; Wu, H.Y.; Tan, W.; Taheri, J.; Zomaya, A.Y.; Wu, Z.H. Toward Mobile Service Computing: Opportunities
and Challenges. IEEE Cloud Comput. 2016, 3, 32–41. [CrossRef]

9. Chung, J.M.; Park, Y.S.; Park, J.H.; Cho, H.J. Adaptive cloud offloading of augmented reality applications on smart devices for
minimum energy consumption. KSII Trans. Internet Inf. Syst. (TIIS) 2015, 8, 3090–3102.

10. Xiong, K.; Leng, S.; Hu, J.; Chen, X.S.; Yang, K. Smart network slicing for vehicular fog-RANs. IEEE Trans. Veh. Technol. 2019, 4,
3075–3085. [CrossRef]

11. Wang, S.Q.; Urgaonkar, R.; He, T.; Chan, K.; Zafer, M.; Leung, K.K. Dynamic service placement for mobile micro-clouds with
predicted future costs. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK,
8–12 June 2015.

http://doi.org/10.1016/j.comcom.2009.02.002
http://dx.doi.org/10.1109/MCC.2016.92
http://dx.doi.org/10.1109/TVT.2019.2900234

Appl. Sci. 2022, 12, 9987 17 of 18

12. Kekki, S.; Featherstone, W.; Fang, Y.G.; Kuure, P.; Li, A.; Ranjan, A.; Purkayastha, D.; Jiangping, F.; Frydman, D.; Verin, G.; et al.
MEC in 5G networks. ETSI White Paper 2018, 28, 1–28.

13. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-based Cloudlets in Mobile Computing. IEEE Pervasive Comput.
2011, 8, 14–23. [CrossRef]

14. Khayyat, M.; Elgendy, I.A.; Muthanna, A.; Alshahrani, A.S.; Alharbi, S.; Koucheryavy, A. Advanced deep learning-based
computational offloading for multilevel vehicular edge-cloud computing networks. IEEE Access 2020, 1, 137052–137062. [CrossRef]

15. Pezoa, J.E.; Dhakal, S.; Hayat, M.M. Maximizing service reliability in distributed computing systems with random node failures:
Theory and implementation. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 1531–1544. [CrossRef]

16. Chen, C.A.; Won, M.; Xie, G.G. Energy-efficient fault-tolerant data storage & processing in dynamic networks. In Proceed-
ings of the Fourteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Bangalore, India,
29 July–1 August 2013; pp. 281–286.

17. Chen, C.A.; Stoleru, R.; Xie, G.G. .Energy-efficient and fault-tolerant mobile cloud storage. In Proceedings of the 2016 5th IEEE
International Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3–5 October 2016; pp. 51–57.

18. Satria, D.; Park, D.; Jo, M. Recovery for overloaded mobile edge computing. Future Gener. Comput. Syst. 2017, 1, 138–147.
[CrossRef]

19. Long, T.Y.; Ma, Y.; Xia, Y.N.; Xiao, X.; Peng, Q.L.; Zhao, J.L. A Mobility-Aware and Fault-Tolerant Service Offloading Method in
Mobile Edge Computing. In Proceedings of the 2022 IEEE International Conference on Web Services (ICWS), Barcelona, Spain,
10–16 July 2022; pp. 67–72.

20. Poola, D.; Ramamohanarao, K.; Buyya, R. Enhancing reliability of workflow execution using task replication and spot instances.
ACM Trans. Auton. Adapt. Syst. (TAAS) 2016, 10, 1–21. [CrossRef]

21. Chen, W.; Lee, Y.C.; Fekete, A.; Zomaya, A.Y. Adaptive multiple-workflow scheduling with task rearrangement. J. Supercomput.
2015, 71, 1297–1317. [CrossRef]

22. Olteanu, A.; Pop, F.; Dobre, C.; Cristea, V. A dynamic rescheduling algorithm for resource management in large scale dependable
distributed systems. Comput. Math. Appl. 2012, 63, 1409–1423. [CrossRef]

23. Cao, Y.; Ro, C.W.; Yin, J.W. Scheduling analysis of failure-aware VM in cloud system. Int. J. Control Autom. 2014, 7, 243–250.
[CrossRef]

24. Jing, W.; Liu, Y. Multiple DAGs reliability model and fault-tolerant scheduling algorithm in cloud computing system.
Comput. Model. New Technol. 2014, 18, 22–30.

25. Jayadivya, S.K.; Nirmala, J.S.; Bhanu, M.S.S. Fault tolerant workflow scheduling based on replication and resubmission of tasks
in Cloud Computing. Int. J. Comput. Sci. Eng. 2012, 4, 996.

26. Patra, P.K.; Singh, H.; Singh, R.; Das, S.; Dey, N.; Victoria, A.D.C. Replication and resubmission based adaptive decision for
fault tolerance in real time cloud computing: A new approach. Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET) 2016, 7, 46–60.
[CrossRef]

27. Plachy, J.; Becvar, Z.; Mach, P. Path selection enabling user mobility and efficient distribution of data for computation at the edge
of mobile network. Comput. Netw. 2016, 1, 357–370. [CrossRef]

28. Machen, A.; Wang, S.Q.; Leung, K.K.; Ko, B.J.; Salonidis, T. Migrating running applications across mobile edge clouds: Poster. In
Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, New York City, NY, USA,
3–7 October 2016; pp. 435–436.

29. Ha, K.; Abe, Y.; Chen, Z.; Hu, W.L.; Amos, B.; Pillai, P.; Satyanarayanan, M. Adaptive VM handoff across cloudlets; Technical Report
CMU-CS-15-113; CMU School of Computer Science: Pittsburgh, PA, USA, 2015.

30. Zhao, F.; Zeng, X. Optimization of user and operator cost for large-scale transit network. J. Trans. Eng. 2007, 133, 240–251.
[CrossRef]

31. Qiao, G.H.; Leng, S.P.; Maharjan, S.; Zhang, Y.; Ansari, N. Deep reinforcement learning for cooperative content caching in
vehicular edge computing and networks. IEEE Internet Things J. 2019, 7, 247–257. [CrossRef]

32. Wang, S.Q.; Urgaonkar, R.; Zafer, M.; He, T.; Chan, K.; Leung, K.K. Dynamic service migration in mobile edge computing based
on Markov decision process. IEEE/ACM Trans. Netw. 2019, 3, 1272–1288. [CrossRef]

33. Peng, Q.L.; Xia, Y.N.; Wang, Y.; Wu, C.R.; Luo, X.; Lee, J. A decentralized reactive approach to online task offloading in
mobile edge computing environments. In Proceedings of the International Conference on Service-Oriented Computing, Dubai,
United Arab Emirates, 14–17 December 2020; pp. 232–247.

34. Liang, Z.Z.; Liu, Y.; Lok, T.M.; Huang, K.B. Multi-cell mobile edge computing: Joint service migration and resource allocation.
IEEE Trans. Wirel. Commun. 2021, 9, 5898–5912. [CrossRef]

35. Gao, Z.P.; Jiao, Q.D.; Xiao, K.L.; Wang, Q.; Mo, Z.J.; Yang, Y. Deep reinforcement learning based service migration strategy for
edge computing. In Proceedings of the 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE),
San Francisco, CA, USA, 4–9 April 2019; pp. 116–1165.

36. Chen, W.; Chen, Y.H.; Wu, J.X.; Tang, Z.B. A multi-user service migration scheme based on deep reinforcement learning and SDN
in mobile edge computing. Phys. Commun. 2017, 1, 101397. [CrossRef]

37. Chen, Y.P.; He, S.S.; Jin, X.M.; Wang, Z.M.; Wang, F.W.; Chen, L. Resource utilization and cost optimization oriented container
placement for edge computing in industrial internet. J. Supercomput. 2022, 1–29. doi: 10.1007/s11227-022-04801-z. [CrossRef]

http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/ACCESS.2020.3011705
http://dx.doi.org/10.1109/TPDS.2010.34
http://dx.doi.org/10.1016/j.future.2016.06.024
http://dx.doi.org/10.1145/2815624
http://dx.doi.org/10.1007/s11227-014-1361-0
http://dx.doi.org/10.1016/j.camwa.2012.02.066
http://dx.doi.org/10.14257/ijca.2014.7.1.21
http://dx.doi.org/10.4018/IJSSMET.2016040104
http://dx.doi.org/10.1016/j.comnet.2016.09.005
http://dx.doi.org/10.1061/(ASCE)0733-947X(2007)133:4(240)
http://dx.doi.org/10.1109/JIOT.2019.2945640
http://dx.doi.org/10.1109/TNET.2019.2916577
http://dx.doi.org/10.1109/TWC.2021.3070974
http://dx.doi.org/10.1016/j.phycom.2021.101397
http://dx.doi.org/10.1007/s11227-022-04801-z

Appl. Sci. 2022, 12, 9987 18 of 18

38. Li, C.L.; Zhang, Y.; Gao, X.; Luo, Y.L. Energy-latency tradeoffs for edge caching and dynamic service migration based on DQN in
mobile edge computing. J. Parallel Distrib. Comput. 2022, 1, 15–31. [CrossRef]

39. Yuan, Q.; Li, J.L.; Zhou, H.B.; Lin, T.; Luo, G.Y.; Shen, X.M. A joint service migration and mobility optimization approach for
vehicular edge computing. IEEE Trans. Veh. Technol. 2020, 8, 9041–9052. [CrossRef]

40. Long, T.Y.; Chen, P.; Xia, Y.N.; Jiang, N.; Wang, X.; Long, M. A novel fault-tolerant approach to web service composition
upon the Edge Computing Environment. In Proceedings of the International Conference on Web Services, Chicago, IL, USA,
5–10 September 2021; pp. 15–31.

41. Wang, R.F.; Chen, N.J.; Yao, X.Y.; Hu, L.Q. Fasdq: Fault-tolerant adaptive scheduling with dynamic qos-awareness in edge
containers for delay-sensitive tasks. Sensors 2021, 9, 2973. [CrossRef]

42. Tuli, S.; Casale, G.; Jennings, N.R. PreGAN: Preemptive Migration Prediction Network for Proactive Fault-Tolerant Edge
Computing. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, UK,
2–5 May 2022; pp. 670–679.

43. Xu, J.L.; Ma, X.; Zhou, A.; Duan, Q.; Wang, S.G. Path selection for seamless service migration in vehicular edge computing.
IEEE Internet Things J. 2020, 7, 9040–9049. [CrossRef]

44. Wang, C.; Gill, C.; Lu, C.Y. Adaptive data replication in real-time reliable edge computing for Internet of Things. In Proceedings of
the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI), Sydney, Australia,
21–24 April 2020; pp. 128–134.

45. Jhawar, R.; Piuri, V.; Santambrogio, M. Fault tolerance management in cloud computing: A system-level perspective. IEEE Syst. J.
2012, 7, 288–297. [CrossRef]

46. Plankensteiner, K.; Prodan, R. Meeting soft deadlines in scientific workflows using resubmission impact. IEEE Trans. Parallel
Distrib. Syst. 2011, 23, 890–901. [CrossRef]

47. Yao, G.; Ding, Y.; Hao, K. Using imbalance characteristic for fault-tolerant workflow scheduling in cloud systems. IEEE Trans.
Parallel Distrib. Syst. 2017, 28, 3671–3683. [CrossRef]

48. Li, Y.Z.; Zhou, A.; Ma, X.; Wang, S.G. Profit-aware edge server placement. IEEE Internet Things J. 2021, 9, 55–67. [CrossRef]
49. Guo, Y.; Wang, S.G.; Zhou, A.; Xu, J.L.; Yuan, J.; Hsu, C.H. User allocation-aware edge cloud placement in mobile edge computing.

Softw. Pract. Exp. 2020, 50, 489–502. [CrossRef]
50. Wang, S.G.; Guo, Y.; Zhang, N.; Yang, P.; Zhou, A.; Shen, X.M. Delay-aware microservice coordination in mobile edge computing:

A reinforcement learning approach. IEEE Trans. Mob. Comput. 2019, 20, 939–951. [CrossRef]
51. Liu, S.Y.; Liu, Y.H.; Ni, L.M.; Fan, J.P.; Li, M.L. Towards mobility-based clustering. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–28 July 2010; pp. 919–928.

http://dx.doi.org/10.1016/j.jpdc.2022.03.001
http://dx.doi.org/10.1109/TVT.2020.2999617
http://dx.doi.org/10.3390/s21092973
http://dx.doi.org/10.1109/JIOT.2020.3000300
http://dx.doi.org/10.1109/JSYST.2012.2221934
http://dx.doi.org/10.1109/TPDS.2011.221
http://dx.doi.org/10.1109/TPDS.2017.2687923
http://dx.doi.org/10.1109/JIOT.2021.3082898
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1109/TMC.2019.2957804

	Introduction
	Related Work
	System Model and Problem Description
	System Model
	Problem Description

	DRPS: Fault-Tolerant Approach for Dynamic Redundant Path Selection Service Migration
	Path Selection
	Service Migration

	Performance Evaluation
	Experiment Setting
	Baseline Algorithms and Metrics
	Experimental Results

	Conclusions
	References

