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Abstract: Dams are one of the most important engineering works of the current human society, and it
is crucial to monitor and obtain analytical data to log their conditions, predict their behavior and,
eventually, receive early warnings for planning interventions and maintenance activities. In this
context, GNSS-based point displacement monitoring is nowadays a consolidated technique that
is able to provide daily millimeter level accuracy, even with less sophisticated and less expensive
single-frequency equipment. If properly designed, daily records of such monitoring systems pro-
duce time series that, when long enough, allow for an accurate reconstruction of the geometrical
deformation of the structure, thus guiding semi-automatic early warning systems. This paper focuses
on the procedure for the GNSS time series processing with a statistical approach. In particular,
real-world times series collected from a dam monitoring test case are processed as an example of data
filtering. A remove–restore technique based on a collocation approach is applied here. Basically, it
consists of an initial deterministic modeling by polynomials and periodical components through least
squares adjustment and Fourier transform, respectively, followed by a stochastic modeling based on
empirical covariance estimation and a collocation approach. Filtered time series are interpreted by
autoregressive models based on environmental factors such as air or water temperature and reservoir
water level. Spatial analysis is finally performed by computing correlations between displacements
of the monitored points, as well as by visualizing the overall structure deformation in time. Results
positively validate the proposed data processing workflow, providing useful hints for the imple-
mentation of automatic early warning systems in the framework of structural monitoring based on
continuous displacement measurements.

Keywords: structural monitoring; GNSS; dam; time series analysis; spatial correlation analysis;
statistical approach; least squares; collocation

1. Introduction

Monitoring civil infrastructures plays a key role in ensuring their safety conditions and
maintaining their operational functions during the whole lifecycle. Infrastructural systems
are subject to aging and are under continuous operational stress, and sometimes additional
overstress due to exceptional events may occur. For this reason, without adequate control
and monitoring systems, they can represent serious risks of losses for the society from
several perspectives: economic, environmental and even for the health and safety of
people. In this context, Italian infrastructures are considered at high risk, with Italy being
particularly sensitive to natural hazards [1,2]. In the period 1944–2017, landslides, floods
and earthquakes caused about 10,000 victims and led to estimated economic losses of about
290 billion euros [3].

Among all civil infrastructures, dams are one of the most important engineering struc-
tures of the current human society. They supply water for domestic and industrial use
and irrigation purposes and are also involved in hydroelectric power generation and river
navigation. Thus, it is crucial to monitor and gather analytical data to log their conditions,
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predict their behavior and, eventually, receive early warnings for planning interventions
and maintenance activities. The failure of dams, although rare, can be catastrophic and may
cause immense damage and loss of life [4]. The most extreme example is the sequential
failure in 1975 of the Banqiao Reservoir Dam and more than 60 others in Henan Province,
China. Dramatically, the official number of victims caused by this event was 26,000 [5].
Dam health monitoring plays an important role in securing their structural integrity and
maintaining their longevity. It calls for the use of multiple sensors for monitoring a wide
variety of quantities such as body deformation, point displacements, temperature, uplift
and pore pressures, seepage and drainage rates, and piezometric level, just to cite the
most significant ones [6]. Regarding the measurement of displacements and deformation,
i.e., the geometric variation of the dam and its surroundings, the typical approach consists
of monitoring a set of Control Points (CPs) established properly in key positions (e.g., the
dam crest, the downstream banks, the lateral abutments) to retrieve the general behavior
of the whole structure. Several techniques have been developed and applied by exploit-
ing technological advancements that brought innovation and enhancements in terms of
acquisition rate, spatial coverage, accuracy, and automation.

Since the beginning of the 20th century, the static monitoring of dams was mainly
based on geodetic control networks by applying classical techniques such as precision
triangulation and geometric leveling [7,8]. Such measurements of absolute and relative dis-
placements of the structure and of the nearby areas were often complemented or integrated
with other measurement methods based on geotechnics and structural sensors, e.g., direct
and inverted pendulums, rock meters, tiltmeters, strain meters and clinometers [9–11]. The
main drawbacks of such monitoring systems were essentially the necessity of favorable
atmospheric conditions, specialized personnel and expert surveyors, as well as the long
duration of both the measurements and processing procedures [12]. Starting from the
1960s, total electronic motorized stations, digital levels and, in general, the introduction
of automatic data reading, acquisition, recording, and telemetric transmission allowed for
continuous monitoring, thus providing denser long-term data series and subsequently
enhancing the capability of analyzing deformation patterns [13,14].

As happened with remote sensing techniques [15–18], the application of methods
based on Global Navigation Satellite Systems (GNSS) is now consolidated, where GNSS
networks of points are measured with reference to proximal CORS (Continuously Operating
Reference Station) or other stations established on purpose in nearby stable areas [19–22].
More recently, automatic systems based on GNSS positioning have been developed to be
integrated into early-warning systems for dam safety management [23,24]. Furthermore,
recent research proved that low-cost and mass-market GNSS equipment can also be prop-
erly used for structural monitoring purposes, and adequate accuracies and system integrity
can be reached without geodetic level instrumentation [25–28], making the GNSS approach
even more attractive and widespread. In fact, by reducing the overall cost of the GNSS
monitoring systems, more CPs can be instrumented, and a more comprehensive and broad
reconstruction of the dam displacement/deformation over time and space is attainable.

In the framework of GNSS dam monitoring, the typical setup consists of a (or more)
reference station installed on a stable platform located some hundred to thousands of
meters apart from the dam body, several monitoring stations on the dam crest, and in the
case of earth embankments, on the downstream shell. Relative positioning is performed
between the reference (considered fixed) and the monitoring points, and on the basis of
24 h continuous measurements, daily positioning solutions are provided [29–31]. The
estimated positions are commonly framed in a previously established local reference frame
with one of the horizontal axes parallel to the dam crest and an upward vertical axis.
Three-dimensional CP displacements are typically considered independent of each other,
and the corresponding temporal series represent the time-dependent position variations
along the most meaningful directions, i.e., the dam crest, the reservoir up/downstream,
and the altitude. Such temporal series suffer from measurement noise, and they are gen-
erally smoothed, filtering out the high-frequency variations by means of interpolation
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techniques [32]. The resulting 3D time series describes the dam displacement in correspon-
dence with the monitored points. It is known that environmental factors and operation
activities influence the displacements, and therefore, they should be modeled in order to
analyze the residual data looking for unexpected trends or behaviors. Air/water tempera-
ture and reservoir water level are the main factors to be taken into account for computing
the so-called HTT (Hydrostatic Temperature Time) model of displacements [33–36].

In this paper, a statistical approach for dam monitoring based on the use of GNSS
techniques is described and detailed, taking as reference the experience of a real case of an
embankment dam monitored with such a methodology. Despite the fact that results will be
presented and discussed with reference to a real case, the goal of the manuscript is more
associated with the accurate description of the methodological approach of these analyses,
from the preliminary processing to the final interpretation, so as to set up a general and
effective procedure for structural monitoring.

2. Materials and Methods

This section presents the real case of dam monitoring based on GNSS techniques
and is taken as a reference to exemplify the methodological approach for the analysis and
interpretation of the displacement time series logged by the GNSS monitoring system.
Two subsections are reported. The first one focuses on the description of the monitored
structure, its characteristics and the installed GNSS monitoring equipment. For security
and privacy reasons, site and structure will be described in a general way, and any in-
formation that could potentially lead to identifying the location and/or the responsible
personnel/organization/company of the dam will be omitted. The second subsection
deals with the processing required to filter the raw time series for the subsequent displace-
ment interpretation, with particular reference to a possible practical implementation in the
framework of an early warning system.

2.1. GNSS Equipment, Installation and Raw Data Processing

Five single frequency u-blox NEO-M8T GNSS [37] receivers coupled with Tallysman
TW3740 antennas were installed and distributed, as shown in Figure 1. With such receivers,
millimetric accuracies have been proved to be achievable [25], in line with the requirements
for dam monitoring. One (PT0) was located close, but outside the dam body and used
as a reference point, three (PT1–3) were installed on the dam crest and one (PT4) on the
downstream shell. PT0 was powered by a battery tied to a solar panel, while PT1–4 were
connected to the electric network. Antennas mounted on the dam crest were connected to
their receivers through coaxial cables with a maximum length of 50 m to reach the unique
unit gathering all the receivers. In addition, PT0 was controlled by relative positioning
with respect to the closest available CORS belonging to a national reference network.

For the installation of PT stations, steel pillars supporting the antennas were mon-
umented on granite blocks integrated with the crest’s concrete walls or concrete plinths
realized for the purpose. With such monumentations, the stability of the installed antennas
was ensured, as well as sky visibility in the case of persistent snowfall (see Figure 2).

Daily position solutions were computed for each of the four PT1–4 stations through
double-difference relative positioning with respect to the reference station PT0. Bernese
5.2 software was used to process the 5 s sampling observed sessions, and phase ambi-
guity resolution was performed by applying the Sigma method [38]. Since the baseline
lengths are in the order of a few tens of meters and there is almost no height difference
amongst the points, atmospheric effects such as tropospheric and ionospheric delays can
be neglected by using the double difference approach [25]. The reference PT0 coordinates
were previously determined on the basis of a static positioning session (one week long)
performed by assuming the closest CORS as the reference station. ETRF2000-RDN [39]
PT station coordinates were determined, but for the purpose of dam monitoring, a local
reference system was defined. This local reference system was centered at PT0 with X-Y
axes referring to the horizontal coordinates rotated to be aligned with the longitudinal and
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transversal directions of the dam. Time series of the 3D coordinates of the PT monitoring
stations were computed and made suitable for further processing and analyses aiming at
determining the detectable time-dependent displacements of the dam. The analyzed time
series refer to the period Jul/2019–Nov/2020.
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2.2. Displacement Time Series Analysis

The time series of the daily estimated displacements of each point along the three
local XYZ axes needed to be filtered to properly manage the observation noise [40,41],
fill possible gaps, and allow for a straightforward modeling and interpretation of the
displacements. The filtering was performed by applying the collocation approach [42,43],
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thus modeling the signal in time as a stationary random process. A requirement for
such an approach is that the signal to be treated is zero-mean, which is not guaranteed
in the case of time series regarding point displacements. To fulfill this requirement, a
remove–compute–restore scheme was adopted, where the first step consists of removing
a deterministic trend from the observed data by modeling it as the sum of a polynomial
and a periodical component. After this stage, the observed residual displacements were
filtered by collocation, and finally, the deterministic trend was added back to the filtered
time series to estimate the displacement.

Given the proposed scheme, we wrote the observation equation as:

d(j,k)
o (t) = p(j,k)(t) + q(j,k)(t) + y(j,k)(t) + ν(t) (1)

where, considering a point j and a coordinate k, p(j,k)(t) and q(j,k)(t) are the polynomial
and periodic deterministic trends, respectively, y(j,k)(t) the residual displacement to be
stochastically modeled, and ν(t) the observation noise. Note that each (j, k) combination
was independently processed. Therefore, for the sake of simplicity, the (j, k) indexes are
omitted in the notation of the following equations.

The estimation of the polynomial trend was performed by least squares adjust-
ment [44], expressing the polynomial as:

p(t) =
N

∑
i=0

aiti (2)

where ai are the coefficients to be estimated, and N is the degree of the polynomial. The
least squares adjustment was solved disregarding possible periodical components and
residual displacements. To avoid an over parametrization of the interpolating function,
the optimal polynomial degree N needed to be calibrated. To this aim, a first estimate of
the set of ai coefficients was performed with N = N, where N is the maximum allowable
degree. Then, a statistical test (t-test) to check whether the estimated value of the N-degree
coefficient aN was significantly different from zero was applied. If the test hypothesis
was accepted, the current N degree of the polynomial was chosen as optimal; otherwise,
the least squares adjustment was performed again after reducing the current degree N
by 1. This procedure was iterated until the null hypothesis on the N-degree coefficient
was rejected.

As for the periodical component of the signal q(t), it was determined by means of a
Fourier analysis of the polynomial-reduced displacements u(t), namely:

U( f ) = F (u(t)) = F (do(t)− p̂(t)) (3)

where F (·) is the Fourier transform operator, f is the frequency, and p̂(t) is the previously
estimated polynomial deterministic trend. Note that possible data gaps were filled by
using the previously estimated polynomial trend to make the discrete Fourier transform
applicable. These interpolated values were only used for the purpose of Fourier analysis.
Given the transformed residuals U( f ), the empirical Amplitude Spectral Density (ASD) of
u(t) was computed as:

Au( f ) = |U( f )| (4)

From Equation (4), a smoothed model
−
Au of the ASD was determined by applying a

moving median filter. The ratio between the empirical and filtered ASDs

r( f ) =
Au( f )
Au( f )

(5)

was then used to identify the main frequencies carrying a periodical contribution in the
signal. This periodical effect was decomposed in two parts, one related to low frequencies,
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i.e., in the range | f | < f L, and one related to high frequencies, i.e., in the range | f | > f H .
Note that, according to the proposed model, the condition f H ≥ f L must always be satisfied.
The choice of introducing two thresholds allows for flexibility in the data analysis, making
it possible to adapt the analysis to the physical behavior of the considered phenomenon
or structure, e.g., by excluding middle frequencies, i.e., f H > | f | > f L, from the analysis.
Given the ratio r( f ) of Equation (5), a threshold r > 1 can be defined to identify the
frequencies of the dominating periodical contributions, i.e., the frequencies satisfying the
condition r( f ) > r. The periodical trends were then computed by an inverse Fourier
transform of the coefficients U( f ) corresponding to the identified frequencies that are also
included in the chosen frequency ranges (low or high frequencies). This translates into the
following estimation equations:

q̂L(t) = F−1
(

U( f )
(

1− 1
r( f )

)
χL( f )

)
(6)

q̂H(t) = F−1
(

U( f )
(

1− 1
r( f )

)
χH( f )

)
(7)

where the characteristic functions χL( f ) and χH( f ) are defined as:

χL( f ) =
{

1 | f | < f L ∧ r( f ) >r
0 otherwise

(8)

χH( f ) =
{

1 | f | > f H ∧ r( f ) > r
0 otherwise

(9)

Note that the introduction of the scale factor
(

1− 1
r( f )

)
before the inverse Fourier

transform in Equations (6) and (7) was required to empirically distinguish the periodi-
cal from the stochastic component under the assumption that the ASD of the stochastic
component was equal to the moving-median ASD.

In summary, the overall periodical effect was determined as:

q̂(t) = q̂L(t) + q̂H(t) (10)

In the following, the detected low and high-frequency components were treated with
a different approach. In particular, the former was assumed to be related to the physical
phenomenon, while the latter to the noise. Therefore, they were both removed from the
observations, but only the low-frequency periodical component q̂L(t) was subsequently
restored after the collocation step.

Once polynomial and periodical deterministic trends were computed, they were used
to reduce the signal and isolate the observations of the stochastic component y(t) from the
overall displacement observations do(t). Therefore, the observation equation becomes:

yo(t) = do(t)− p̂(t)− q̂L(t)− q̂H(t) + ν(t) = ỹ(t) + ν(t) = y(t) + η(t) (11)

where η(t) includes both the measurement noise ν(t) and the estimation error of the
polynomial and periodical deterministic components. For the sake of simplicity, the possible
correlations between y(t) and η(t) were neglected and η(t) was assumed to be white.

Given the observations reduced as in Equation (11), the empirical covariance function
of the signal was determined as:

Ce(τ) =
1

Nτ

i

∑ yo(ti)yo(ti − τ) (12)

where the summation extends ∀ t ∈ T : (t− τ) ∈ T, with T being the overall set
of observation epochs, and Nτ is the number of couples for a given τ. The empirical
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covariance function was used to determine an analytical covariance model Ĉ(τ), along
with the determination of σ2

η . In particular, Ĉ(τ) was determined by a best fit procedure
on Ce(τ) for |τ| > 0 since at τ = 0, the empirical covariance combines signal and noise,
according to the assumption of a white η(t). Once the model Ĉ(τ) was defined, the variance
of the noise was computed as:

σ̂2
η = Ce(0)− Ĉ(0) (13)

The best covariance model was chosen among several candidate models as the one
with the lowest residuals between the empirical and analytical covariances. Then, the
collocation estimate of the filtered signal was computed as:

ŷ(t) = Cyy(t, to)
[
Cyy(to, to) + σ2

ηI
]−1

yo(to) (14)

where the t and to are the vectors containing the estimation and observation epochs,
respectively, and the notation Cyy(to, to) represents the covariance matrix computed by
evaluating the model covariance Ĉ(τ) for all the possible time lags τ coming from the
possible combinations of the elements of the vectors to.

Finally, from the output of Equation (14), the modeled displacement at the estimation
epochs t was computed by restoring the polynomial and periodical components as

d̂(t) = ŷ(t) + p̂(t) + q̂L(t) (15)

3. Results

The observed GNSS displacements were filtered by means of the procedure previously
explained in Section 2.2. As already stated, we independently processed the displace-
ment time series of each coordinate (x, y, and z) and point (PT1, 2, 3 and 4), leading
to twelve different analyses. In the following, the way in which the filtering algorithm
has been applied is described, also explaining the choice and calibration of the different
algorithm parameters.

As for the polynomial interpolation (Equation (2)), a maximum degree N = 3 was
considered. In other words, only linear, quadratic, and cubic functions were considered
as possible trends. The iterative approach for determining the optimal degree N of the
interpolating functions was performed by considering a 5% significance level for the t-test.
Table 1 shows the resulting degree for each coordinate of each point.

Table 1. Degree of the polynomial trends used to reduce the observed displacements.

Coordinate PT1 PT2 PT3 PT4

x cubic cubic cubic cubic
y cubic cubic cubic quadratic
z cubic cubic cubic cubic

Regarding the periodical deterministic component, the first step was to choose the
threshold frequencies f L and f H , in order to define the low and high frequency ranges.
These two ranges were defined by considering periods longer than 25 days (for the low-
frequency range) and smaller than 3 days (for the high-frequency range). To identify the
periodical trend, a threshold r = 2 was chosen (see Equation (5)) and therefore this trend
was reconstructed from the Fourier coefficients having a power that is at least double
the one of the background signal. An example of this analysis is reported in Figure 3,
considering the point PT1, showing the empirical and moving-median ASDs and flagging
with stars the identified periodical frequencies that were modeled and removed from the
signal by means of Equations (6) and (7).
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Figure 3. Fourier analysis on the x, y, z components of the point PT1. Dashed blue line is the empirical
ASD, red solid line is the model ASD computed by the median filter, and yellow and green stars are
the identified periodical components in the low and high-frequency ranges, respectively.

Note that, to apply the discrete Fourier transform (DFT), it was required to work with
regularly sampled data. In general, this requirement is satisfied thanks to GNSS daily
solutions. However, there are few gaps in the data, e.g., related to temporary anomalies of
the receivers or errors in the data transfer. In general, missing data were less than 2% of
the whole period, apart from time series of the point PT4, in which there was about 10%
missing data due to a receiver fault in March 2020. To allow the usage of DFT, these data
gaps were filled with values computed by the polynomial deterministic trends estimated at
the previous step, without a significant impact on the periodical component analysis.

Once the observed displacements were reduced for polynomial and periodical deter-
ministic trends, we applied the stochastic analysis based on the collocation approach. To this
aim, the first step was to compute the empirical covariance function and to fit it with a model.
The candidate models proposed in this analysis were: exponential, cosine-exponential, Gaus-
sian, cosine-Gaussian and power-Gaussian, shown in Equations (6)–(20), respectively.

C(τ) = b1 exp(−b2τ) (16)

C(τ) = b1 exp(−b2τ) cos(2πb3τ) (17)

C(τ) = b1 exp
(
−b2τ2

)
(18)

C(τ) = b1 exp
(
−b2τ2

)
cos(2πb3τ) (19)

C(τ) = b1 exp
(
−b2τ2

)(
1− b3τ2

)
(20)

Due to the non-linear shape of the covariance models of Equations (6)–(20), the optimal
values of the bi positive parameters were retrieved by a discrete exhaustive optimization
after defining admissible bounded ranges of possible values. The best covariance model
among the five possibilities was chosen as the one minimizing the square residuals be-
tween the empirical and model covariances, namely the one better fitting the empirical
covariance function. Applying Equation (13), the noise variance σ2

η was estimated, too. It
is worth recalling that we were treating the time series of each coordinate and each point
independently; therefore, we estimated twelve different covariance models, as well as
twelve different noise variances. The optimal covariance models for each coordinate at
each point are shown in Table 2.
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Table 2. Estimated covariance models for all the components at all the points. Red lines represent the
estimated models, while blue dots the empirical covariance functions. Units are days for the τ axis
(abscissa) and mm2 for the covariance axis (ordinate). The σ2

η is the difference between the red curve
and the blue dot at the origin (τ = 0).
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It is worth remarking that considering η(t) as white noise has been just an approx-
imation. However, without any further a priori information, this hypothesis cannot be
improved since the effect of signal and noise are summed into the covariance function and
cannot be discriminated. On the other hand, disregarding correlation in the noise could
lead to a “rougher” behavior in the estimate of the stochastic component. To mitigate this
effect, based on an empirical assumption, the estimated stochastic signal was smoothed by
a mobile-mean filter before applying the restore step of Equation (15). Figure 4 shows how
the noise of GNSS observations is filtered out (compare solid and dashed lines). Comparing
the GNSS observations with the estimated displacements, the Root Mean Square (RMS)
error of the resulting residuals can be determined. This RMS allows understanding the
overall accuracy level of the raw GNSS measurements. This accuracy is at the level of
0.5 mm for the horizontal components and at the level of 1.0 mm for the vertical one, as
shown in Table 3.

Table 3. RMS of the differences between the estimated displacements and corresponding raw GNSS
observations. Units are mm.

Coordinate PT1 PT2 PT3 PT4

x 0.51 0.50 0.51 0.53
y 0.34 0.32 0.34 0.36
z 0.93 0.88 0.88 0.79

4. Discussion

The filtered displacement time series were compared with respect to available external
data, such as the water level in the reservoir and temperature of both the air and water
surface. In particular, the time series of the reservoir water level (HW) in proximity of the
dam crest was available with hourly time sampling and 0.1 cm resolution. Regarding the
temperature, air (TA) and shallow water (TW) temperatures measured in the dam proximity
were both available. The former was observed with hourly time sampling and 0.1 ◦C
resolution, while the latter with a daily time sampling (observation at 8:00 am) with 1 ◦C
resolution. To allow for comparison, daily averages of HW and TA were computed. This
was not required for TW due to its sampling rate. As for possible missing data, they were
filled by linear interpolation. Figure 5 shows the time series of HW , TA and TW . It should
be noted that, unsurprisingly, air and shallow water temperatures, namely TA and TW ,
matched each other with a linear correlation index ρ = +0.93. Therefore, TW was not
considered for further analyses.

Figure 5. Time series of the reservoir water level (on the left) and time series of air and water
temperatures (on the right).

A first comparison was performed by computing the linear correlation index of the fil-
tered GNSS displacement time series with the reservoir water level and the air temperature
to understand how much these environmental variables are explanatory of the observed
dam displacements. As for the water lever, the results are shown in Table 4, where all the
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correlation indexes computed between the displacement time series of each coordinate of
each point and water level HW are reported.

Table 4. Linear correlation index computed between the filtered GNSS displacement time series and
the reservoir water level.

Coordinate PT1 PT2 PT3 PT4

x −0.13 −0.21 −0.49 −0.16
y 0.68 0.76 0.63 0.06
z 0.04 0.05 −0.07 −0.46

From Table 4, a significant correlation of about 70% can be noted along the downstream
direction (y coordinate) for points PT 1–3, as well as a correlation of about 45% for the
altitude direction (z coordinate) for the point PT4 located on the downstream shell.

Regarding the correlation between the displacements and air temperature, Table 5
shows the computed linear correlation indexes between the filtered GNSS displacement
time series and the air temperature TA.

Table 5. Linear correlation index computed between the filtered GNSS displacement time series and
the air temperature.

Coordinate PT1 PT2 PT3 PT4

x 0.83 0.78 0.52 0.82
y −0.16 −0.22 −0.04 −0.48
z −0.66 −0.59 −0.66 −0.74

The results of Table 5 highlight a high correlation of the displacement along the crest
direction (x coordinate) for all the points (with an index ranging from about 50% to 80%), as
well as along the vertical direction (z coordinate) with estimated indexes ranging between
about −60% and −80%.

The computed correlation indexes suggest that the displacements could be related
to a linear combination of the effects of water height and air temperature. Therefore, a
combination of two autoregressive models (considering both HW and TA) can be exploited.
The general form of this model can be expressed as:

d
(j,k)

(t) =
N(j,k)

H

∑
i=0

b(j,k)
i,H Hw(t− i) +

N(j,k)
T

∑
i=0

b(j,k)
i,T TA(t− i) + c(j,k) (21)

where the set of parameters bi and the parameter c can be estimated by fitting the filtered
time series of each (j, k) point-coordinate combination through least squares adjustment.
For each time series, the maximum orders N(j,k)

H and N(j,k)
T related to the two environmental

components of the model had to be calibrated. This calibration was based on a t-test on
the significance of the estimated parameters. The idea was to choose for each component
the maximum order for which all the estimated parameters were significantly different
from zero. The results showed that the maximum order was 1 or 0 for both components for
all (j, k) point-coordinate combinations, meaning that, at least according to the proposed
model, variations in temperature and water level had effects on the displacement with a
maximum delay of 1 day.

The estimated autoregressive models are shown in Figure 6 (see dashed lines), and in
evaluating their performances in explaining the dam displacement, the linear correlation
index was computed between the filtered GNSS time series and the autoregressive models
for each coordinate and point. The computed indexes, shown in Table 6, highlight that
there is a high correlation between observed and modelled displacements, showing that,
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as expected, the main environmental factors determining the dam displacement are the
temperature and the water level.
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Figure 6. Time series of filtered GNSS displacement (solid line) versus the estimated autoregressive
model (dashed lines) for each point and coordinate.

Table 6. Linear correlation index computed between the filtered GNSS displacement time series and
the autoregressive model of the displacement based on air temperature and water level.

Coordinate PT1 PT2 PT3 PT4

x 0.95 0.93 0.88 0.95
y 0.79 0.90 0.67 0.53
z 0.71 0.64 0.68 0.79

This kind of analysis shows how the relationship between the dam displacement and
the external factors can be determined by means of autoregressive models. This is a funda-
mental step to evaluate the expected displacements at monitored points. In fact, knowing
the displacements due to some external quantities that can be observed independently, it
becomes easier to interpret the overall GNSS displacement time series and, for instance, to
calibrate thresholds of an early warning system based on the residual displacements.

Finally, spatial analyses were also carried out to determine correlations between the es-
timated displacements at different PT stations. Along the crest direction, the displacements
of PTs 1, 2 and 4 were extremely coherent, while the displacement of PT3 was slightly less
coherent, even if the correlation with the other points was very high (ρ ranging between
85% and 92%, see Table 7). Less evident was the coherency between PT displacements
along the stream direction; in this case, the point PT4 placed on the downstream shell
showed to be quite uncorrelated with the other points placed on the dam crest (see Table 8).
In the vertical direction, PTs 1, 2 and 3 showed to be highly correlated with each other and
less correlated with PT4 (see Table 9).
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Table 7. Correlation of the displacement along the crest direction (X-axis) of all the possible couples
of points.

PT Station 2 3 4

1 0.99 0.87 0.97
2 0.92 0.96
3 0.85

Table 8. Correlation of the displacement along the stream direction (Y-axis) of all the possible couples
of points.

PT Station 2 3 4

1 0.92 0.75 0.49
2 0.86 0.58
3 0.70

Table 9. Correlation of the displacement along the vertical direction (Z-axis) of all the possible couple
of points.

PT Station 2 3 4

1 0.96 0.97 0.69
2 0.97 0.70
3 0.75

With such a kind of analysis, at a first approximation, one could imagine that the
dam body was rigidly moving because of the high correlation between the displacements
of the points, particularly those on the dam crest. However, by properly magnifying
the displacements and jointly illustrating them in the XY plane (see Figure 7), a finer
interpretation of the overall deformation of the structure in time can be retrieved. In fact,
Figure 7 represents well how the dam structure moved differently in the XY plane during
the considered period. Note how the dam body seemed to deform more along the crest
direction, keeping one side of the crest almost constrained (the left side in the figure) and
concentrating the movements on the other one (the right side in the figure). The reason for
this asymmetric behavior might be a minor stability and/or a major rigidity of the right
side of the structure and the anchored supports.
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5. Conclusions

In this paper, a statistical approach to data processing for dam monitoring based on
the use of GNSS techniques has been described and detailed. In particular, the description
of the approach focused on the treatment of the processed GNSS daily solutions composing
the three-dimensional displacement time series of four points monitoring a dam body.

First, a filtering procedure for reducing the observation noise was applied. This task
was performed by applying the collocation approach after estimating and removing a
deterministic component from the observations. For the deterministic modeling, a t-test
was implemented to choose the polynomial order and avoid over-parametrization. Cubic
polynomials resulted in being, in almost all cases, the optimal choice for removing the trend
component from the observed time series. On these preliminary residual data, Fourier
analyses were carried out to also determine the presence of significant periodic components.
They are detected by looking for spikes in the ASD and then removed to obtain a sort of
second-order residual data to be further filtered. Such residual data revealed still having
an S/N ranging between 30 and 50%, as it came out from the analysis of the corresponding
covariance functions. Therefore, exploiting the signal correlation, a final stochastic filtering
by the collocation approach was implemented on the residual data. By restoring the
previously removed deterministic trend and periodic components, the resulting filtered
time series were obtained and were ready for interpretation. Submillimeter RMS was
obtained from the comparisons between the original and the filtered GNSS time series,
showing the high accuracy of the implemented low-cost GNSS system in the case study.

The filtered time series interpretation was performed by means of correlation analyses
with typical HTT models. They revealed that temperature was more correlated with
displacements in the XZ crest vertical plane, while the reservoir water level was more
related to displacements in the Y downstream direction, and this is particularly true for
points located on the dam crest. These results led to estimate a linear autoregressive model
including both temperature and reservoir filling with a maximum delay of 1 day. The
resulting model was able to explain most of the 3D logged displacements, especially for
the central point on the dam crest. From such an approach, an empirical indication of the
“unexpected” displacements deserving more attention, and maybe alerting a surveillance
team can be achieved. Although environmental temperature cannot be controlled, the
reservoir water level can be tuned in the case of necessity by predicting reliable, expected
displacements. On the other hand, unexpected displacements that can be observed could
be signs of mechanical inefficiencies or, in general, criticalities of the structure.
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