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Abstract: For the bearing-only target motion analysis (TMA), the pseudolinear Kalman filter (PLKF)
solves the complex nonlinear estimation of the motion model parameters but suffers serious bias
problems. The pseudolinear Kalman filter under the minimum mean square error framework (PL-
MMSE) has a more accurate tracking ability and higher stability compared to the PLKF. Since the
bearing signals are corrupted by non-Gaussian noise in practice, we reconstruct the PL-MMSE
under Gaussian mixture noise. If some prior information, such as state constraints, is available,
the performance of the PL-MMSE can be further improved by incorporating state constraints in
the filtering process. In this paper, the mean square and estimation projection methods are used
to incorporate PL-MMSE with linear constraints, respectively. Then, the linear approximation and
second-order approximation methods are applied to merge PL-MMSE with nonlinear constraints,
respectively. Simulation results demonstrate that the constrained PL-MMSE algorithms result in lower
mean square errors and bias norms, which demonstrates the superiority of the constrained algorithms.

Keywords: bearing-only TMA; PLKF; PL-MMSE under gaussian mixture noise; linear and nonlinear
constraints; constrained PL-MMSE algorithms

1. Introduction

Target motion analysis (TMA) refers to the real-time estimation of the position, speed,
and other motion parameters of the tracked target by using sensors to obtain the measured
information of the target by signal processing technology [1–3]. It has many applications in
civilian and military fields, including military reconnaissance, intelligent transportation sys-
tems, and satellite navigation systems.The measurement information includes the angle of
arrival (AOA) [4], time of arrival (TOA), time difference of arrival (TDOA) [5], and received
signal strength (RSS) [6]. In this paper, we focus on AOA-based TMA, i.e., analyzing the
target motion based on the bearing-only data emitted from the motion target and collected
by the sensors.

The main difficulty of the bearing-only TMA is how to handle the nonlinear charac-
teristic of the measurement equation. Methods for dealing with bearing-only problems
can generally be divided into three categories. The first category is developed from the
perspective of statistics [7]. The maximum likelihood estimator (MLE) uses the iterative
optimization method to solve nonlinear equations to obtain the target position estimation.
Since then, evolved methods [8,9] have been proposed to tackle the TMA problems. In [8],
optimizing the likelihood function equipped with extra penalized terms gives the result
that has a lower Cramér-rao bound than the standard estimator. The second category is
the Kalman filter (KF) and its related methods. Due to the poor initialization, the stan-
dard Kalman filter [10] has shortcomings in robustness, convergence speed, and tracking
accuracy. Many variant structures of the KF have been proposed to solve the nonlinear
estimation problem. For example, Bucy et al. [11] proposes the nonlinear extended Kalman
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filter (EKF). Julier et al. [12,13] proposes the method of the unscented Kalman filter. The par-
ticle filter [14–16] (PF) is also used for the bearing-only target motion analysis. Zheng
Yi et al. [17] proposes an initial value optimization method for inverse smoothing filtering.
This method effectively solves the problem that Kalman filtering methods are sensitive to
initial value selection and reduces the estimation error. The third category is to linearize
the nonlinear angle measurement equation by using the pseudolinear estimator (PLE)
method [18]. The pseudolinear Kalman filter (PLKF) [19,20] is produced by combining
the Kalman filter with the pseudolinear estimator method. Compared with other filtering
methods, the main advantages of PLKF are high stability, good tracking performance,
and small initial error under lower computational complexity [21]. However, the PLKF has
a large bias due to the correlation between the measurement matrix and the pseudo-linear
noise variable. Hence, several methods have been proposed to improve the performance
of PLKF by compensating or reducing the pseudolinear estimation bias, including the
modified pseudolinear estimator (MPLE) [22], bias-compensated PLKF (BC-PLKF) [23],
IV Kalman filter (IVKF) [24] and IVKF based on the selective-angle-measurement (SAM-
IVKF) [25] strategy. These variants of PLKF based on bias compensation are not always
perfect when the measurement noise is large and the geometry is unfavorable. Based on the
PLKF, Bu et al. [26] proposes a new pseudolinear filter under the minimum mean square
error (PL-MMSE) framework without offset compensation, which shows better tracking
performance under the large measurement noise than the above algorithms.

If the prior information, such as linear or nonlinear constraints on motion state, is avail-
able, we can take these conditions into consideration to improve the state estimation [27].
For example, tracking the vehicle driven on a straight or curved road is a constrained
state estimation problem with the available road information [28]. Similar models also
appear in other engineering applications, including the compartmental models method [29],
turbofan engine health estimation [30] and so on. To estimate the states in such systems,
some methods have been proposed, e.g., the model parameters reduction method [31],
perfect measurements approach [32], estimation projection [33], linear approximation [33],
second-order approximation [34,35]. For linear constraints, the model parameters’ reduc-
tion method [31] transforms the constrained state estimation to the unconstrained state
estimation. However, the reduction of the state constrained equations makes the interpreta-
tion such as the physical meaning of the states more difficult. The perfect measurements
approach [32] adds state equality constraints into the measurement equation. The method
increases the dimension of the state estimation problem and hence increases the computa-
tion effort. Estimation projection [33] incorporates the equality constraints into the state
estimation frame. It projects the unconstrained state estimation to the constrained surface.
For nonlinear constraints, linear approximation [33] uses the Taylor series expansion to
the nonlinear state constraints. This method linearizes the nonlinear state constraints by
keeping only the first-order terms. Distinct from the linear approximation, second-order
approximation [34,35] keeps both the first-order and second-order terms to maintain the
nonlinearity of constraints.

In practice, the bearing noise of the sensor is not always Gaussian. For example, the mea-
surement disturbance is described by distribution with impulsive (heavy-tailed) properties
in [36]. The performance of standard Kalman filters based on the MMSE framework does
not behave well under such noise [37]. To study such heavy-tailed signals, Ref. [38] pro-
poses a suitable method to approximate the heavy-tailed gamma distribution of random
telegraph noise by Gaussian mixture distribution. Inspired by [38], the PL-MMSE is ex-
tended to estimate the bearings-only target motion model parameters in the presence of
Gaussian mixture noise as the first contribution of this paper. This contribution can be
deemed as the application of PL-MMSE under heavy-tailed noise with adaptive adjustment
of the noise weights. Secondly, we focus on merging the PL-MMSE with constraints by
four approaches to address TMA. The mean square method is applied with the PL-MMSE
for linear constraints by minimizing the conditional mean square error subject to the state
constraints. The estimation projection method is incorporated into the PL-MMSE by pro-
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jecting the unconstrained estimate onto the constrained surface. For nonlinear constraints,
the linear approximation method is to linearly approximate the nonlinear constraints by
using Taylor series expansion. Then, the estimation projection method follows to equip
with the PL-MMSE filter. The second-order approximation method views the nonlinear
constraint function as a second-order approximation to the nonlinearity. It constructs an
extra optimization step after the PL-MMSE by projecting an unconstrained state estimation
onto a nonlinear constrained surface and solves this optimization to realize the estimation.
Finally, the PL-MMSE filter with state constraints is tested for TMA on the straight line and
the arc section. Experimental results confirm that the behavior of our constrained method
is better than other competitors.

The rest of this paper is organized as follows. In Section 2, the PL-MMSE under Gaussian
mixture noise is designed after the notations are introduced. Sections 3 and 4 combine
constrained estimation technologies with the PL-MMSE to derive the PL-MMSE filter
with linear and nonlinear state constraints, respectively. Section 5 simulates the two
bearings-only TMA examples to show the sound performance of the constrained PL-MMSE
algorithms. Section 6 concludes the whole paper and points out future research directions.

2. PL-MMSE Kalman Filter Under Gaussian Mixture Noise

In the bearing-only two-dimensional (2D) plane TMA, the target-sensor model is
established, as shown in Figure 1.

Sensor

Target

Sensor

TargetTarget

,,

,

t ,

Y

X

Figure 1. Schematic diagram of 2D bearing-only TMA.

As shown in Figure 1, the moving target position and velocity are Tk =
[
tx,k ty,k

]T
and

Vk =
[
vx,k vy,k

]T
, respectively, where

tx,k = tx,k−1 + vx,k−1T, (1)

ty,k = ty,k−1 + vy,k−1T. (2)

T is the sampling interval. The sensor locates at Sk =
[
sx,k sy,k

]T
. The real angle

information received from the sensor is given by

ϕk = tan−1
( ty,k − sy,k

tx,k − sx,k

)
. (3)

The bearing measurement is
ϕ̂k = ϕk + ek, (4)
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which indicates that the sensor measurement is corrupted by the mixed Gaussian noise ek
with zero mean at time kT (k = 1, 2, 3, ..., n). The Gaussian mixture noise

ek ∼
n

∑
j=1

λjN (0, σ2
j ) (5)

is composed of n independent distributed Gaussian noises with zero mean and variance
σ2

j , respectively, with

λj > 0 and
n

∑
j=1

λj = 1. (6)

The moving target state vector Xk is given by

Xk =
[
tx,k ty,k vx,k vy,k

]T
. (7)

According to (3) and (4), the pseudolinear measurement equation between the target
and the sensor is

sin ϕ̂ktx,k − cos ϕ̂kty,k = sin ϕ̂ksx,k − cos ϕ̂ksy,k + ‖Tk − Sk‖ sin ek. (8)

The pseudolinear state-space model for bearings-only TMA is

Xk = FXk−1 + ωk−1, (9)

Zk = HkXk + τk, (10)

where Xk and Xk−1 are the motion states at time kT and (k− 1)T, respectively. It is assumed
that ωk−1 is the Gaussian mixture noise composed of n independent distributed Gaussian
noises with zero mean and variance ξ2

i , respectively. According to the motion model (8),
the state transition matrix F and the process noise Jacobian D are

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, (11)

D =


0 0 T2/2 0
0 0 0 T2/2
0 0 T 0
0 0 0 T

. (12)

Ref. [39]. In the PLKF algorithm, the estimated state of the target at time kT is

X̂k|k−1 = FX̂k−1. (13)

The updated covariance matrix is

Pk|k−1 = FPk−1|k−1FT + DQk−1DT (14)

where the Gaussian mixture noise variance Qk−1 is

Qk−1 =
n

∑
i=1

ρiξ
2
i (15)

with

ρj > 0 and
n

∑
i=1

ρi = 1. (16)
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The observation matrix is

Hk = [sin ϕ̂i − cos ϕ̂i 0 0]T . (17)

The Kalman gain is

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk

]−1
(18)

where the pseudolinear noise variance Rk is given by

Rk = ‖Tk − Sk‖
(

n

∑
i=1

λie
1−e
−2σ2

i
2

)
. (19)

The updated pseudolinear measurement is

Ẑk|k−1 = HkX̂k|k−1. (20)

Therefore, the target state and covariance update equation at time kT can be described
by

X̂k|k = X̂k|k−1 + Kk(Zk − Ẑk|k−1), (21)

Pk|k = Pk|k−1 − Kk HkPk|k−1. (22)

Based on the PLKF, the PL-MMSE for Gaussian mixture noise can be rewritten as
shown in Table 1 where the pseudolinear observation matrix is given by

H1
k = [tan−1 (X̂k|k−1(2)− Sk(2)) tan−1 (X̂k|k−1(1)− Sk(1)) 0 0]. (23)

Table 1. PL-MMSE under Gaussian mixture noise.

1. Initialization
x̂0 = x̄0
P0 = E

[
(x0 − x̄0)(x0 − x̄0)

T]
2. State Prediction
x̂k|k−1 = Fk−1 x̂k−1

3. Covariance Prediction
Pk|k−1 = Fk−1Pk−1|k−1FT

k−1 + DQkDT

4. Filter Gain

K1 = ∑n
j=1 λje

−σ2
i

2 Pk|k−1
(

H1
k
)T

K2 = HkPk|k−1HT
k + ∑n

i=1 ρie
e
−2ξ2

i−1
2 [Pk|k−1(1, 1) + Pk|k−1(2, 2)] + Rk

Kk = K1K−1
2

5. State Update
x̂k = x̂k|k−1 + Kk(zk − Hk x̂k|k−1)

6. Covariance Update
Pk|k = Pk|k−1 − KkKT

1

7. k = k + 1, go to 2.

3. PL-MMSE Kalman Filter with Linear State Constraints

Assume that the motion state is bounded by linear constraints

Gxk = g (24)
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where G is a known Rd×n matrix while g is a known Rd×1 vector with d < n. It is also
assumed that G has full rank. Next, we introduce two methods to encapsulate the PL-MMSE
with linear state constraints.

3.1. Mean Square Method

The idea of the mean square method is to obtain the state estimation x̃ of the moving
target with linear constraints by minimizing the conditional mean square error. Let

x̃k = min
x̃k

E(‖xk − x̃k‖2|Zk) s.t. Gx̃k = g (25)

where

E(‖x− x̃‖2|Z) =
∫
(x− x̃)T(x− x̃)P(x|Z)dx

=
∫

xTxP(x|Z)dx− 2x̃T
∫

xP(x|Z)dx + x̃T x̃. (26)

A Lagrangian function is constructed to solve the constrained problem as

J = E(‖x− x̃‖2|Z) + 2λT(Gx̃− g)

=
∫

xTxP(x|Z)dx− 2x̃T
∫

xP(x|Z)dx

+ x̃T x̃ + 2λT(Gx̃− g). (27)

The conditional mean of x is

x̂ =
∫

xP(x|Z)dx. (28)

After substituting (28) into (27), taking the partial derivatives of x̃ and λ, respectively,
leads to

∂J
∂x̃

= −2x̂ + 2x̃ + 2GTλ

= 0, (29)
∂J
∂λ

= Gx̃− g

= 0. (30)

Solving (29) and (30) gives

x̃ = x̂− GT(GGT)−1(Gx̂− g), (31)

λ = (GGT)−1(Gx̂− g). (32)

From (31), the constrained estimate of motion state is the unconstrained estimate
minus the correction term.

3.2. Estimation Projection Method

As a standard method to deal with constraints, the estimation projection method
obtains the constrained estimate x̃ by projecting the unconstrained estimate x̂ onto the
constrained surface. Define

x̃ = arg min
x

(x− x̂)TW(x− x̂) s.t. Gx = g (33)

where W is a positive definite weighting matrix. The Lagrangian function used to solve
this problem is

J = (x− x̂)TW(x− x̂) + 2λT(Gx− g). (34)
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The necessary conditions for the local minimum are given by

∂J
∂x

= 0, (35)

∂J
∂λ

= 0. (36)

Solving (35) and (36) gives

x̃ = x̂−W−1GT(GW−1GT)−1(Gx̂− g), (37)

λ = (GW−1GT)−1(Gx̂− g). (38)

It is worthwhile to point out that the result given by the estimation projection is equal
to the mean square method when W = I. Hereby, Table 2 summarizes the steps of the
PL-MMSE with linear constraints by the estimation projection method.

Table 2. PL-MMSE with Linear Constraints Algorithm.

1. Initialization
x̂0 = x̄0
P0 = E

[
(x0 − x̄0)(x0 − x̄0)

T]
2. Predict
x̂k|k−1 = Fk−1 x̂k−1
Pk|k−1 = Fk−1Pk−1|k−1FT

k−1 + DQkDT

3. Filter Gain

K1 = ∑n
j=1 λje

−σ2
i

2 Pk|k−1
(

H1
k
)T

K2 = HkPk|k−1HT
k + ∑n

i=1 ρie
e
−2ξ2

i−1
2 [Pk|k−1(1, 1) + Pk|k−1(2, 2)] + Rk

Kk = K1K−1
2

4. Update
x̂k = x̂k|k−1 + Kk(zk − Hk x̂k|k−1)

Pk|k = Pk|k−1 − KkKT
1

5. When the linear constraint is Gxk = g,
x̃k = x̂k|k −W−1GT(GW−1GT)−1(Gx̂k|k − g)

6. k = k + 1, go to 2.

4. PL-MMSE Kalman Filter with Nonlinear State Constraints

Consider the nonlinear constraint on the system state is as

h(x) = q (39)

where h(·) is a nonlinear function. q is a scalar. Next, we address the nonlinear constraint
using the linear approximation method and second-order approximation, respectively.

4.1. Linear Approximation

Use the Taylor series to expand (39) at x̂ as

h(x)− q = h(x̂) + h
′
(x̂)T(x− x̂ +

1
2!
(x− x̂)Th

′′
(x̂)(x− x̂) + · · · − q

= 0 (40)
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where h
′
(·) denotes the Jacobian matrix of h(·) and h

′′
(·) is the Hessian matrix of h(·).

Using only the first-order term to approximate the nonlinear state constraint leads to

h
′
(x̂)Tx ≈ q− h(x̂) + h

′
(x̂)T x̂. (41)

Through observation, (41) has a similar structure with (24) where G of (24) is replaced
with h

′
(x̂)T in (41) and g with g− h(x̂) + h

′
(x̂)T x̂. After applying the estimation projection

method, the constrained estimator for the linear approximation method becomes

x̃k = x̂k|k − (h′(x̂k|k))
T(h′(x̂k|k)(h

′(x̂k|k))
T)−1(h(x̂k|k)− g). (42)

4.2. Second-Order Approximation

When the first and second-order terms are both kept, (40) can be rewritten into

f (x) =
[
xT 1

][M m
mT m0

][
x
1

]
= xT Mx + 2mTx + m0

= 0. (43)

Here

M =
1
2

h′′(x̂k|k), (44)

m = (h′(x̂k|k)− x̂T
k|kh′′(x̂k|k))

T/2, (45)

m0 = h(x̂k|k)− h′(x̂k|k)x̂k|k + (x̂k|k)
T Mx̂k|k − q. (46)

Construct an optimization problem by projecting an unconstrained state estimation
onto a nonlinear constrained surface, i.e.

x̃ = arg min
x

(z− Hx)T(z− Hx) s.t. f (x) = 0 (47)

The Lagrangian function is formed with the multiplier λ as

J = (z− Hx)T(z− Hx) + λ f (x). (48)

The optimal solution can be found by solving

∂J
∂x

= −HTz + λm + (HT H + λM)x

= 0, (49)
∂J
∂λ

= xT Mx + mTx + xTm + m0

= 0. (50)

Assume the matrix HT H + λM is invertible. The constrained solution x̃ can be ex-
pressed by

x̃ = (HT H + λM)−1(HTz− λm) (51)

which is the unconstrained solution when λ = 0.
Applying the Cholesky factorization to M and S = HT H gives

M = LT L, (52)

S = ETE (53)
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where E is an upper right diagonal matrix. We can apply singular value decomposition
(SVD) to the matrix LE−1 as

LE−1 = UΣVT (54)

where U and V are orthonormal matrices, and Σ is a diagonal matrix with its diagonal
elements denoted by pi. In order to simplify (51), two additional vectors are defined as

e(λ) = [· · · ei(λ) · · · ]T

= VT(ET)−1(HTz− λm), (55)

t = [· · · ti · · · ]T

= VT(ET)−1m. (56)

With these new matrices and vector notations, (51) can be expressed as

x̃ = E−1V(I + λΣTΣ)−1e(λ). (57)

With (55), (56) and (57),

x̃T Mx̃ = e(λ)T(I + λΣTΣ)−TΣTΣ(I + λΣTΣ)−1e(λ)

= ∑
i

e2
i (λ)p2

i
(1 + λp2

i )
2

, (58)

mT x̃ = tT(I + λΣTΣ)−1e(λ)

= ∑
i

ei(λ)ti

1 + λp2
i

, (59)

After plugging in (58) and (59), f (x) transforms into

f (λ) = e(λ)T(I + λΣTΣ)−TΣTΣ(I + λΣTΣ)−1e(λ)

+ tT(I + λΣTΣ)−1e(λ)

+ e(λ)T(I + λΣTΣ)−1t + m0

= ∑
i

e2
i (λ)p2

i
(1 + λp2

i )
2
+ 2 ∑

i

ei(λ)ti

1 + λp2
i
+ m0 (60)

Since (60) is a nonlinear equation of λ, it is difficult to obtain a closed-form solution.
Numerical root-finding algorithms are used such as Newton method [40] to solve (60).
The derivatives of f (λ) and e(λ) are

ḟ (λ) = 2 ∑
i

ei(λ)ėi(1 + λp2
i )p2

i − e2
i (λ)p4

i
(1 + λp2

i )
3

+ 2 ∑
i

ėiti(1 + λp2
i )− ei(λ)tiσ

2
i

(1 + λp2
i )

2
, (61)

ė = [. . . ėi . . . ]T

= −VT(GT)−1m. (62)

with respect to λ. Then, the iterative solution of λ with Newton method can be
given by

λk+1 = λk −
f (λk)

ḟ (λk)
. (63)

(63) starts with λ0 = 0. If |λk+1 − λk| < τ where τ is the tolerance, or the number of
iterations reaches a preset value, the iteration stops. Then, we can obtain the constrained
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state estimate of the moving target by substituting the solution of λ into (57). Table 3 shows
the steps of the PL-MMSE with nonlinear constraints by second-order approximation.

Remark 1. The algorithm presented in Table 1 have many potential applications, which use the
model shown in (9) and (10). For example, in the ocean environment, a self-moving ship monitors
noisy sonar bearings to an acoustic target ship and then pours the measurements into the filters to
estimate and predict the source position and velocity [19]. If the waterway of the target is known
in advance, the constraint can be brought into the methods in Tables 2 and 3 to further raise the
estimate accuracy.

Table 3. PL-MMSE with Nonlinear Constraints Algorithm.

1. Initialization
x̂0 = x̄0
P0 = E

[
(x0 − x̄0)(x0 − x̄0)

T]
2. Predict
x̂k|k−1 = Fk−1 x̂k−1
Pk|k−1 = Fk−1Pk−1|k−1FT

k−1 + DQkDT

3. Filter Gain

K1 = ∑n
j=1 λje

−σ2
i

2 Pk|k−1
(

H1
k
)T

K2 = HkPk|k−1HT
k + ∑n

i=1 ρie
e
−2ξ2

i−1
2 [Pk|k−1(1, 1) + Pk|k−1(2, 2)] + Rk

Kk = K1K−1
2

4. Update
x̂k = x̂k|k−1 + Kk(zk − Hk x̂k|k−1)

Pk|k = Pk|k−1 − KkKT
1

5. When the nonlinear constraint is xT
k Mxk + mT xk + xT

k m + m0 = 0
Use the iterative method to find λ

Then x̃k = G−1V(I + λkΣTΣ)−1e(λk)

6. k = k + 1, go to 2.

5. Simulation

This section simulates examples and compares the performance of PL-MMSE, PLKF,
BC-PLKF, IVKF and the corresponding algorithms with state constraints for moving targets
under linear or nonlinear constraints with Gaussian mixture noise. To clarify, the combi-
nation algorithm of PL-MMSE and the mean square method is defined as PL-MMSE-C
(W = I). Similarly, PL-MMSE combined with the estimation projection method is set
to PL-MMSE-C (W = P−1). PL-MMSE incorporated with the linear approximation and
second-order approximation methods are defined as PL-MMSE-L and PL-MMSE-S, respec-
tively. Other constrained algorithms are named in the same way as above. Each simulation
result is generated in M0 = 1000 Monte Carlo experiments with N = 200 sampling time
scans for each run.

5.1. Performance Metrics

As defined in this subsection, the performance is evaluated using the root mean square
errors (RMSEs) and the bias norms (BNorms). The RMSE and BNorm of the target position
estimation are

RMSEpos
k =

√√√√ 1
M0

M0

∑
i=1
‖x̂i

k|k(1 : 2)− xi
k(1 : 2)‖2, (64)

BNormpos
k = ‖ 1

M0

M0

∑
i=1

(
x̂i

k|k(1 : 2)− xi
k(1 : 2)

)
‖ (65)
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where x̂i
k|k(1 : 2) is the estimated target position and xi

k(1 : 2) is the true target position at
time kT at the ith run, respectively.

The RMSE and BNorm of the target velocity estimation are

RMSEvel
k =

√√√√ 1
M0

M0

∑
i=1
‖x̂i

k|k(3 : 4)− xi
k(3 : 4)‖2, (66)

BNormvel
k = ‖ 1

M0

M0

∑
i=1

(
x̂i

k|k(3 : 4)− xi
k(3 : 4)

)
‖ (67)

where x̂i
k|k(3 : 4) is the estimated target velocity and xi

k(3 : 4) is the true target velocity at
time kT at the ith run.

Similarly, the time-averaged RMSE, BNorm of the target position and velocity estima-
tion are

RMSEpos
avg =

√√√√ 1
M0B

M0

∑
i=1

N

∑
k=L0

‖x̂i
k|k(1 : 2)− xi

k(1 : 2)‖2, (68)

BNormpos
avg =

1
B

N

∑
k=L0

‖ 1
M0

M0

∑
i=1

(
x̂i

k|k(1 : 2)− xi
k(1 : 2)

)
‖, (69)

RMSEvel
avg =

√√√√ 1
M0B

M0

∑
i=1

N

∑
k=L0

‖x̂i
k|k(3 : 4)− xi

k(3 : 4)‖2, (70)

BNormvel
avg =

1
B

N

∑
k=L0

‖ 1
M0

M0

∑
i=1

(
x̂i

k|k(3 : 4)− xi
k(3 : 4)

)
‖. (71)

Here, we set B = N − L0 + 1 with L0 = 50 where L0 is an offset parameter to reduce
the time-averaged metrics affected by the initial tracking errors in the simulations.

5.2. Simulation Parameters

In order to objectively compare the performance of the constrained PL-MMSE with
other algorithms, we adopt the same sensor moving trajectory as in [24], as shown in
Figure 2. The sensor trajectory is divided into five constant velocity segments, where the
end position of each segment trajectory is set as [60 0]T m, [0 7.5]T m, [60 15]T m, [0 22.5]T

m, [60 30]T m and [0 77.5]T m. Starting from the initial position r0 = [60 0]T m, the sensor
takes the direct measurement value at every sampling interval T = 0.1s. The bearing noise
and process noise are a Gaussian mixture noise with zero mean. The estimated initial state
x̂1|1 is sampled from the true initial state x1 with a Gaussian mixture distribution, which
has the initial covariance P1|1.
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Figure 2. Sensor trajectory with five constant velocity segments and the initial position marked by
a star.

5.3. Simulation Scenarios

Designed algorithms are tested in two scenarios in this subsection. As can be observed
in Figure 3a, the target moves on a straight line in the first scenario while the target moves
on an arc in the second scenario, as shown in Figure 3b with nearly constant velocity
magnitude V.

Y

X

Y

X

,

Target

Target

Figure 3. (a) target travels in a straight line along the direction θ; (b) target travels along the circular
road with the turning center (Rx, Ry) and the radius R.

Under the known angle of the vehicle, the constrained matrix G and the vector g are
governed by

G =

[
1 − tan θ 0 0
0 0 1 − tan θ

]
, (72)

g = [0, 0]T . (73)

The constrained estimate can be produced by setting W = I and W = P−1. In the simu-
lation, the sampling interval T is set to 0.1 s. The total time span is the 20 s. The angle θ is set to
π/4. The velocity V is set to 12 m/s. The target initial position is [0 0]T m. The true initial state

is set to x1 =
[
0 0 6
√

2 6
√

2
]T

. The initial covariance matrix is P1|1 = diag([1 1 0.01 0.01]).
In addition, the covariances of process noise ωk−1 and bearing noise ek are given by

ωk−1 = λN (µx1, Q1) + (1− λ)N (µx2, Q2), (74)

ek = ρ2[λN (µz1, R1) + (1− λ)N (µz2, R2)], (75)

respectively, where µT
x1 =

[
0 0 0 0

]
, µT

x2 =
[
0 0 0 0

]
, µT

z1 = 0, µT
z2 = 0, Q1 =

diag([0 0 0.15 0.15]), Q2 = diag([0 0 0.23 0.23]), R1 = 0.015, R2 = 0.019 and λ = 0.4.
The variable ρ controls the magnitude of bearing noise ek. By setting ρ from 1 to 10
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with the difference of 1, Table 4 shows the standard deviation σθ of bearing noise for the
corresponding ρ.

Table 4. Standard deviation σθ against ρ in the first scenario.

ρ 1 2 3 4 5 6 7 8 9 10
σθ (◦) 1 2 3 4 5 6 7 8 9 10

Simulation results of the mean RMSEs and BNorms of the target position and velocity
estimates against σθ are presented in Figure 4.
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Figure 4. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the PL-MMSE,
PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with linear constraints
proposed in the paper.

It is noticeable that the performance metric values of all algorithms increase and finally
tend to be stable with σθ in Figure 4, where the performance of PL-MMSE is always better
than that of PLKF, BC-PLKF, and IVKF. The RMSEpos

avg of PL-MMSE is stable at 2.5 m at a
large bearing noise level, which significantly outperforms other unconstrained algorithms.
The evolution of RMSEs, BNorms of the target position and velocity estimates in time kT
(k = 1, . . . 150) for σθ = 7◦ is shown in Figure 5.
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Figure 5. RMSEs, BNorms at different time scan for σθ = 7◦ for the PL-MMSE, PLKF, BC-PLKF and
IVKF algorithms, as well as, the proposed PL-MMSE algorithm with linear constraints in the paper.
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The tracking performance of all algorithms gradually deteriorates with the rising
scan under a large bearing noise level. The metric values of PL-MMSE gradually approach
RMSEpos

k = 3.11 m, RMSEvel
k = 0.147 m/s, BNormpos

k = 0.053 m, and BNormvel
k = 0.011 m/s,

which are remarkably lower than other unconstrained algorithms. It can also be observed
that the constrained PL-MMSE is superior to the unconstrained PL-MMSE at all bearing
noise levels in Figures 4 and 5, which indicates the constrained algorithm has a better
robustness and tracking performance. Comparisons of four algorithms combined with the
mean square method and the estimation projection method for σθ = 7◦ are presented in
Figures 6 and 7, respectively, which demonstrate that PL-MMSE-C (W = I) and PL-MMSE-
C (W = P−1) have less errors than other corresponding constrained algorithms at a large
bearing noise level.
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Figure 6. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the four algo-
rithms combined with the mean square method.
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Figure 7. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the four algo-
rithms combined with the estimation projection method.

Table 5 shows the mean RMSEs and BNorms of different filters for σθ = 7◦.
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Table 5. RMSEpos
avg, RMSEvel

avg, BNormpos
avg and BNormvel

avg of different filters for σθ = 7◦ at V = 12 m/s
on the straight line.

Filter RMSEpos
avg RMSEvel

avg BNormpos
avg BNormvel

avg

PL-MMSE 2.294 0.140 0.139 0.011
PLKF 27.068 2.069 22.202 1.791

BC-PLKF 3.714 0.273 0.270 0.010
IVKF 3.648 0.299 0.219 0.021

PL-MMSE-C (W = I) 1.781 0.103 0.084 0.001
PL-MMSE-C (W = P−1) 1.781 0.103 0.084 0.001

PLKF-C (W = I) 24.350 1.907 18.847 1.557
PLKF-C (W = P−1) 23.027 1.804 17.739 1.458
BC-PLKF-C (W = I) 2.890 0.207 0.234 0.008

BC-PLKF-C (W = P−1) 2.883 0.207 0.267 0.008
IVKF-C (W = I) 2.537 0.198 0.104 0.013

IVKF-C (W = P−1) 2.842 0.204 0.097 0.016

The RMSE performance of PL-MMSE-C (W = I) is RMSEpos
avg = 1.781 m and RMSEvel

avg =
0.103 m/s at large bearing noise level σθ = 7◦, which are less than other constrained algo-
rithms. Similarly, the BNorm performance of PL-MMSE-C (W = I) has BNormpos

avg = 0.084 m
and BNormvel

avg = 0.001 m/s at large bearing noise level σθ = 7◦ which are better than the
others. The numerical results of PL-MMSE-C (W = P−1) are similar to that of PL-MMSE-C
(W = I), as observed from the table. The filters combined with constraints can achieve
better performance from Figures 6 and 7 and Table 5. As shown in Table 5, the constraint
algorithms with W = P−1 are not necessarily better than the corresponding filters with
W = I, where RMSEpos

avg = 2.537 m of IVKF-C (W = I) is less than RMSEpos
avg = 2.842 m

of IVKF-C (W = P−1) and RMSEpos
avg = 2.890 m of BC-PLKF-C (W = I) is greater than

RMSEpos
avg = 2.883 m of BC-PLKF-C (W = P−1). This difference is caused by the discrep-

ancy between the actual distribution characteristics of the state estimate x̂ and P. When the
distribution is close to P, the constraint algorithms with W = P−1 behave better than the
corresponding constraint algorithms with W = I.

In the second scenario, the target moves on an arc, as shown in Figure 3b, with a nearly
constant velocity magnitude V. The turning center is (Rx, Ry) with the radius R. Hence,
the constrained equation h(·), the vector g, the constrained matrix M, the vector m and the
variable m0, are given by

h(x) = (x(1)− Rx)
2 +

(
x(2)− Ry

)2, (76)

g = R2, (77)

M =

[
1 0
0 1

]
, (78)

m = −
[
Rx Ry

]T , (79)

m0 = R2
x + R2

y − R2. (80)

In addition, the velocity constraint is introduced into the state estimation. The con-
strained velocity estimate ṽ is

ṽ =
(

v̂Tµ
)

µ (81)

where the unconstrained velocity estimate v̂ and constrained unit direction vector µ are

v̂ = [x̂(3) x̂(4)]T , (82)

µ = [− sin θ cos θ]T (83)

with θ = tan−1(x̂(2)/x̂(1)).
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In the simulation, the sampling interval T is set to 0.1 s. The total time scan is the 20 s.
The turning center (Rx, Ry) is set to (100, 0) m. The turning radius R is 100 m. The initial
position for the target is [200 0]T m. To compare the linear approximation with the second-
order approximation method, two experiments are carried out, where the magnitude of V
is 10−4 m/s and 0.2 m/s, respectively.

For V = 10−4 m/s, the true initial state is x1 =
[
200 0 0 10−4]T . The initial covariance

matrix is P1|1 = diag([10−8 10−8 10−10 10−10]). The process noise ωk−1 and bearing noise ek

have the same composition as (74) and (75) where µT
x1 =

[
0 0 0 0

]
, µT

x2 =
[
0 0 0 0

]
,

µz1 = 0, µz2 = 0, Q1 = diag[0 0 10−9 10−9], Q2 = diag([0 0 2 × 10−9 2 × 10−9]),
R1 = 1.5× 10−12, R2 = 1.909× 10−12 and λ = 0.4. The standard deviation σθ of bearing
noise for the corresponding ρ is set as shown in Table 6.

Table 6. Standard deviation σθ against ρ at V = 10−4 m/s.

ρ 1 2 3 4 5 6 7 8 9 10
σθ(×10−5◦) 1 2 3 4 5 6 7 8 9 10

Simulation results of the time-averaged RMSEs and BNorms of the target position and
velocity estimates and the bearing noise standard deviations is shown in Figure 8 where
PL-MMSE has lower errors in the RMSE performance with RMSEpos

avg = 2.526× 10−4 m,
RMSEvel

avg = 1.783× 10−5 m/s.
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Figure 8. Time-averaged RMSEs, BNorms and bearing noise standard deviation at V = 10−4 m/s
for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with
nonlinear constraints proposed in the paper.

The evolution of RMSEs, BNorms of the target position and velocity estimates in time
kT for σθ = 7◦ at V = 10−4 m/s is presented in Figure 9.
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Figure 9. RMSEs, BNorms and time kT for σθ = 7◦ at V = 10−4 m/s for the PL-MMSE, PLKF, BC-
PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with nonlinear constraints
in the paper.

It is noticeable that the curve trends in Figures 8 and 9 are similar to Figures 4 and 5
because of the weak model nonlinearity caused by small velocity. The performance metric val-
ues of PL-MMSE gradually approach RMSEpos

k = 3.099×10−4 m, RMSEvel
k = 2.053× 10−5 m/s,

BNormpos
k = 5.774× 10−5 m and BNormvel

k = 3.497× 10−6 m/s, which are superior to
other unconstrained algorithms in Figure 9. It is also demonstrated that the constrained
PL-MMSE is better than the unconstrained PL-MMSE and other constrained filters at all
bearing noise levels under the arc section in Figures 8 and 9. Performance comparisons
of four algorithms combined with the linear approximation method and the second-order
approximation method for σθ = 7◦ at V = 10−4 m/s are shown in Figures 10 and 11,
respectively, which present that PL-MMSE-L and PL-MMSE-S have fewer errors than other
constrained algorithms at a large bearing noise level.
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Figure 10. Time-averaged RMSEs, BNorms and bearing noise standard deviation at V = 10−4 m/s
for the four algorithms combined with the linear approximation method.
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Figure 11. Time-averaged RMSEs, BNorms and bearing noise standard deviation at V = 10−4 m/s
for the four algorithms combined with the second-order approximation method.

Table 7 presents the results of the time-averaged RMSEs and BNorms of different
filters for σθ = 7◦ at V = 10−4 m/s. The RMSE and BNorm performance of PL-MMSE-L are
RMSEpos

avg = 1.579× 10−4 m, RMSEvel
avg = 1.415× 10−5 m/s, BNormpos

avg = 1.518× 10−5 m
and BNormvel

avg = 1.590× 10−6 m/s. The PL-MMSE algorithm combined with the linear ap-
proximation method is better than the second-order approximation method as BNormvel

avg =

1.708× 10−6 m/s of the PL-MMSE-S is greater than BNormvel
avg = 1.590× 10−6 m/s of the

PL-MMSE-L in Table 7 due to the weak nonlinearity.
For V = 0.2 m/s, we have the true initial state x1 = [200 0 0 0.2]T and the initial

covariance matrix P1|1 = diag([10−3 10−3 10−4 10−4]). The composition of the process noise
ωk−1, and the bearing noise ek is the same as (74) and (75), where µT

x1 =
[
0 0 0 0

]
, µT

x2 =[
0 0 0 0

]
, µz1 = 0, µz2 = 0, Q1 = diag([0 0 0.01 0.01]), Q2 = diag([0 0 0.02 0.02]),

R1 = 1.5× 10−3, R2 = 1.909× 10−3 and λ = 0.4. Table 8 presents the standard deviation
σθ of the bearing noise for the corresponding ρ.

Table 7. RMSEpos
avg (×10−4 m), RMSEvel

avg (×10−5 m), BNormpos
avg (×10−5 m) and BNormvel

avg (×10−6 m)

of different filters for σθ = 7◦ at V = 10−4 m/s on the arc section.

Filter RMSEpos
avg RMSEvel

avg BNormpos
avg BNormvel

avg

PL-MMSE 2.263 1.726 3.528 3.344
PLKF 2.346 1.949 3.673 3.541

BC-PLKF 2.345 1.949 3.667 3.537
IVKF 2.345 1.949 3.667 3.537

PL-MMSE-L 1.579 1.415 1.518 1.590
PL-MMSE-S 1.579 1.408 1.518 1.708

PLKF-L 1.677 1.650 1.716 1.994
PLKF-S 1.677 1.650 1.716 1.994

BC-PLKF-L 1.677 1.672 1.716 1.794
BC-PLKF-S 1.677 1.650 1.716 1.993

IVKF-L 1.677 1.672 1.716 1.794
IVKF-S 1.677 1.650 1.716 1.993

Table 8. Standard deviation σθ against ρ at V = 0.2 m/s.

ρ 1 2 3 4 5 6 7 8 9 10
σθ(/
√

10◦) 1 2 3 4 5 6 7 8 9 10
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Simulation results of the time-averaged RMSEs and BNorms of the target position and
velocity estimates against σθ are presented in Figure 12.
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Figure 12. Time-averaged RMSEs, BNorms and bearing noise standard deviation at V = 0.2 m/s
for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with
nonlinear constraints proposed in the paper.

The performance of PL-MMSE and PL-MMSE with constraints is better than other
filters, where RMSEpos

avg = 0.3346 m of PL-MMSE and RMSEpos
avg = 0.2954 m of PL-MMSE-S

are less than other algorithms for σθ = 3◦. The evolution of RMSEs, BNorms of the target
position and velocity estimates in time kT for σθ = 7◦ at V = 0.2 m/s is shown in Figure 13.
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Figure 13. RMSEs, BNorms and time kT for σθ = 7◦ at V = 0.2 m/s for the PL-MMSE, PLKF, BC-
PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with nonlinear constraints
in the paper.

It is evident that the constrained PL-MMSE has more stable and accurate tracking
performance at large bearing noise levels under the arc section. Comparisons of four
algorithms combined with the linear approximation method and the second-order approxi-
mation method for σθ = 7◦ at V = 0.2 m/s are provided in Figures 14 and 15, respectively.
The time-averaged RMSEs and BNorms of different filters for σθ = 7◦ are presented in
Table 9. It is remarkable that the PL-MMSE with constraints has less errors than other
filters, where RMSEpos

avg of PL-MMSE-L is 0.176m and RMSEpos
avg of PL-MMSE-S is 0.176m.

On contrary to the first experiment with V = 10−4 m/s, the algorithms combined with the
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second-order approximation method perform better than the algorithms combined with
the linear approximation method in Table 9, where RMSEpos

avg of PL-MMSE-S is less than
RMSEpos

avg of PL-MMSE-L for σθ = 7◦ at the scale of 10−6 because of strong nonlinearity.
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Figure 14. Time-averaged RMSEs, BNorms and bearing noise standard deviation at V = 0.2 m/s for
the four algorithms combined with the linear approximation method.
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Figure 15. Time-averaged RMSEs, BNorms and bearing noise standard deviation at V = 0.2 m/s for
the four algorithms combined with the second-order approximation method.

Table 9. RMSEpos
avg, RMSEvel

avg, BNormpos
avg and BNormvel

avg of different filters for σθ = 7◦ at V = 0.2 m/s
on the arc section.

Filter RMSEpos
avg RMSEvel

avg BNormpos
avg BNormvel

avg

PL-MMSE 0.224 0.017 0.025 0.004
PLKF 0.789 0.058 0.499 0.039

BC-PLKF 0.321 0.025 0.034 0.005
IVKF 0.326 0.025 0.028 0.004

PL-MMSE-L 0.176 0.013 0.011 0.001
PL-MMSE-S 0.176 0.013 0.011 0.001

PLKF-L 0.310 0.024 0.095 0.008
PLKF-S 0.310 0.024 0.095 0.008

BC-PLKF-L 0.271 0.021 0.016 0.001
BC-PLKF-S 0.271 0.021 0.016 0.001

IVKF-L 0.294 0.023 0.017 0.001
IVKF-S 0.294 0.023 0.017 0.001
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It is worthwhile to point out that the errors of the filters are basically unchanged and
slightly decrease as the noise level rises in Figure 12 when the velocity is relatively large.
The cause of this phenomenon is the error in the state update equation introduced by the
linearization of the arc movement. When V = 0.2 m/s, the error from the state update
equation becomes the main source of the filter estimate error, which relatively reduces the
effect of the bearing noise and breaks the average algorithm performance trend.

Remark 2. It is noticeable that the magnitudes of the velocity in the second scenario are both small.
There are two reasons for such a setting. Firstly, the PL-MMSE is still a linear Kalman filter under
linear and nonlinear constraints. There is discrepancy between the TMA result from the linear
motion model (9) and the actual arc trajectory in the circular section. The faster the target moves
in an interval, the greater the discrepancy will be. Secondly, the sampling frequency of the sensor
in reality is much higher than that in our experiment. For example, the sampling frequency of
the radar is generally between 1 and 15GHz. When the sampling frequency increases, the relative
speed of the target also rises up proportionally to maintain the same traveling distance. Hence, if
we set the sampling time T = 10−5s rather than 0.1s as in the simulation, the relative speed of
the target becomes V = 1 m/s and 2000 m/s, respectively, which are quite common in practice.
The transformation of the sampling frequency and target velocity corresponding to a real radar
demonstrates that the setting is meaningful.

Since the distance the target moves in an interval is small, the corresponding RMSEs are low.
Nevertheless, simulation results show that the RMSEs of our constrained algorithms are much
smaller than those of other filters.

6. Conclusions and Future Works

In this paper, we propose a new pseudolinear Kalman filtering method based on TMA
with available state constraints by combining the PL-MMSE and state constraints. The
mean square and estimation projection methods are enveloped with PL-MMSE to address
the linear constrained state estimation problem. The linear approximation and second-
order approximation methods are used to refine PL-MMSE estimates under nonlinear
constraints. The merged algorithms can effectively solve the bearings-only TMA problem
under Gaussian mixture noise. Simulations show that the constrained PL-MMSE has
better performance than other filters. In particular, when the target velocity is small,
the algorithms combined with the linear approximation method perform better than those
combined with the second-order approximation method under the circular road. It turns
out just the opposite when the velocity is large.

Analyzing the statistical properties of the PL-MMSE with state constraints will be
one topic of our future research. Applying the designed algorithms in actual engineering
practice is the other direction we endeavor to study for the next step.
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TMA Target motion analysis
PLKF Pseudolinear Kalman filter
PL-MMSE Pseudolinear Kalman filter under the minimum mean square error framework
AOA Angle of arrival
BC-PLKF Bias-compensated PLKF
IVKF IV Kalman filter
SAM-IVKF IVKF based on selective-angle-measurement
2D Two-dimensional
RMSEs Root mean square errors
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