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Abstract: This paper proposes phenomenological equations that describe various aspects of aftershock
evolution: elementary master equation, logistic equation, stochastic equation, and nonlinear diffusion
equation. The elementary master equation is a first-order differential equation with a quadratic term.
It is completely equivalent to Omori’s law. The equation allows us to introduce the idea of proper time
of earthquake source “cooling down” after the main shock. Using the elementary master equation, one
can pose and solve an inverse problem, the purpose of which is to measure the deactivation coefficient
of an earthquake source. It has been found for the first time that the deactivation coefficient decreases
with increasing magnitude of the main shock. The logistic equation is used to construct a phase
portrait of a dynamical system simulating the evolution of aftershocks. The stochastic equation can
be used to model fluctuation phenomena, and the nonlinear diffusion equation provides a framework
for understanding the spatiotemporal distribution of aftershocks. Earthquake triads, which are a
natural trinity of foreshocks, main shock, and aftershocks, are considered. Examples of the classical
triad, the mirror triad, the symmetrical triad, as well as the Grande Terremoto Solitario, which can be
considered as an anomalous symmetrical triad, are given. Prospects for further development of the
phenomenology of earthquakes are outlined.

Keywords: earthquake; source deactivation; logistic equation; nonlinear diffusion equation; Omori
epoch; round-the-world echo; mirror triad

1. Introduction

Omori Law [1] describes the evolution of the aftershocks of a strong earthquake.
Established at the end of the century before last, the law is characterized by the beauty
of its form, quite definite clarity, as a result of which it still attracts considerable attention
from the geophysical community (e.g., see [2–4]).

Initially, Omori law, which can be called hyperbolic, was formulated as follows:

n(t) = k/(c + t). (1)

Here n is the frequency of aftershocks [1]. Formula (1) is one-parameter since the
parameter c is free and is completely determined by an arbitrary choice of the time origin.
In contrast to the aspirations of Hirano [5] and Utsu [6], who introduced a two-parameter
modification of Formula (1) into widespread use, we came to the conclusion that it is
reasonable to put the differential equation of evolution into the basis of the phenomeno-
logical theory of aftershocks [7–9]. Guided by this consideration, in recent years we have
accumulated considerable experience in the study of the evolution of aftershocks.

The purpose of this paper is to summarize our results. The main attention is focused
on the phenomenological theory of aftershocks. The paper indicates successful examples of
the use of theory in the analysis of experimental material. We also paid some attention to
the presentation of our position on controversial issues of a methodological nature. For
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example, in the literature there are erroneous statements about the deep physical content of
the parameter c in Formula (1).

Another misconception is associated with the idea that the two-parameter Hirano–
Utsu formula is preferable to the one-parameter Omori formula. As an argument, it
is argued that the presence of two parameters facilitates the approximation of observa-
tion data. On the contrary, we consider the presence of only one physical parameter in
Formula (1) as an important sign of the fundamental nature of the Omori law.

2. Elementary Master Equation

The differential approach to modeling aftershocks opens up a wide scope for searches.
From the richest set of differential equations available here, we take the simplest implemen-
tation of our idea, namely the truncated Bernoulli equation:

dn/dt + σn2 = 0, (2)

Here σ is the so-called deactivation coefficient of the earthquake source, “cooling
down” after the main shock [7–9]. Elementary master Equation (2) is useful in making the
law of evolution simpler and easier to understand. It expresses the essence of the Omori
hyperbolic law (1) that everyone understands. Moreover, it will serve as an initial basis for
interesting generalizations (see below Sections 3–5).

Equation (2) contains only one phenomenological parameter σ. It is easy to make
sure that both formulations of the law, (1) and (2), are completely equivalent to each other
for σ = const. However, firstly, in contrast to (1), Formula (2) makes it possible to take
into account the nonstationarity of the geological medium in the source, which undergoes
a complex relaxation process after the discontinuity has formed during the main shock.
The second advantage of Formula (2) is no less important. We can seek and find natural
generalizations of the differential law of evolution of aftershocks, which opens up new,
sometimes unexpected, approaches to processing and analyzing experimental data.

Concluding this section of the paper, let us show how easy it is to take into account
nonstationarity when formulating the Omori law in the form of the evolution Equation (2).
For this, it is sufficient to assume that the deactivation factor depends on time. Let us
rewrite Omori’s law in the most compact form:

dn/dτ + n2 = 0, (3)

where τ =
∫ t

0 σ(t′)dt′. The general solution to Equation (3) is

n(τ) = n0/(1 + n0τ), (4)

It is seen that solution (4) retains the hyperbolic structure of the law, which was
originally established thanks to Omori’s discernment. The difference between (4) and
(1) is only that time in the source, figuratively speaking, flows unevenly. For σ = const,
(4) coincides with (1) up to notation. Thus, Equation (2) and its solution (4), in a certain
sense, complete Omori’s plan, as well as what Hirano and Utsu were striving for in their
attempt to improve the law using a two-parameter modification of Formula (1).

3. Logistic Equation

Faraoni [10] considered the possibility of representing the Omori law, written in the
form (2), as the Euler–Lagrange equation. The Lagrangian formulation of Omori law
is interesting in many ways. In particular, it provides a basis for searching for possible
generalizations of the law [11]. But the search for a suitable Lagrangian is not the only
way to derive the evolution equation. One can proceed, for example, from a fairly general
integro-differential equation:

dn
dt

=
∫ ∞

0
K
(
t− t′

)
·F
[
n
(
t′
)]
·dt′. (5)
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If we put F(n) = −σn2, then, when choosing the trivial kernel K(t− t′) = δ(t− t′)
from (5) follows the Omori law in the form (2).

Derivation of (2) from (5) is useful in the sense that a natural generalization of the
Omori law is suggested to us. The need for generalization is dictated by the following
consideration. It follows from (2) that limn(t) = 0 for t→ ∞ . Meanwhile, experience
shows that the flow of aftershocks ends with a transition to a certain background seismicity
of the source. It is desirable for us to take this circumstance into account by using minimal
changes in the form of the classical Omori law. It turns out that for this it is enough to take
into account the linear term in the formula F(n): F(n) = γn− σn2. Here γ is the second
phenomenological parameter of our theory. As a result, we get the master equation in the
following form:

dn
dt

= n(γ− σn). (6)

This is the logistic equation of Verhulst [12], well known in biology, chemistry, and
sociology. It turns out to be useful in the physics of earthquakes [9,11].

We divide the family of solutions to logistic Equation (6) into two classes. The first
class includes growing, and the second, falling functions of time. The separation princi-
ple is easiest to show in the phase portrait shown in Figure 1, where we have used the
dimensionless quantities

X =
n

nmax
, P =

n∞

γnmax
·dX
dT

, T = γt (7)

instead of the original quantities. Here n∞ = γ/σ.
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Faraoni [10] proposed the introduction of the phase plane of the dynamic system
simulating the evolution of aftershocks according to the Omori law (2). The corresponding
phase portrait is shown in Figure 1 with the red line. The point (0,0) corresponds to the
equilibrium state. The representative point moves from bottom to top along the phase
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trajectory with deceleration. The portrait consists of one phase trajectory that starts at
point (1,−1) and ends at point (0,0).

However, we are interested in the family of phase trajectories for Equation (6), con-
structed for different values of the parameter X∞ = n∞/nmax. The red, green, and blue
trajectories in Figure 1 are plotted with X∞ values of 0, 0.5, and 1, respectively. Equilibrium
point (0,0) is stable at X∞ = 0 and unstable at X∞ > 0. Equilibrium point (X∞, 0) is stable
at any values of parameter X∞ > 0. It can be shown that the velocity of motion of the
imaging point along the phase trajectory asymptotically tends to zero with approaching
(X∞, 0). The segment of the trajectory located above the horizontal axis corresponds to the
Verhulst logistic curve, widely known in biology, chemistry, sociology, and other sciences.
The segment located below the horizontal axis corresponds to the evolution of aftershocks
(Figure 2).

1 

 

 

Figure 2. Logistic curve (on left) and aftershocks curve (on right) (second branch of logistic equation)
at X∞ = 0.2. Dimensionless time T = γt is plotted along the horizontal axis.

The choice between the logistic and aftershock branches is made when setting the
Cauchy problem for Equation (6). Evolution proceeds along the aftershock branch if the
initial condition satisfies the inequality n(0) = n0 > n∞, where n∞ = γ/σ. Thus, in
the physics of aftershocks, when setting the Cauchy problem, one should set the initial
conditions under the additional constraint n0 > n∞. Moreover, it is reasonable to use
the strong inequality n0 � n∞ = γ/σ. Indeed, for t→ ∞ , the frequency of aftershocks
asymptotically approaches from above to the background (equilibrium) value n∞. Experi-
ence shows that as a rule n0 � n∞ after a strong earthquake. The analysis of Equation (6)
under the condition n0 � n∞ indicates that at the first stages of evolution, the frequency of
aftershocks decreases with time in accordance with the classical Omori Formula (1). Let
us take a closer look at this important circumstance, since the existence of the aftershock
branch is not so widely known.

The aftershock branch is entirely located above the saturation level n∞ and is a mono-
tonically decreasing function of time. When t→ +∞ it tends asymptotically from above
the saturation level (see the right panel in Figure 2). When setting the Cauchy problem in
the physics of aftershocks, the initial condition should be asked the restriction n0 � n∞.

Let us show that the decrease in the frequency of aftershocks with time at the first
stage of evolution occurs according to the Omori hyperbola (1). It is natural to call this
stage of evolution the Omori epoch.
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Let us introduce the notation

t∞ =
1
γ

ln(1− n∞

n0
), (8)

and write the solution of evolution Equation (6) in the following form:

n(t) = n∞{1− exp[γ(t∞ − t)]}−1. (9)

In the Omori epoch t∞ < t� 1/γ and, respectively,

n(t) = 1/σ(t− t∞). (10)

Formula (10) coincides with the classical Omori Formula (1) up to notation.
Observational experience indirectly testifies to the plausibility of our logistic model. It

is known, for example, that over time the frequency n tends not to zero, as follows from the
Omori law, but to some equilibrium value n∞. Further, some combination of the logistic
and aftershock branches makes it possible to propose a scenario for the occurrence of an
earthquake swarm (see details in [11]).

4. Stochastic Equation

Changing variables in a differential equation is often a powerful tool for finding
solutions to it. We already know the solutions for the Omori Equation (2) and the logistic
Equation (6). Nevertheless, we will still change the variable n(t) in order to linearize both
of these equations. This will make it easier for us to search for a stochastic generalization of
the equation for the evolution of aftershocks.

The following replacement will help us transform nonlinear Equations (2) and (6) into
linear ones [3]:

n(t)→ g(t) = 1/n(t). (11)

Omori Equation (2) takes on an extremely simple form:

.
g = σ. (12)

Here the dot above the symbol means time differentiation. Logistic Equation (6)
becomes a first-order linear differential equation:

.
g + γg = σ. (13)

Generally speaking, this circumstance is quite interesting in itself, but we use it
precisely to make the stochastic generalization of the evolution equation the simplest
possible way. Namely, let us imagine that the deactivation coefficient experiences small
fluctuations. This assumption is formalized as follows: σ→ σ + ξ(t) , where ξ(t) is a
random function of time, and max|ξ| � σ. As a result, we have

.
g + γg = σ + ξ(t). (14)

Let us formally solve the Equation (14):

g(t) = g∞ + (g0 − g∞) exp(−γt) +
∫ t

0
ξ(t1) exp[γ(t1 − t)]dt1. (15)

Here g∞ = σ/γ, g0 = g(0).
Our second assumption is that ξ(t) is the Langevin source, i.e., delta-correlated random

function with zero mean

ξ(t) = 0, ξ(t)ξ(t1) = Nδ(t− t1), (16)
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where the line at the top means averaging.
Now Equation (14) should be considered as the Langevin stochastic equation (e.g., see [13],

where the Langevin equation is studied in detail). The phenomenological parameter N is
determined by the intensity of noise affecting our dynamic system.

5. Nonlinear Diffusion Equation

If we ask ourselves how to describe the evolution of aftershocks not only in time,
but also in space–time, then this immediately puts us in a difficult position. On the one
hand, a number of methods are known for modeling space–time distributions, but on
the other hand, in our case, there is a strong limitation, which consists in the fact that
when averaging over the epicentral zone, we want to obtain the Omori law in the form (2),
or in the form (6). Fortunately for us, it turns out here that we can use the well-known
Kolmogorov–Petrovsky–Piskunov equation (abbreviated KPP), which describes nonlinear
diffusion [14]. It is convenient for us to represent it in the following form:

∂n
∂t

= n(γ− σn) + D
∂2n
∂x2 , (17)

where n(x,t) is the spatio-temporal distribution of aftershocks, the x axis is directed along
the earth’s surface (for simplicity, we limited ourselves to a one-dimensional model), and
D is a new phenomenological parameter (diffusion coefficient). At D = 0, (17) turns into
the logistic equation of the evolution of aftershocks (6), and under the additional condition
γ = 0 into Omori law (2).

It is useful to derive (17) from the integro-differential equation

∂n
∂t

= Φ(n) +
∞∫
−∞

K(x− y)·n(y, t)·dy. (18)

Here Φ(n) is some kind of functional. This will make it possible to express the param-
eters γ and D in terms of the kernel K(x− y). Indeed, suppose that K(x− y) = K(y− x),
i.e., the core is symmetrical. If K → 0 for |x− y| → ∞ , then expanding n(x− z, t) into a
Taylor series in powers of x, we obtain

∂n
∂t

= γn + Φ(n) + D
∂2n
∂x2 + . . . (19)

where
γ =

∫ ∞

−∞
K(z)dz, D =

1
2

∫ ∞

−∞
z2K(z)dz, (20)

and z = x− y (e.g., see [11,15,16]). Let us Φ(n) = −σn2, and confine the first two terms in the
series. In this approximation we obtain Equation (17) from which after phenomenological
reduction follows the Omori law in the form (2).

When constructing a phenomenological theory of aftershocks, there is one most
important condition, only one, but absolutely necessary: the phenomenological coefficients,
whatever meaning we put into them, we must be able to measure experimentally, since they
cannot be calculated on the basis of a more fundamental theory—because we simply do
not have such a theory. In Section 6.1 we show how the deactivation factor we introduced
in Section 2 is estimated. In the current section, we have significantly complicated the
theory and introduced the diffusion coefficient D. We want to briefly describe the result of
observing aftershocks, which actually led us to master equation (17), and then indicate how,
at least in principle, the parameter D can be estimated experimentally. (In this regard, it is
appropriate to mention the recent interesting work [17]. It provides additional arguments
in favor of the idea of the applicability of the KPP equation for modeling aftershocks).

The study of aftershocks in space and time led us to the idea of using the KPP equation
as the master equation. The main step forward in the study of the space–time distribution
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was the discovery that, apparently, at least some of the aftershocks tend to propagate
like waves with a speed much lower than the speed of seismic waves [8,18]. The rate of
propagation varies widely from case to case. It is roughly a few kilometers per hour. This
value is three orders of magnitude less than the velocities of elastic waves in the crust,
which suggests the propagation of a nonlinear diffusion wave excited by the main shock.

Equation (17) has self-similar solutions in the form of a traveling wave
n(x, t) = n(x±Ut) [14,19]. It is this circumstance that played a role in our choice of
the KPP equation as the master equation. The estimation of the wave propagation velocity
can be performed by analyzing the dimensions of the coefficients of the master equation:
U ∼

√
γD. Knowing the propagation velocity U, and estimating the parameter γ accord-

ing to the formula γ = n∞σ, we can give an oriented estimate of the diffusion coefficient
D = U2/γ.

6. Discussion

We have outlined a phenomenological basis, united by the general idea of a differential
approach, to describing and understanding the dynamics of aftershocks. Starting with an
elementary nonlinear differential Equation (2), completely equivalent to the Omori law in
its classical expression (1) at σ = const, we tried to use minimal modifications in order to
go first to the logistic equation (6), then to the stochastic Equation (14), and, finally, to the
nonlinear diffusion Equation (17). Perhaps it would be useful to note that we explicitly
used the methodological principle of Descartes, the essence of which is that one should go
from simple to complex, using clear and precise modifications of the theoretical description
of the problem under study.

Taken together, four phenomenological master equations, united by a common idea,
make it possible to comprehend a fairly wide range of properties and patterns of aftershocks
found experimentally. Moreover, phenomenological theory allows certain predictions to
be made that can be verified experimentally. Let us illustrate what has been said with a
number of examples.

6.1. Inverse Problem

The inverse problem of the physics of earthquake source is to determine the phe-
nomenological coefficients from the observation data of aftershocks. Omori law in the
form (2) makes it possible to formulate and solve the problem of determining the deac-
tivation coefficient σ from the observation data of the frequency of aftershocks n. The
auxiliary value g, which we introduced in Section 3, is conveniently written in the form of
g = (n0 − n)/nn0. It is easy to see that

σ =
d
dt
〈g〉. (21)

Here, the angle brackets denote the regularization of the function g(t) calculated from
observation n(t). Regularization is reduced in this case to the smoothing procedure.

Our experience indicates that the deactivation coefficient σ undergoes complex vari-
ations over time [8,20]. However (and this seems to us extremely important) at the first
stages of evolution σ = const. The time interval during which σ = const, we called the Omori
epoch. In the Omori epoch, the classical Omori law is fulfilled (1), according to which
the frequency of aftershocks hyperbolically decreases over time. In our experience, the
duration of the Omori epoch varies from case to case from a few days to two or three
months. We noticed a tendency for the duration of the Omori epoch to increase with the
increase in the magnitude of the main shock.

An interesting prediction follows from the existence of the Omori epoch, which
has been reliably confirmed by experience [21]. Namely, the question of dependence of
the deactivation factor on the magnitude of main shock is analyzed theoretically and
experimentally. A monotonic decrease in the deactivation factor with an increase in the
magnitude of the main shock, M0, has been reliably established. Figure 3 shows the result
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of measurements of σ at different values of M0. To measure the deactivation factor, we used
the USGS/NEIC earthquake catalog and the technique developed during the compilation
of the Atlas of Aftershocks [20]. We see that, on average, σ decreases monotonically with
the increase in M0. The dependence σ(M0) is approximated by the formula

σ = A− BM0, (22)

where A= 0.64, B = 0.07 with a sufficiently high coefficient of determination R2 = 0.82. Thus,
the theoretical inequality dσ/dM0 is reliably confirmed by direct measurements. We have
a wonderful harmony between theory and experiment.
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It is quite clear that the question of how best to formulate the Omori law, in the form (1)
or (2), could only be solved by observation and experience. Equation (2) turned out to
be more effective, since it made it possible to introduce a simple and useful concept of
deactivation of the source, to pose the inverse problem of the source, and to reveal the
existence of the Omori epoch. In addition to this, we have shown that with the help of (2)
one can make a meaningful statement about the deactivation coefficient and, moreover,
check this statement experimentally.

Finally, the question of whether it is not better to use the one-parameter Formula (2)
for modeling aftershocks than the two-parameter Hirano–Utsu formula n = k/(c + t)p [2]
deserves discussion. We give preference to Formula (2), since the inverse problem solved
on its basis indicates the existence of the Omori epoch [8,9]. The Hirano–Utsu formula is
unacceptable, since it contradicts the existence of the Omori epoch at p 6= 1, and at p = 1 it
coincides with the Omori Formula (1).

Perhaps it would be appropriate to draw a distant historical analogy here. According
to the law of gravitation, the interaction potential ϕ ∝ 1/r leads to the ellipticity of the
planetary orbit. The deviation from ellipticity, for example, of the orbit of Mercury, could
in no way serve as a reason for choosing the interaction, say, in the form ∝ 1/rp. Another
understanding of the deviation of orbit from strictly elliptical had to be looked for, and it
was found within the framework of general relativity. Perhaps, finding themselves in a
similar situation, Hirano and Utsu should not have immediately abandoned the excellent
Omori law, but should have looked for other explanations for the deviation of the real flow
of aftershocks from strict hyperbolicity.
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6.2. Triggers

Deviations from the classical Omori law (1) are caused not only by the nonstationarity
of the parameters of the geological environment in the source, which we have expressed in
the form of a possible dependence of the deactivation factor on time. Deviations can occur
under the influence of so-called triggers, i.e., relatively small disturbances of geophysical
fields of endogenous or exogenous origin.

We point here to two endogenous triggers that we have recently discovered. Both are
aroused on the main shock. One of them has the form of a round-the-world seismic echo,
and the second represents free elastic oscillations of the Earth as a whole, excited by the
main shock. We have described both triggers in detail in a number of papers, so we will
restrict ourselves here to references [22–26].

Let us dwell on exogenous triggers in more detail. For a long time, the cosmic effects
on seismicity have been widely discussed, but there is still no agreement in the geophysical
community on the effectiveness of such impacts. The controversy about the influence of
geomagnetic storms on the global activity of earthquakes arises especially often (see, for
example, [27–30]). The question is really difficult. On the one hand, observations indicate a
correlation between seismicity and geomagnetic storms and a complex of electromagnetic
phenomena associated with them (see papers [31–37] and the literature cited therein). On
the other hand, the mechanism of the impact of geomagnetic storms on rocks, leading to
modulation of seismicity, is not entirely clear. In this regard, the idea of the magnetoplastic-
ity of rocks [32,33] seems to us very encouraging, but a discussion of this deep idea would
lead us far astray.

A wide class of exogenous triggers of anthropogenic origin is known. We will restrict
ourselves here to an indication of the weekend effect discovered in [38], and the so-called Big
Ben effect, or the effect of hour markers [39,40]. Both effects pose a difficult question for the
researcher about the global impact of the industrial activity of mankind on the lithosphere.

6.3. Triads

Apparently, the idea of a peculiar trinity of foreshocks, main shock, and aftershocks
in a sequence of tectonic earthquakes [41–43] was formed in seismology not without the
influence of mathematics, in which a binary relation between elements of a set can give
rise to a trichotomic relation. The trinity of foreshocks, main shock, and aftershocks was
proposed to be called the classical triad [44]. The magnitude of the main shock M0 is always
greater than the maximum magnitudes of foreshocks and aftershocks. The classical triad
satisfies the inequalities

M− < M+, (23)

and
N− < N+. (24)

Here M−(M+) and N−(N+) are the maximum magnitude and the number of fore-
shocks (aftershocks), respectively.

Quite often N− = 0, i.e., foreshocks are absent even before rather strong earthquakes.
Figure 4 illustrates this situation (the database and the plotting method will be described in
detail below). With regard to aftershocks, there is a stable opinion that after a sufficiently
strong earthquake, repeated tremors are always observed, i.e., N+ 6= 0.

In this section, we want to present rare but extremely interesting types of anomalous
triad, for which inequalities that are directly opposite to inequalities (23) and (24) hold [45].
These are the so-called mirror triads, for which M− > M+, N− > N+ and symmetric triads,
for which N− = N+. Moreover, N+ = 0 in a significant part of the mirror triads.

Mirror triads. Extensive literature is devoted to the experimental study of the classical
triads. We point here to work [21], since in the study of anomalous triads we used a
database and general methods of analysis similar to those used here in the study of classical
triads (see also [9]).
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We used data on earthquakes that occurred on Earth from 1973 to 2019 and were
registered in the world USGS/NEIC catalog of earthquakes (https://earthquake.usgs.gov;
last accessed on 30 April 2022). There were found N0 = 2508 main shocks with a magnitude
of M0 ≥ 6 and a hypocenter depth not exceeding 250 km. For each main shock, a circular
epicentral zone was determined by the formula lgL = 0.43M0 − 1.27, where the radius
of the zone L is expressed in kilometers [46]. According to our definition, the classical
triad is formed by earthquakes, which occurred in the epicentral zone in the interval of
±24 h relative to the moment of the main shock, provided that the inequalities (23), (24) are
satisfied. The total number of earthquakes was distributed among the members of the triad
in the following way: N− = 1105, N0 = 2398, N+ = 31865. Note that here and below N0 is
the number of main shocks. Figure 4 is based on truncated triads, in which there are no
foreshocks. The graph was constructed by the method of overlapping epochs, and the main
shock of the earthquake was used as a benchmark. For truncated triads, the distribution
looks like this: N− = 0, N0 = 2066, N+ = 21422. The distribution at N− 6= 0: N− = 1105,
N0 = 332, N+ = 10443. We see that in the presence of foreshocks, the activity of aftershocks
is higher than in the absence of foreshocks and the number of truncated triads significantly
exceeds the number of complete ones.

In the course of studying classical triads, the idea arose to make a selection of observa-
tional data by replacing inequalities (23), (24) with the opposite ones. As a result, it was
possible to find the mirror triads. Figure 5 shows the truncated mirror triads: N− = 237,
N0 = 156, N+ = 0. If N+ 6= 0, then N− = 1375, N0 = 104, N+ = 755.
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We see that mirror triads are relatively rare phenomenon. They appear about an order
of magnitude less frequently than classical triads. To make the picture of mirror triads
more visual, we will show Figure 6. It shows mirror triads in the range of main shocks
magnitude 5 ≤ M0 < 6. Here N− = 4189, N0 = 2430, N+ = 201.
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GTS. So, we found that there is a rare but rather interesting subclass of tectonic
earthquakes, in which the number of aftershocks in the interval of 24 h after the main shock
is significantly less than the number of foreshocks in the same interval before the main
shock. In many cases, there are no aftershocks at all. We asked the question: Are there
earthquakes with magnitudes M0 ≥ 6, neither before nor after which there are neither
foreshocks nor aftershocks? The search result was amazing. We have discovered a wide
variety of this kind of earthquake and named it Grande terremoto solitario (Italian), or GTS
for short [47]. In Figure 7, we see that the number of GTS (2460) is approximately equal to
the number of classical triads (2398).
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GTS arise spontaneously under very calm seismic conditions and are not accompanied
by aftershocks. This suggests an analogy between the GTS and the so-called “Rogue
waves” (or “Freak waves”)—isolated giant waves that occasionally emerge on a relatively
quiet ocean surface (e.g., see [48]). This analogy may prove to be quite profound, since
the spontaneous occurrence of pulses with anomalously high amplitudes is a common
property of the nonlinear evolution of dynamic systems [49].
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For completeness, we also present the data for the symmetric triads in which M0 ≥ 6
and N+ = N−: N− = 186, N0 = 121, N+ = 186. It is interesting to note that, formally, GTS
can be related to a variety of symmetric triads, since for them N+ = N− = 0.

Activation factor. Figures 5 and 6 shows that foreshocks in the mirror triad appear
to have a temporal distribution similar to the Omori distribution for aftershocks in the
classical triad. Let us dwell on this in more detail. We represent the classical Omori law [1]
in the simplest differential form

.
g = σ+. (25)

Here g = 1/n, n(t) is the frequency of aftershocks, t > 0, the dot above the symbol
means time differentiation, σ+ is the so-called deactivation factor of the earthquake source,
“cooling down” after the main shock (see [3,8,21]). Suppose that for foreshocks of the mirror
triad, the evolution law (25) is fulfilled with the replacement of σ+ by σ−. It is natural to
call the σ− value the activation factor.

In this paper, we will limit ourselves to presenting the interesting Figure 8. It shows
the generalized evolution of foreshocks and aftershocks in symmetric triads satisfying the
condition 5 ≤M0 < 6. Here N− = 1050, N0 = 742, N+ = 1050. The top panel shows an
amazing mirror image. In the bottom panel, we have shown the variations of the σ− and
σ+ functions as the first step towards studying the activation and deactivation coefficients
of an earthquake source in mirror triads. (For the procedure for calculating σ±, see [8]).
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Origin of mirror triads. In conclusion of this section, we would like, with all the
necessary reservations, to express a careful judgment on the question of the origin of
mirror triads. Let us assume that a system of faults in a certain volume of rocks is under the
influence of a slowly growing total shear stress τ. Threshold tension τ∗ at which destruction
occurs, i.e., the sides of the fault shift and a rupture occurs, generally speaking, is the lower,
the larger the linear dimensions of the fault l:

τ∗ = Cl−m. (26)
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Here C is the dimensional coefficient of proportionality, depending on the properties
of rocks in the selected volume, m > 0. Then, the largest fault reaches the threshold
first. Its destruction is manifested in the form of the main shock of an earthquake with a
magnitude M0.

If the C parameter is uniformly distributed over the source volume, then foreshocks
do not arise. Aftershocks appear due to the fact that after the main shock, the general
external stress is partially removed, and the remaining stress is redistributed in a complex
way throughout the volume. The local over-tensions arise, in such a way that smaller faults
than the one that generated the main shock can be activated and give repeated tremors.
This is how we can imagine the emergence of a shortened classical triad.

In some cases, the specific distribution of faults in terms of l and the distribution of
local stresses may turn out to be such that not a single aftershock occurs. It is possible that
such a situation occurs when the GTS is excited.

The appearance of the mirror triad can be understood if we assume that the parameter
C is not uniformly distributed over the volume, or rather, that there is a strong scatter in the
C(l) values. Then a situation is possible when, before the largest fault is destroyed, smaller
faults are activated, and foreshocks appear. A triad of tectonic earthquakes will appear.
Whether it will be classical or mirror-like depends on the distribution of faults by the value
of l, on the dispersion of the C(l) coefficient, and on the mosaic of local stresses that arose
after the main shock.

As a summary, we point out that classical (normal) triads make up approximately 85%
of all triads. Anomalous triads account for 15%, with mirrored, 10% and symmetrical, 5%.
In this calculation, we excluded the GTS, which seem to form a special set of earthquakes.
In the class of tectonic earthquakes, we found a subclass of the so-called mirror triads. A
specific property of mirror triads is that, in contrast to classical triads, in which the number
of aftershocks is greater than the number of foreshocks, in mirror triads the number of
aftershocks is less than the number of foreshocks in the interval 24 h before and 24 h after
the main shock. In many cases, there are no aftershocks at all. In addition to this, strong
solitary earthquakes were discovered, which are not preceded by foreshocks, and after
which there are no aftershocks.

The mirror triads, these ghosts of the classical triads, are not only curious in themselves,
but can most decisively influence our understanding of the alternative possibilities of the
dynamics of lithosphere, leading to catastrophic earthquakes. In particular, we face a
fundamental problem, the essence of which is to find the physical and geotectonic reasons
for the apparent predominance of truncated classical triads in the seismic activity of
the Earth.

Concluding the discussion, we want to make a judgment, perhaps controversial, that
Omori’s law, like no other, gives us the opportunity to realize the uncertainty, incomplete-
ness, and, in a certain sense, immaturity of the physics of earthquakes. So far, it is still
possible and, in reality, there is a wide range of opinions on the unresolved issues of the
Earth’s seismicity. So far, everyone, in accordance with their idea of the nature of cognition,
can see in the Omori law either an empirical formula convenient for approximating obser-
vations, or an indication of the deep physical meaning of hyperbolicity in the frequency of
aftershocks after a strong earthquake.

7. Conclusions

We will deviate from tradition and, instead of simply listing the results of the work
(which is still far from complete), we will briefly present some prospects of the research
that we propose to carry out in the near future. The study will be devoted to the geometro-
dynamics of a tectonic earthquake source. We proceed from the fact that in the study of
earthquakes some geometrically visual representations and considerations are necessary,
and that analytics alone is insufficient. Representing the source as the interior of the convex
hull of a point manifold of aftershocks, we have outlined a program whose purpose is to
reduce the mosaic of very complex, intricate realities of the evolving source to geometric
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objects. An interesting object is the space–time trajectory of the shell’s center of gravity. The
curvature of the envelope surface of the epicenters in dynamics and other geometrically
visual images can also turn out to be quite interesting. As conceived, the geometrodynamics
will become a source of new ideas for the development of the phenomenological theory
of earthquakes.

However, let us return to the work presented by us and try to make some summary of
all the results. The general conclusion is as follows: the methodological approach based
on differential equations of evolution opens up new possibilities for the analysis of experi-
mental material. The phenomenological equations of evolution proposed by us allows for
the posing of inverse problems of the source physics and makes it possible to formulate
unexpected questions regarding the dynamics of earthquakes. The phenomenological
theory, a sketch of which we have given here, not only enriches the system of ideas about
the source, but, we hope, indicates the possibility of searching for approaches to solving
problems of a fundamental nature.

We are fully aware of the fact that neither the totality of facts, even if it is represented
by a set of empirical formulas, nor a logically consistent phenomenological theory, by itself,
lead us to a deep penetration into the essence of earthquakes. A deep understanding would
be much more facilitated by a theory based on the fundamental laws of physics, taking
into account the characteristics of the geological environment. Theoretical constructions
of this kind are known, but for a completely understandable reason they refer only to
individual aspects of the phenomenon, and not to the phenomenon as a whole. Under
these conditions, it is reasonable and natural to consistently continue the development
of the phenomenological theory of earthquakes, the foundations of which were laid by
Fusakichi Omori.
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