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Abstract: We determined an antibiotic resistance mechanism in the eastern region, KSA, and the
genetic factor clonal relatedness within Gram-negative bacteria. During our retrospective study, a total
number of 29 E. coli ESBL producer strains were isolated for patients visiting King Fahad Hospital,
Al-Ahsa, KSA. The bla genes were detected via PCR and identified via sequencing. Associated
plasmid-mediated quinolone resistance genes, as well as int1 and int2 genes, were also studied.
Phylogenetic groups, the ST131 clone, virulence factors, and PFGE were also checked. The blaCTX-M-9

(3.7%), blaCTX-M-27 (22.2%), and blaCTX-M-15 (77.8%) genes were identified; however, the blaCMY-42

(7.4%) gene was recorded for the first time in KSA. The qnrS1 gene was found in 44.4% of strains,
and among them, 50% concomitantly harbored the aac(6′)Ib-cr. The int1 gene was detected in 25.9%
strains; nonetheless, the int2 gene was found in 7.4% of isolates. The strains belonged mainly to the B2
and D phylogroups. PFGE showed unrelated patterns. Some isolates belonged to the pandemic clone
ST131. We describe a large dissemination of antibiotic resistance to third-generation cephalosporins
in the eastern region, KSA, with the occurrence of the blaCMY-42 gene. The clone ST131 seems to be
the principal contributor for blaCTX-M-15 gene spread.

Keywords: antibiotic resistance; ESBL; E. coli; CTX-M-15; CMY-42; ST131; KSA

1. Introduction

Secondary infections and organ failure are the graver consequences observed world-
wide during COVID-19, causing a high mortality rate [1]. Secondary infections specifically
associated with SARS-CoV-2 are still poorly known; however, many studies have shown
that co-infection factors include Salmonella, Shigella, and E. coli [2–4]. On the other hand,
human extra-intestinal diseases, including urinary tract infection (UTI), bacteremia, and
meningitis can be caused by a group of pathogens such as Escherichia coli [5]. E. coli, a
producer of ESBLs, is recorded among the six highest multi-resistant germs that are par-
ticularly curable with only a few effective drugs [6]. It is frequently correlated with high
healthcare costs, morbidities, and mortalities [7,8]. In 2017, the estimated number of critical
cases of infection with pathogens producing ESBLs was about 200,000 with 9100 deaths;
however, the total healthcare cost was estimated to be USD 1.2B [9]. Furthermore, numer-
ous investigations have confirmed that the ESBL, exhibited among E. coli, is the major
mechanism reported for the β-lactam resistance [10,11]. Over the last two decades, the
fast diffusion of ESBLs has emerged globally, with the development of a worldwide out-
break being a powerful menace to human health, while continuous surveys and molecular
characterizations of these strains have been conducted in healthcare units.
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The discovery of pharmaceutical compounds with new antibacterial properties used
to fight these bacterial infections seems to have been dropped, due to the vicious circle of
new resistance for each new antibiotic discovered [12]. On the other hand, the high number
of intra-travelers and extra-travelers in KSA has contributed to the wide dissemination
of antibiotic resistance, making antibiotic prescriptions a complicated process, especially
when it is due to bacterial co-infections or complications in healthcare units for critical
clinical cases, particularly throughout the COVID-19 pandemic [13].

The spread of ESBLs is related to the diversity of enzymes and transferable genetic
elements, and the capacity for a large spread of clones [14]. Indeed, a significantly large
amount of published data in different countries [15] has indicated that the ST131 clone
producing CTX-15 was associated with noticeable epidemiological changes in hospitals and
communities for infectious diseases [16]. In KSA, a few epidemiological data on pathogens
producing ESBLs were given, and seemed to be mainly focused on Riyadh and Dammam.

In this observational study, we determined the implication of ESBL genetic factors and
plasmids. We assessed the clonal relatedness and virulence factors among a collection of
E. coli samples collected between November 2016 and March 2017 in King Fahad Hospital
(KFH), Al-Ahsa in KSA.

2. Materials and Methods
2.1. Study Design

The research was observational, cross-sectional, and retrospective. Convenience
sampling for 5 months during the winter season between November 2016 and March 2017
was utilized (Figure 1). The sample size was calculated using Statdirect software version 26
(CI 95%). For inclusion criteria, only E. coli strains and positive ESBLs were maintained
in the study. However, the exclusion criteria were the high sensitivity to cephalosporin of
third-generation (C3G), non-ESBL producers, and not an E. coli strain. EC10 and EC13 were
excluded for a loss of stable C3G resistance characteristics after a few generations.
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Figure 1. Study design flow diagram (records were approved after repeated antibiograms and
synergy tests. Results were compared to our inclusion criteria.).

2.2. Antimicrobial Susceptibility Tests and Cefotaxime Resistance Transfer Assays

Antimicrobial susceptibilities were determined by conducting the disk diffusion tech-
nique according to the European Committee on Antimicrobial Susceptibility Testing guid-
ance (CA-SFM/EUCAST, 2016). A total of 22 antibiotics (Bio-Rad, Marnes-la-Coquette,
France) were used according to the CA-SFM guidelines (amoxicillin/clavulanic acid, cef-
tazidime, cefotaxime, cefoxitin, cefepime, ertapenem, nalidixic acid, ciprofloxacin, sul-
famethoxazole/trimethoprim, tetracycline, minocycline, gentamicin, tobramycin, netilmicin,
amikacin, norfloxacin, tigecycline, colistin, nitrofurantoin, fosfomycin, chloramphenicol,
and aztreonam). The minimum inhibitory concentration was determined for cefotaxime
and ceftazidime using the agar diffusion method, following the Clinical and Labora-
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tory Standards Institute. ESBLs were distinguished using the test of synergy (TS) within
amoxicillin/clavulanic acid and ceftazidime, cefotaxime, aztreonam, or cefepime (with
and without cloxacillin at 250 mg/L). The control strains used were ATCC700603 and
ATCC25922 (EUCAST, 2015). Conjugation experiments utilizing E. coli J53 (Rifampin re-
sistant) as a receiver were performed to assess the transferability of C3G resistance. Our
isolates were initially selected on Mueller Hinton (MH) agar (Oxoid Ltd., Basingstoke, UK)
plates incorporating rifampicin within 400 mg/L. Resistance transfer experiments were
implemented on brain–heart infusion broth (BHI) (Oxoid Ltd., Basingstoke, UK) for 18 h
at 37 ◦C, and the obtained transconjugants were grown on MH agar plates after adding
both cefotaxime (2 mg/L) and rifampicin (400 mg/L). The transconjugants’ antimicrobial
susceptibilities were tested using a previously mentioned method. The strain origins were
recorded (Table 1). Frequencies were calculated using SPSS software version 26.

2.3. Characterization of Antibiotic Resistance Genes

The strains exhibiting positive TS were evaluated via PCR for the occurrence of blaTEM,
blaSHV, blaCTX-M, blaPER, blaGES, and blaVEB genes (Table 2). Furthermore, the screenings
for cephalosporinases were aimed at blaFOX, blaACC, blaCIT, blaDHA, blaEBC, and blaMOX
genes, as described previously (Dallenne et al., 2010). Amplified DNA fragments were
sequenced, applying a DNA sequencer (ABI PRISM 3130, Applied Biosystems, Foster City,
CA, USA) [17], and then compared in the GenBank database.

2.4. Quinolone Resistance Genes, Integrons, and Plasmid Incompatibility Groups

Quinolone resistance genes (QR) were performed via multiplex PCR assays [18]. The
screened genes are listed in Table 3, as well as integrase genes [19]. Furthermore, plasmid
incompatibilities groups (Inc.) were established (Table 4) as described [20].

2.5. Phylogenetic Analysis, Genetic Relatedness, and ST131 Identification

Triplex PCRs for the phylogenetic groups A, B1, B2, and D, respectively, were screened [20].
Furthermore, virulence genotypes encoding toxins, invasins, adhesins, and siderophores
were assessed, applying multiplex PCR (Table 3). The control isolates CFT073 and J96 were
used [5,21,22]. The XbaI restriction enzyme was used for Pulsed-Field Gel Electrophoresis
(PFGE), it was performed to assess the clonal correlation of different isolates, as reported
previously [23]. ST131 was researched using an O25b-specific PCR method, with pabB and
trpA allele-specific primers for the B2 phylogenetic group strains [24].

Table 1. Patients’ demographic data and specimen types included in our study.

Variables Numbers Percentage (%)

Gender Male 13 48.1
Female 14 51.9

Age ≤37 5 18.5
38–55 12 44.4
56–73 6 22.2
74+ 4 14.8

Specimen Sputum 2 7.4
Surgical tissue 2 7.4

Urine 14 51.9
Wound 9 33.3

2.6. Ethical Approval

The deanship of scientific research at King Faisal University, Al-Ahsa, KSA approved
the study (ref. no. EA000528). The information and details collected were confidential.
No personal information was shared. The study was a secondary analysis to a routine
laboratory test.
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3. Results
3.1. Antibiotic Susceptibilities and Cefotaxime Resistance Transfer Assays

During the winter season, the patterns of E. coli ESBL producers were 51.9% female, the
mean age was 54.78, with 44.4% aged between 39 and 55 years; and urine was the prevalent
specimen type, at 51.9% (Table 1). The multidrug resistance characterization indicated the
production of both ESBLs and non-ESBLs among our collection (Table 2). A high resistance
rate for the tested antibiotics was observed for amoxicillin/clavulanic acid, cefotaxime, and
ceftazidime (Table 2). However, all the strains were susceptible to amikacin, colistin, and
carbapenems. The isolates were resistant to gentamicin (18.5%; 5/27), tobramycin (33.3%;
9/27), netilmicin (7.4%; 2/27), nalidixic acid (100%; 27/27), ciprofloxacin (88.8%; 24/27),
tetracycline (55.5%; 15/27), minocycline (14.8%; 4/27), fosfomycin (100%; 27/27), chlo-
ramphenicol (70.3%; 19/27), and trimethoprim/sulfamethoxazole (85.2%; 23/27) (Table 2).
ESBL phenotypes were found in 26 isolates, and plasmidic cephalosporinases (pAmpC)
were identified in two strains. However, one strain co-produced both an ESBL and a
cephalosporinase. A successful transfer of cefotaxime resistance was detected for only
12 isolates (Table 5).

Table 2. E. coli strains characteristics and associated antibiotic resistances.

Strain β-Lactam Resistance Phenotypes Detected * Non-β-Lactam Resistance Phenotypes Detected *

EC 1 CAZ, CTX, FEP NAL, CIP, TET, FOS, SXT
EC 2 AMC, CAZ, CTX, FEP TOB, NAL, CIP, FOS, CHL, SXT
EC 3 AMC, CTX, FEP NAL, TET, FOS, CHL, SXT
EC 4 AMC, CTX NAL, CIP, TET, FOS, CHL, SXT
EC 5 AMC, CTX, FEP NAL, TET, MNO, FOS, CHL, SXT
EC 6 AMC, CAZ, CTX, FEP NAL, CIP, TET, MNO, FOS, CHL, SXT
EC 7 AMC, CTX NAL, CIP, FOS
EC 8 AMC, CAZ, CTX, FOX TOB, NAL, CIP, TET, MNO, FOS, CHL, SXT
EC 9 AMC, CAZ, CTX, FEP NAL, CIP, FOS, CHL, SXT

EC 11 AMC, CAZ, CTX, FEP GMN, TOB, NAL, CIP, TET, FOS, SXT
EC 12 AMC, CAZ, CTX, FEP NAL, FOS, SXT
EC 14 AMC, CAZ, CTX, FEP GMN, TOB, NET, NAL, CIP, TET, FOS, CHL, SXT
EC 15 AMC, CTX, FEP NAL, CIP, FOS, CHL, SXT
EC 16 AMC, CAZ, CTX, PEP GMN, TOB, NAL, CIP, TET, FOS, CHL, SXT
EC 17 AMC, CTX, FEP NAL, CIP, TET, FOS, CHL, SXT,
EC 18 CAZ, CTX, FEP NET, NAL, CIP, FOS, CHL,
EC 19 AMC, CTX, FEP NAL, CIP, FOS
EC 20 CTX, FEP NAL, CIP, FOS, SXT
EC 21 AMC, CAZ, CTX, FEP NAL, CIP, TET, MNO, FOS, SXT
EC 22 AMC, CTX NAL, CIP, TET, FOS, CHL, SXT
EC 23 AMC, CTX NAL, CIP, FOS, CHL, SXT
EC 24 AMC, CTX TOB, NAL, CIP, FOS, CHL, SXT
EC 25 AMC, CTX, FEP TOB, NAL, CIP, FOS, SXT
EC 26 AMC, CTX, FEP NAL, CIP, TET, FOS, CHL
EC 27 AMC, CAZ, CTX, FEP GMN, TOB, NAL, CIP, TET, FOS, CHL, SXT
EC 28 AMC, CAZ, CTX, FEP GMN, TOB, NAL, CIP, TET, FOS, CHL, SXT
EC 29 AMC, CTX, FOX NAL, CIP, FOS, CHL, SXT

* AMC: amoxicillin/clavulavic acid (30 µg); CAZ: ceftazidime (10 µg); CTX: cefotaxime (30 µg); FOX: cefoxi-
tine (30 µg); FEP: cefepime (30 µg); NAL: nalidixic acid (30 µg); CIP: ciprofloxacin (5 µg); SXT: sulfamethoxa-
zole/trimethoprim (25 µg); TET: tetracycline (30 µg); MNO: minocycline (30 µg); GMN: gentamicin (10 µg); TOB:
tobramycin (10 µg); NET: netilmicin (10 µg); FOS: fosfomycin (50 µg); CHL: chloramphenicol (30 µg).

3.2. Characterization of Antibiotic Resistance

The CTX-15 enzyme was found in 77.8% (21/27) strains; however, CTX-27 was
recorded in 22.2% (6/27), and CTX-9 β-lactamase was less frequently presented, with
only 3.7% (1/27) of the strains. The blaTEM-1 gene was identified in 74.1% (20/27) strains,
while the blaSHV-1 gene was detected in 18.5% (5/27) strains (Table 1). The gene sets
blaCMY-42/ blaCTX-M-15/blaSHV-1 and blaCMY-42/blaTEM-1/blaSHV-1 were identified as co-ESBL
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producers. The blaCTX-M-15/blaTEM-1 gene association was observed for 48.14% (13/27)
of the strains, while the blaCTX-M-27/blaTEM-1 was detected in 11.1% (3/27). Both the
blaCTX-M-15/blaSHV-1 genes were seen in 7.4% (2/27) of the strains. The association of
blaCMY-42/ blaCTX-M-15/blaSHV-1, blaCTX-M-15/blaCTX-M-27/blaTEM-1, blaCTX-M-9/blaCTX-M-27/
blaTEM-1, blaCTX-M-15/blaTEM-1/blaSHV-1, and blaCMY-42/blaTEM-1/blaSHV-1 genes was reported
in 3.7% for each set (1/27) (Table 3).

Table 3. Molecular characterization, virulence profiles, and virulence scores of E. coli strains.

Strains bla and PMQR* Genes Identified Virulence Profile Virulence Score

EC 1 blaCTX-M-15, qnrS1 fimH-papGII-iha-iutA-traT-malX-usp-ompT 8
EC 2 blaCMY-42, blaCTX-M-15, blaSHV-1 fimH-papGII-iutA-malX 4
EC 3 blaCTX-M-15, blaCTX-M-27, blaTEM papGII-ompT 2
EC 4 blaCTX-M-27 fimH-papGII-iha-malX-usp-ompT 6
EC 5 blaCTX-M-15, blaTEM-1 malX-ompT 2
EC 6 blaCTX-M-15, blaTEM-1 papGII-fyuA-malX-ompT 4
EC 7 blaCTX-M-15, qnrS1 fimH-papGII-iha-iutA-kpsMTII-malX-usp-ompT 8
EC 8 blaCMY-42, blaTEM-1, blaSHV-1, qnrS1, aac(6′)Ib-cr fimH-papGII 2
EC 9 blaCTX-M-15, blaTEM-1 papGII-malX 2

EC 11 blaCTX-M-15, blaSHV, qnrS1 papGII-iha-traT-malX-usp-ompT 6
EC 12 blaCTX-M-15, qnrS1, aac(6′)Ib-cr papGI-iha-traT-malX-usp 5
EC 14 blaCTX-M-15, blaTEM-1 papGIII-malX-usp-ompT 4
EC 15 blaCTX-M-15 papGII-iha-usp-ompT 4
EC 16 blaCTX-M-15, blaTEM-1, blaSHV-1 papGII-iha-iutA-traT-usp-ompT 6
EC 17 blaCTX-M-15, blaTEM-1 fimH-papGII-iha–iutA-ompT 5
EC 18 blaCTX-M-15, blaTEM-1 fimH-iha-iutA-kpsMTII-malX-usp-ompT 7
EC 19 blaCTX-M-15, blaTEM-1, qnrS1 fimH-iha-iutA-kpsMTII-malX-usp-ompT 7
EC 20 blaCTX-M-27, blaTEM-1, qnrS1 fimH-papGII-iha-traT-usp-ompT 6
EC 21 blaCTX-M-15, blaTEM-1, qnrS1 fimH-iha-kpsMTII-usp-ompT 5
EC 22 blaCTX-M-27, blaTEM-1 fimH-papGII-iha-usp-ompT 5
EC 23 blaCTX-M-27, blaTEM-1 papGII-ompT 2
EC 24 blaCTX-M-15, blaTEM-1, qnrS1, aac(6′)Ib-cr - -
EC 25 blaCTX-M-15, blaSHV-1 fimH-papGII-iha-iutA-malX-usp-ompT 7
EC 26 blaCTX-M-15, blaTEM-1 fimH-papGII-iutA-ompT 4
EC 27 blaCTX-M-15, blaTEM-1, qnrS1, aac(6′)Ib-cr papGI-papGII-iha-kpsMTII-hlyA traT-usp-ompT 8

EC 28 blaCTX-M-15, blaTEM-1-1, qnrS1, aac(6′)Ib-cr fimH-papGI-iha-iutA-kpsMTII-traT-malX-usp-
ompT 9

EC 29 blaCTX-M-9, blaCTX-M-27, blaTEM-1, qnrS1,
aac(6′)Ib-cr fimH-papGII-malX-usp 4

* PMQR: plasmid-mediated quinolone resistance.

3.3. Quinolone Resistance Genes, Integrons, and Plasmid Incompatibility

The qnrS1 gene was found in 44.44% (12/27) of the strains. The aac(6′)Ib-cr variant was
observed in 22.22% (6/27) of the strains. The genes int1 and int2 were reported, respectively,
in 25.9% (7/27) and 7.4% (2/27) for our isolates (Table 3). A total of 48.14% (13/27) of
the strains showed a plasmid replicon type. Only IncF (11.1%; 3/27) and IncFIA (18.5%;
5/27) were identified among our collection; moreover, both co-occurred in 18.5% of isolates
(5/27) (Table 3). The transfer of the blaCTX-M-15/blaTEM-1/qnrS1/aac(6′)Ib-cr and int1 genes
has been frequently observed (Table 4). Similarly, the IncF and IncFIA plasmids were also
successfully transmitted through conjugation (Table 5).
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Table 4. Identification of associated plasmid-mediated int1 and int2 genes, phylogenetic groups,
ST131 clone, and virulence factors and pulsotypes.

Strains int Genes PRT PG PFGE

EC 1 - F B2 P6
EC 2 int1 F D P2
EC 3 int2 FIA D P20
EC 4 - - B2 P11
EC 5 - - A P7
EC 6 - - B2 P21
EC 7 - - D P9
EC 8 int2 FIA-F B1 P10
EC 9 int1 - B2 P8

EC 11 - F B2 P14
EC 12 int1 FIA-F B2 P19
EC 14 - - B2 P8
EC 15 int1 FIA B2 P18
EC 16 int1 - B2 P19
EC 17 - FIA B2 * P1
EC 18 - FIA B2 * P1
EC 19 - FIA B2 * P1
EC 20 - - B2 P16
EC 21 - - B2 P15
EC 22 - - B2 P16
EC 23 - - D P12
EC 24 - FIA-F D P5
EC 25 - - B2 P4
EC 26 - - A P13
EC 27 int1 FIA-F B2 P3
EC 28 int1 FIA-F B2 P3
EC 29 - - B2 P1

-: Negative character; *: strain belongs to ST131 clone; P: pulsotype; PG: Phylogenetic Group; PRT: Plasmid
Replicon Type; PFGE: Pulsed-Field Gel Electrophoresis.

3.4. Genetic Relationship, Phylogenetic Groups, and Identification of the ST131 Clone

The B2 phylogenetic group was identified in 70.4% (19/27); it was considered as
the main group in our study. Further, the phylogroups D, A, and B1 were presented,
respectively, in 18.5% (5/27), 7.4% (2/27), and 3.7% (1/27) of isolates. Three strains amongst
the B2 phylogenetic group were positive for the ST131 clone (Table 4). PFGE (Pulsed-Field
Gel Electrophoresis) analysis revealed 21 different DNA profiles (P1 to P21) among the
27 isolates. Each pulsotype, P8, P16, and P19 included two isolates, and the pulsotype P1
contained three B2-ST131 isolates. The remainder of the isolates were unrelated (Table 4,
Figure 2).

3.5. Occurrence of Virulence Genes

Virulence genes were distributed as follows: fimH (55.5%, 15/27), papGI (11.1%, 3/27),
papGII (74.1%, 20/27), fyuA (3.7%, 1/27), iha (59.3%, 16/27), iutA (37.1%, 10/27), ompT
(77.7%, 21/27), traT (25.9%, 7/27), kpsMTII (22.2%, 6/27), malX (55.5%, 15/27), and usp
(62.9%, 17/27). The virulence scores varied from 0 to 9 (median: 5).
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Table 5. Positive transconjugants compared with donor strains.

Strains Non-β-Lactams Resistance
Phenotypes Detected bla and PMQR Genes int Genes PRT

EC 1 NAL, CIP, TET, FOS, SXT blaCTX-M-15, blaTEM, qnrS1 - F
* Tc EC 1 TET blaCTX-M-15 - F

EC 7 NAL, CIP, FOS blaCTX-M-15, qnrS1 - -
Tc EC 7 - blaCTX-M-15 - -

EC 8 TOB, NAL, CIP, TET, MNO, FOS,
CHL, SXT

blaCMY-42, blaTEM, blaSHV, qnrS1,
aac(6′)Ib-cr int2 FIA-F

Tc EC 8 TET, MNO blaCMY-42, blaTEM, qnrS1 - FIA

EC 11 GMN, TOB, NAL, CIP, TET, FOS, SXT blaCTX-M-15, blaSHV, qnrS1 - F
Tc EC 11 TET blaCTX-M-15 - F

EC 12 NAL, FOS, SXT blaCTX-M-15, qnrS1, aac(6′)Ib-cr int1 FIA-F
Tc EC 12 - blaCTX-M-15 int1 FIA

EC 19 NAL, CIP, FOS blaCTX-M-15, blaTEM, qnrS1 - FIA
Tc EC 19 - blaCTX-M-15 - FIA

EC 20 NAL, CIP, FOS, SXT blaCTX-M-27, blaTEM, qnrS1 - -
Tc EC 20 SXT blaCTX-M-27, blaTEM, qnrS1 - -

EC 21 NAL, CIP, TET, MNO, FOS, SXT blaCTX-M-15, blaTEM, qnrS1 - -
Tc EC 21 TET, MNO, SXT blaCTX-M-15, blaTEM, qnrS1 - -

EC 24 TOB, NAL, CIP, FOS, CHL, SXT blaCTX-M-15, blaTEM, qnrS1, aac(6′)Ib-cr - FIA-F
Tc EC 24 TOB, CHL, SXT blaCTX-M-15, blaTEM, qnrS1, aac(6′)Ib-cr - FIA-F

EC 27 GMN, TOB, NAL, CIP, TET, FOS,
CHL, SXT blaCTX-M-15, blaTEM, qnrS1, aac(6′)Ib-cr int1 FIA-F

Tc EC 27 TET blaCTX-M-15 int1 F

EC 28 GMN, TOB, NAL, CIP, TET, FOS,
CHL, SXT blaCTX-M-15, blaTEM, qnrS1, aac(6′)Ib-cr int1 FIA-F

Tc EC 28 TET, SXT blaCTX-M-15, blaTEM, qnrS1 int1 FIA-F

EC 29 NAL, CIP, FOS, CHL, SXT blaCTX-M-9, blaCTX-M-27, blaTEM, qnrS1,
aac(6′)Ib-cr - -

Tc EC 29 CHL, SXT blaCTX-M-9, blaTEM, qnrS1 - -

* Tc: transconjugant; -: negative character; NAL: nalidixic acid; CIP: ciprofloxacin; SXT: trimethoprim-
sulfamethoxazole; TET: tetracycline; MNO: minocyclin; GMN: gentamicin; TOB: tobramycin; FOS: fosfomicin;
CHL: chloramphenicol; PMQR: plasmid-mediated quinolone resistance; PRT: plasmid replicon type.
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4. Discussion

The aim of our investigation was to determine the ESBL producer-relevant agents
and to decrypt their genetic factors. The ubiquity of ESBLs produced by Enterobacteriaceae,
particularly with E. coli (ESBL-EC), has increased worldwide throughout the past two
decades [25]. In our investigation, E. coli isolates were collected from various samples.
Several cefotaxime-resistant strains were detected. A total of 92.59% (25/27) strains were
considered as being ESBL producers. However, 3.7% (1/27) of isolates produced AmpC β-
lactamases. Indeed, this strain contained both ESBL and AmpC β-lactamase enzymes. This
rate of ESBL-producer isolates was similar to those reported previously [7] from Al-Abha
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and Riyadh, KSA [26,27]. The prevalence rates of ESBL-EC were 6.5% and 10.3% in 2002
and 2004, sequentially [8]. The preponderance rates were 15.4% and 4.5% for inpatients
and outpatients, respectively [28,29]

The multidrug resistance (MDR) was described for all isolates, even for quinolones,
aminosides, tetracycline, trimethorprim/sulfamethoxazole, fosfomicin, and chlorampheni-
col. MDR is frequent in E. coli; however, the high rates of resistance found for fosfomycin
in this study are uncommon in such strains. Conversely, fosfomycin susceptibility tests are
limited, since this agent is occasionally available in most clinical laboratories. Uncompli-
cated UTI is commonly treated in many countries with fosfomycin, whereas worldwide
attention has been oriented to sparing carbapenems in ESBL-producing strains. Fosfomycin
in combination with colistin was recommended for treating Enterobacteriaceae that were
resistant to carbapenems. A recent study from China [29] reported uropathogenic ESBL-
producing E. coli isolates that are resistant to fosfomycin. Indeed, fosfomycin resistance
was encoded by the fosA3 gene carried by a 54.2 Kb transferable plasmid also co-harboring
a blaCTX-M gene. The genetic characterization of fosfomycin resistance mechanisms and its
possible linkage to ESBL-encoding genes needs further investigation in KSA.

The typical TEM and SHV variants of ESBLs have declined during the past two decades
and were interchanged worldwide by the CTX-M group as the predominant ESBL group.
Similarly, the ESBLs generated in our strains harbored CTX-M β-lactamases. The blaCTX-M-15
(21/27), blaCTX-M-27 (5/27), and blaCTX-M-9 (1/27) genes were identified. The blaCMY-42 gene
was recorded in two strains; moreover, one isolate co-accommodated the blaCTX-M-15 gene.
The concomitant occurrence of ß-lactamase coded by the blaSHV-1 or blaTEM-1 genes was also
common in these isolates, as reported previously [30]. Our findings support other studies
from KSA showing the prevalence of a blaCTX-M15 type [26,31]. However, the blaCTX-M-9
and blaCTX-M-27 genes are prevalent in KSA, and low rates were reported [7,32]. It is also
important to know the occurrence of the blaCMY-42 gene, a CMY-2 variant, which was
present in two isolates of our collection. The blaCMY-42 was first described in E. coli [33],
and was then rarely reported and mainly found to be associated with blaNDM-5, blaSHV-12,
blaCTX-M-14, or blaCTX-M-15, as described in one isolate of our study. Presumably, we describe
an early case of blaCMY-42 harboring E. coli isolates in KSA [34].

The prevalent plasmid replicon group was found in resistant Enterobacteriaceae segre-
gated from both animals and humans holding incompatibility (Inc) group F (including FIA,
FIB, and FII replicons), and A/C, L/M, I1, HI2, and N [35,36]. Different blaCTX-M genes
are also combined with specific plasmid replicon types (IncN, I1, FII, and L/M) [36]. The
blaCTX-M-15 was primarily found on plasmids that involve FII and FIA replicons, and, to
a lesser extent, to IncI1, IncN, and IncA/C, as well as being on pir-type plasmids. Con-
cordantly, IncF (3/27) and IncFIA (5/27) plasmids were identified among our collection,
and both co-occurred in five isolates, indicating the possible localization of the blaCTX-M-15
gene on one of these plasmids. The concomitant transfer of the blaCTX-M-15 gene with IncF
and/or IncFIA plasmids for these strains supported this hypothesis. However, further
experiments (S1-PFGE hybridization) are needed to assess the exact genetic localization
of all bla genes. Both integrons belonging to classes 1 and 2, as well as the occurrence of
these plasmids, might explain the MDRs of our isolates, as reported previously [31,32]. A
significant proportion of our isolates were observed to belong to phylogroups D and B2.
This finding concurred with other studies; moreover, most of the ESBL-producing E. coli
are considered to be the main leading causes of extra-intestinal infections. Furthermore,
three CTX-15-producing E. coli strains positive for the B2 phylogroup belonged to the ST131
clone. The ST131 clone, known as the major pandemic clone, controlled the worldwide
dissemination of the β-lactamase CTX-15 type [35,37]. This clone has been also reported
previously in KSA [7].

Genetic relatedness assessed by PFGE revealed 21 pulsotypes, where P1 encompassed
three isolates, while pulsotypes P8, P16, and P19 contained two isolates. The clonally related
isolates were all of pulsotype B2, and all, except two of pulsotype P16, harbored identical



Appl. Sci. 2022, 12, 9964 10 of 12

β-lactamases. However, antimicrobial susceptibility, PMQR genes, integrons, plasmids,
and virulence genes contents were not mainly identical within the related isolates.

Taken together, despite the reduced isolate number, our study showed the dominance
of the CTX-15 enzyme among E. coli in KSA, and the occurrence of some clonal isolates
spreading within patients from different regions. ST131 was not the main clone in our
isolates; other lineages or plasmids contributed significantly to the spread of the CMY-
42 enzyme.

5. Conclusions

We describe the first report of CMY-42-producing E. coli isolates in the Kingdom. The
CMY-42 enzyme was identified among unrelated E. coli pulsotypes, as well as CTX-M-27,
CTX-15, and CTX-9. The ST131 seems to be a significant contributor for the spread of the
CTX-15 enzyme among our isolates. The IncF and/or IncFIA plasmids were identified
within the blaCTX-M-15 gene, as well as class 1 and class 2 integrons, showing their probable
horizontal transmission. The MDR phenotype associated with several virulence genes was
observed in our collection, showing a large dissemination of antibiotic resistance in the
eastern region. Our research could form a strong guide for clinicians who are interested in
the genetic factors of MDR.

The rigorous control of antibiotic therapy and the continuous surveillance of epidemio-
logic analysis are essential for limiting the resistance diffusion factor in the post-COVID-19
era, as well as fostering a better understanding of their dissemination process for better
oriented outcomes. The actual situation is very difficult due to the increased need for
non-pharmaceutical (sanitizers) and pharmaceutical (antibiotics) stressors used during the
COVID-19 era. Antibiotic resistance management within artificial intelligence and machine
learning may be powerful tools for helping decision makers to implement new solutions in
healthcare departments and medication prescriptions.
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