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Abstract: A dense sample point layout is the conventional approach to ensure the positioning
accuracy for fingerprint-based sound source localization (SSL) indoors. However, mass reference
point (RPs) matching of online phases may greatly reduce positioning efficiency. In response to this
compelling problem, a two-level matching strategy is adopted to shrink the adjacent RPs searching
scope. In the first-level matching process, two different methods are adopted to shrink the search
scope of the online phase in a simple scene and a complex scene. According to the global range of
high similarity between adjacent samples in a simple scene, a greedy search method is adopted for
fast searching of the sub-database that contains the adjacent RPs. Simultaneously, in accordance with
the specific local areas’ range of high similarity between adjacent samples in a complex scene, the
clustering method is used for database partitioning, and the RPs search scope can be compressed
by sub-database matching. Experimental results show that the two-level RPs matching strategy can
effectively improve the RPs matching efficiency for the two different typical indoor scenes on the
premise of ensuring the positioning accuracy.

Keywords: fingerprint-based sound source localization; two-level matching strategy; adjacent refer-
ence point searching; greedy search method; clustering method

1. Introduction

Sound source localization (SSL) has received significant research attention in the field
of audio signal processing, and it is widely used in intelligent robots, blind spot detection
and underwater detection [1–3]. What is more, microphone array SSL is a spatial spectrum
estimation problem for broadband short-time stationary signals, the research results of
which can also be used in mobile communication, sonar detection and radar detection.

Usually, traditional SSL methods can be divided into three categories: high-resolution
spectral estimation method [4], steered beamforming method [5] and time delay of arrival
(TDOA) method [6]. These methods can transform the spatial geometric relationship
between the sound source and the microphone array into a spatial spectrum, spatial
beam and TDOA, respectively, first and then work out the location of the sound source
accordingly. Due to the low computational complexity and hardware cost, the TDOA
SSL method is widely used in sound source location and tracking [7,8]. As a parametric
positioning method, the TDOA SSL method usually uses the space geometrical propagation
model to obtain the position of sound source [9–14]. In practice, the signal propagation
model should be simplified as follows:

(1) The sound source is a particle without size and shape.
(2) The signal propagates in a homogeneous space.
(3) The sound signal is omnidirectional.

The SSL methods based on a geometry model can achieve ideal results outdoors,
where the actual signal propagation model is similar to the idealized simplification model
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explained above. However, due to the complexity of the indoor environment, the ideal
signal propagation model may be altered by the multipath effect, shadowing effect, fading
effect and delay distortion caused by walls, floors, furniture and ceilings [15,16]. Meanwhile,
it is difficult to provide compensation for model distortion analytically due to the high
complexity of sound field characteristics indoors [17,18].

As a non-parametric localization method, fingerprint-based localization can locate
the target point by the matching between the real-time signal and the database that con-
tains the historical location information of the service area. This method can take full
advantage of the similarity of signal characteristics of adjacent samples in the service area
and effectively reduce the location error caused by the modelling error and measurement
error in the geometric model method indoors. Compared with the precise measurement
requirements and the stringent restraint of the application scenario for the parameter po-
sitioning method, avoiding sharp changes in the positioning environment, as the only
requirement for the fingerprint-based SSL method, it is much easier to be satisfied in
practical applications [19,20].

As the basis of fingerprint-based SSL indoors, the positioning database scale directly
affects the positional accuracy of the SSL system [21,22]. In practical applications, in order
to make the location fingerprint database better reflect the distribution characteristics
of the sound field, it is usually necessary to arrange a large number of sampling points
in the location service area. However, the matching calculation for searching adjacent
RPs from the large-scale database will greatly reduce the online positioning efficiency.
Therefore, the fingerprint-based SSL encountered difficulties in applications with high
real-time requirements such as mobile robot auditory positioning, indoor abnormal sound
source positioning and speaker positioning [23].

In order to improve the efficiency of fingerprint-based SSL indoors, various methods
are proposed to optimize the offline sampling process and the online positioning process.
For the offline sampling phase, Khalajmehrabadi et al. [24] adopted the sparse database
recovery method based on interpolation to reduce the initial RPs to improve the efficiency
of offline sampling. An interpolation is a mathematical tool for estimating the unknown
function value using available function values of other variables. Interpolation methods
for scattered data are widely implemented in mathematical, industrial and manufacturing
applications. Radial basis function (RBF) [25], linear [26], inverse distance weighting
(IDW) [27] and kriging [28] are well-known interpolation methods for positioning database
expansion. Due to the initial RP reduction, the interpolation methods can effectively
increase the collection efficiency in the fingerprint database [29]. However, since the virtual
RPs generated by the interpolation method still needed to participate in the adjacent RPs
matching, the interpolation method cannot obviously improve the efficiency of the online
positioning phase of the fingerprint-based SSL indoors.

Selective matching of the target point and the RPs can reduce the computation amount
of the online positioning procedure. Many studies consider dividing the database into
many sub-databases, and then selecting the sub-database that is most likely to contain
the adjacent RPs to reduce the computation amount for matching RPs [30]. Study [31]
introduces a variety of database partition methods based on coordinate grid division, which
can effectively improve the efficiency and stability of the fingerprint-based localization
method. Liu et al. [32] proposed a minimum enclosure method to realize the flexible
definition of the grid size in the coordinate grid division method. However, the coordinate
partitioning method may be affected by the subjective judgment of the operator, which may
lead to problems such as inconsistent database partitioning results and high positioning
errors caused by the mismatching of adjacent RPs.

According to the complexity of sound field characteristics, indoor position scenes can
be divided into simple and complex scenes. For a simple scene, the problem of adjacent
RPs searching can be regarded as a spatial distance optimization problem that satisfies the
optimal substructure. The local search algorithm is a kind of general algorithm that can
solve global optimization problems through a series of local optimization processes. The
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greedy search algorithm is a simple and efficient local search algorithm that can improve
search efficiency by avoiding the exhaustive exercises usually needed to find the optimal
solution. For complex indoor scenes, cluster analysis can automatically divide the different
RPs into the same sub-databases where samples have high similarity. Compared with
the coordinate partitioning method, the feature clustering partitioning method is more
consistent with the distributed rule of adjacent RPs [33].

In this paper, we deal with the issue of improving the localization efficiency of the
fingerprint-based SSL method. A two-level RPs matching strategy is proposed in this
paper to improve the search rate for the adjacent RPs. In the first-level matching process,
two methods are adopted to shrink the adjacent RPs search scope. For simple scenes,
a greedy search strategy is adopted for fast searching of the sub-database that contains
the adjacent RPs, and for complex scenes, the search scope can be compressed by sub-
databases matching based on the database partition by clustering method. The performance
of the proposed algorithms is evaluated by comparing them with the traditional linear
RPs matching method, and the practical experiment results verify the effectiveness of the
proposed method.

The rest of the paper is organized as follows: In Section 2, the general process of
fingerprinting acoustic localization is briefly introduced. In Section 3, the two-stage RPs
matching method is stated to improve the efficiency of SSL. In the first level search, the
greedy algorithm and the Fuzzy c-means clustering algorithm are proposed separately to
shrink the RPs search range of the second level search in the two different scenes indoors.
Section 4 presents the implementation details and evaluates the performance of the novel
methods from the results obtained. Finally, some conclusions are drawn in Section 5.

2. Fingerprint-Based SSL

As shown in Figure 1, the process of fingerprint-based SSL consists of two phases: the
offline sampling phase for database construction and the online positioning phase for vocal
target location estimation.
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Figure 1. Illustration of fingerprint-based SSL process.

2.1. Offline Sampling Phase

Generally, the offline phase includes three steps. First, the coordinates of the samples
are determined according to the environment and precise requirements of the positioning
service area. Then, the positioning signal is released at each sampling location and received
by the sound source positioning system with four microphones, M1, M2, M3 and M4, as
shown in Figure 1. Finally, the RPs are made up of the coordinates of samples and the
corresponding location features extracted from the positioning signal. The RPs are also
known as position fingerprints:

Sn=[Ln, Fn]
T , n = 1, 2, . . . , N. (1)
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where Sn corresponds to the fingerprint collected at the nth sampling point, and N is
the total quantity of the sampling point in the positioning service area; Ln=[xn, yn] and
Fn = [ f 1

n , f 2
n , · · · , f M

n ] mean the coordinates and the feature vectors of the nth RPs. M is the
total number of the positioning features and f m

n means the mth feature in feature vector Fn.
Sound intensity, frequency spectrum and time difference of arrival (TDOA) are closely

related features of sound source position [34–37]. Among them, TDOA is widely used in
real-time positioning for the characteristics of the low computational complexity and a
small amount of data [38]. In this work, there are four microphones in the system, and we
choose TDOA as the positioning feature. Thus Fn = [∆tn1, ∆tn2, ∆tn3]. ∆tni represents the
TDOA value of the received signal between the reference microphone and the other three
microphones at the ith reference point. We collect the fingerprint at each sampling point
and establish the positioning database defined as follows:

D=[S1, S2, , · · · , SN ] (2)

2.2. Online Positioning Phase

When the sound signals of the auditory target are observed by the SSL system, the
feature vector of the observed signal will be extracted and matched with each sample in
the positioning database. Then, the target position can be calculated by the estimation
algorithm through the adjacent RPs from the RPs matching process. Exactly the same
estimation algorithm is used in the RADAR system, the weighted k-nearest neighbour
(WKNN). Algorithm [39] is used for the SSL process in this paper:

l =
k

∑
i=1

ωiLi (3)

where l = (x̂, ŷ) is the positioning result of the auditory target, k is the number of adjacent
RPs and Li = (xi, yi) is the coordinates of the ith adjacent RPs. The according weight ωi of
the ith adjacent RPs can be calculated through the inverse distance weighting method as
follow:

ωi =
1/(disi + ε)

k
∑

j=1
1/(disj + ε)

(4)

where disi represents the Euclidean distance between the target point and the ith adjacent
RP in feature space. ε is a small random value for avoiding the denominator from being 0
(the disi may be 0 when the target point is very close to a certain sample point).

3. Two-Level Matching Method for Adjacent RPs Searching

Usually, empty rooms, halls, corridors or other scenes with open space or few ob-
stacles can be considered to be the typical simple scene for SSL. At the same time, home
and office environments, where the positioning space may be separated into relatively
independent regions by obstacles such as furniture and walls, etc., can be considered to be
the complex scene.

The sound field characteristics of simple and complex scenes are both analysed through
the pairwise correlation of the RPs in the positioning service area. As shown in Figure 2(a1),
72 RPs are uniformly distributed in the square positioning area without obstacles, and as
Figure 2(a2) shows, the correlation coefficient of each of the two RPs obviously decreases
with the increase in the distance. Take the ratio of correlation coefficient beyond 0.6 into
consideration, and as Figure 2(a3) shows, when the distance is within 1.5 m, most cross-
correlation values of two RPs are relatively high. However, when the distance is more
than 1.5 m, the ratio of the correlation value beyond 0.6 will decrease rapidly along with
increases in the distance. In the global scope of the simple scene, the correlation between
the RPs is relatively high in the small scope area and will decrease rapidly along with the
increase in the distance.
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As shown in Figure 2(b1), 64 RPs are distributed in the square positioning area with
4 desks. According to Figure 2(b2), when the physical distance of the RPs is within 1.5 m,
most of the according correlation coefficient can still reach 0.6, which is better than the
simple scene with the same distance. However, as Figure 2(b3) shows, when the physical
distance is beyond 2 m, the ratio of the correlation value beyond 0.6 shows obvious
fluctuations. This is because the correlation coefficient within each sub-positioning service
area separated by the physical plane becomes stronger, and the correlation coefficient
between different locations becomes weaker.
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Figure 2. The correlation coefficient value between RPs in two typical indoor positioning scenes:
(a1) setting of experimental environment for simple indoor positioning scene; (a2) relationship be-
tween correlation coefficient and distance of RPs in simple indoor positioning scene; (a3) the ratio of
the correlation value for RPs beyond 0.6 in simple indoor positioning scene; (b1) setting of exper-
imental environment for complex indoor positioning scene; (b2) relationship between correlation
coefficient and distance of RPs in complex indoor positioning scene; (b3) the ratio of the correlation
value for RPs beyond 0.6 in complex indoor positioning scene.

3.1. Adjacent Subset Searching Based on Greedy Algorithm

Greedy algorithm refers to choosing the best or most optimized option in each step
so as to bring about the best or optimized overall performance of the algorithm [40]. For
instance, in the problem of adjacent RPs searching, if the nearest RPs are chosen as the
searching center for each searching step, it can be regarded as a kind of greedy algorithm. A
greedy algorithm is particularly effective in solving the problem of the optimal substructure.
Optimal substructure means that the local optimum can determine the global optimum.
Put simply, the problem can be divided into sub-problems for a solution. The optimum for
the sub-problems can recur to the optimum for the final problem.

Adjacent RPs of the database refers to the RPs that are closest to the target point in the
feature space. Therefore, adjacent RP searching is a global optimization problem of spatial
distance essentially. As Figure 2 stated previously in Section 3, the TDOA characteristics
of samples are of high local correlation in a global range, and the correlation value will
rapidly decrease when the physical distance increases. Therefore, the search of adjacent
RPs basically meets the greedy rule of optimal substructure in the simple indoor scene. As
shown in Figure 3, the matching process of adjacent RPs based on a greedy algorithm is
composed of three parts.
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Figure 3. The RPs matching process based on a greedy algorithm.

First, the Euclidean distance between the RPs and the target point in the feature space
is selected as the objective function f (i), and an RP is randomly selected from the location
database D=[S1, S2, · · · , SN ]

T is appointed to be the first search center (i.e., the initial
optimal solution). Then, other solutions in the neighborhood of the optimal solution (i.e.,
the RPs near the search center) and the optimal solution itself constitute the current local
search database Dl :

Dl=[Sl
1, Sl

2, · · · , Sl
g]

T (5)

where Sl
i = [Ll

i , F l
i ] i = 1, 2, . . . , g. and g is the total number of samples in a locally

searched subset. We then calculate the objective function value of each solution in the local
search database Dl :

f (i) =
∥∥∥F − F l

i

∥∥∥
2

, i = 1, 2, . . . , g. (6)

where F is the feature vector of the positioning target and F l
i is the feature vector of the ith

element in the local search subset. We select the solution that minimizes the value of the
objective function as the new optimal solution:

c = Sarg mini∈{1,2,...,g} f (i) (7)

If the optimal solution no longer changes, the greedy search process will end. The
optimal solution of the current local search process will be the globally optimal solution (i.e.,
the nearest RPs of the target point). At the same time, the current local search subset Dl will
be the adjacent subset; otherwise, continue to repeat the search process of Equations (5)–(7).
At last, in the adjacent subset Dl , according to the distance disj between the target point F
and each RPs F l

j of subset Dl , select the adjacent RPs group Da for position estimation:

Da = Da ∪ Sarg minj∈{1,2,...,nc}disj
(8)

3.2. Adjacent Subset Searching Based on Clustering Method

The clustering method can classify datasets according to the similarity between sam-
ples and classify new sampling points. For fingerprint-based SSL, the clustering method
can be used to separate the positioning database into several sub-databases and classify
the pending target into a corresponding category. Then, the RPs matching range will be
reduced compared to the global linear matching method. The process of fingerprint-based
SSL using the clustering method is shown in Figure 4 in brief.
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Figure 4. The RPs matching process based on clustering analysis.

In many cases, it is difficult to classify the targets reasonably by the hard clustering
method such as the K-means algorithm, which was adopted in our previous work [41],
because the relationship between RPs in practice is vague and uncertain. In this case, the
soft clustering method can more scientifically and reasonably divide the database. As
a typical clustering method, the Fuzzy c-means algorithm can use fuzzy mathematics
to analyze the uncertainty of the sample properties, and the clustering partition will be
completed according to the membership degree of samples. For the RPs matching process
in the fingerprint-based SSL, the first-level searching (i.e., adjacent sub-database searching)
process based on the Fuzzy c-means method can be shown as follows:

Step 1: determine the number of sub-databases k, which means the positioning
database will be divided into k clusters.

Step 2: assign a membership degree to each cluster for each RP, which meets the
following conditions:

∑k
c=1 ucj = 1, 0 ≤ ucj ≤ 1, c = 1, 2, . . . , k. j = 1, 2, . . . , N. (9)

where ucj represents the membership degree of the RPj to cluster c, and the value is defined
between 0 and 1 (when the value is 1, the RP is exclusive to the cluster, c), and N is the total
number of RPs.

Step 3: calculate the clustering center and update the membership matrix of RPs.
Specifically, the objective function of the Fuzzy c-means algorithm is:

J =
k

∑
c=1

N

∑
j=1

(ucj)
γDc

j (10)

where Dc
j =

∥∥Fc
center − Fj

∥∥ represents the distance between the clustering center of cluster c
and RPj. The calculation method is the same as (6). γ is the weighted index, and its value
range is [1, ∞). In order to minimize the objective function, the Lagrange multiplier method
can be used to construct the function:

F(U,Φ,λ) =J + ∑N
j=1 λj(

k

∑
c=1

ucj − 1) =
k

∑
c=1

N

∑
j=1

(ucj)
γDc

j + ∑N
j=1 λj(

k

∑
c=1

ucj − 1) (11)
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where U = [ucj], Φ = [Fc
center], c = 1, 2, . . . , k. j = 1, 2, . . . , N., λj, is the lagrange multiplier,

and the constraint condition is (9). By differentiating the input parameters, the minimization
condition of the objective function can be translated into:

Fc =

N
∑

j=1
(ucj)

γFj

N
∑

j=1
(ucj)

γ
(12)

ucj =
1

k
∑

τ=1

( Dcj
Dτ j

)2/(γ−1)
(13)

Through Formula (12), the new clustering center U = [ucj], c = 1, 2, . . . , k. j =
1, 2, . . . , N. can be generated, and then the new membership matrix can be obtained through
Formula (13).

Step 4: after the clustering center is generated, we decide whether the result is con-
vergent by the objective function (10): when the condition is not met, return to step 3, and
complete the whole updating process through the cyclic iteration of Formulae (12) and (13).
When the convergence condition is satisfied, run the next step for clustering results output.

Step 5: output the final clustering center and membership matrix (i.e., the cluster
information of the RPs).

4. Experimental Results

To demonstrate the performance of the proposed RPs matching method, real-world exper-
iments have been carried out in a practical environment. The room is 9.64 × 7.04 × 2.95 m3,
where the noise is about 40 dB and the walls are not insulated. The simple scene and com-
plex scene of the experiments are shown in Figure 5. The positioning area is a rectangular
plane with a length of about 6 m and a width of about 5 m. The 4-channel microphone array
is composed of the MPA201 microphones produced by the BSWA Technology Co., Ltd.,
Beijing, China. The microphones are installed at four vertices of the positioning area with a
height of about 1.35 m above the floor. The type of the acquisition card is known as NI9215A
from NI company. The sampling frequency is set as 100 kHz, and the sampling period is
set as 1 s. The sound source is a bluetooth speaker with a height of 0.20 m embedded on a
mobile robot. Its shape is approximately cubic, and the sound unit is composed of three
identical speakers on three sides. In view of its small size and horizontal symmetry, its
directivity is not considered in this paper.

Bluetooth speaker 

and mobile robot
Microphones

(a) (b)

Figure 5. The experimental environment: (a) simple positioning scene; (b) complex positioning scene.

As shown in Figures 5a and 2(a1), in the simple positioning scene, the RPs for the posi-
tioning database are uniformly distributed in the location service area by grid division, and
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the distance between each RPs is 0.593 m. The total number of the RPs is 72, and there are
another 13 test points used for target point estimation. As shown in Figures 5b and 2(b1),
in the complex positioning scene, the uniformly distributed RPs in local areas are divided
by the obstacles (desks) in the location service area, and the distance between each RPs in a
local area is 0.593 m. The total number of RPs is 64, and there are another 18 test points
used for target point estimation.

4.1. Simple Scene

In order to investigate the effectiveness and stability of the greedy search algorithm
in searching the target point’s adjacent sub-database, this paper carried out a verification
experiment in a simple location scene indoors. The scale of the local search sub-database is
set as nine; that is, the current search center (a randomly selected RP of the database) and
the eight RPs around it are included in one search process. In the offline sampling stage,
the RPs have been sorted by row and column, so the relative positions of the RPs in the
database can be directly calculated and compared with the ordinal numbers of its rows and
columns. For example, if the RP(a, b) (the RP at row a and column b) is randomly selected
as the search center, other RPs of the local search group can be selected as:

RPa+1,b−1 RPa+1,b RPa+1,b+1
RPa,b−1 RPa,b RPa,b+1

RPa−1,b−1 RPa−1,b RPa+1,b+1

 (14)

The adjacent sub-database search process was independently run 10 times for each
test point, and the search results are shown in Table 1. Where, Stepw refers to the maximum
number of searching steps beyond the optimal number in 10 independent tests for each
test point:

Stepw = Max(stepsa
i−stepso

i ), i= 1, 2, . . . 10. (15)

and Stepm represents the average number of steps beyond the optimal number as:

Stepm =
1

10

10

∑
i=1

stepsa
i−stepso

i . (16)

As shown in Table 1, the actual searching steps are basically the same as the optimal
number for most test points, and the worst value is two steps beyond the optimal number.
Even with the initial search center randomly selected, the greedy search algorithm can
steadily find the adjacent sub-database that contains the locating target, and the search
path is close to the optimal path.

Table 1. The relative searching steps of the actual path to the ideal path at each test point.

No. Stepw Stepm

1 2 0.15
2 0 0
3 1 0.1
4 0 0
5 0 0
6 0 0
7 0 0
8 1 0.1
9 0 0
10 0 0
11 1 0.2
12 0 0
13 0 0
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As an example, the ninth test point was selected to illustrate the stability of the greedy
search algorithm. As shown in Figure 6, there are 9 different search paths appearing in the
10 independent searches, among which search path 3 in Figure 6c appeared 2 times. All the
search paths successfully completed the search of the adjacent sub-database, and all the
search paths except path 7 were optimal paths, but path 7 did not increase the time of the
search steps.
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(e) Path 5
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(g) Path 7
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(h) Path 8
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Figure 6. The search path of 10 independent tests for the ninth test point.

All of the test points gained equally precise results as the traditional linear matching
method in the experiments. What is more, as Figure 7 shows, RP numbers 54, 55, 60
and 62 are selected as the adjacent RPs of test point 9 by the traditional linear matching
method, where RP 60 is the mismatched adjacent RP, which results in test point 9 gaining
a positioning error of 0.1293 m at last, which is more than the position method based on
the greedy RPs searching method. By which the adjacent RPs mismatch phenomenon is
avoided, and the positioning error is improved to 0.0377 m.
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Figure 7. Adjacent RP searching results and position estimation results of the ninth test point based
on two RP matching methods.

4.2. Complex Scene

According to the analysis of the computational complexity in the online location
process based on clustering division, the more sub-databases divided into the offline stage,
the higher the positioning efficiency in the online process. However, excessive partitioning
of the location database may separate the real adjacent RPs of the same target point into
different sub-databases, thus affecting the results in the RPs mismatch and reducing the
positioning accuracy. The Fuzzy c-means method is used to analyze the positioning results
of different clustering number positions. The partitioning results of clustering numbers
ranging from 1 to 6 are shown in Figure 8.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
(m

)

X(m)

 

 
C1

(a) Partition result when c = 1

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
(m

)

X(m)

 

 
C1 C2

(b) Partition result when c = 2

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
(m

)

X(m)

 

 
C1 C2 C3

(c) Partition result when c = 3
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
(m

)

X(m)

 

 
C1 C2 C3 C4 C5

(e) Partition result when c = 5
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(f) Partition result when c = 6

Figure 8. The RP partition results of the Fuzzy c-means clustering method in a complex scene.



Appl. Sci. 2022, 12, 9956 12 of 14

When the clustering number is set as c = 1, 2, 3 and 4, RPs of the same sub-database are
tightly gathered in the connected areas. At the same time, the number of RPs in different
sub-databases are basically the same. However, as the partition count increases to 5, as
Figure 8e shows, 1 outlier appears in C2 (15 red points), 1 outlier appears in C4 (12 turquoise
points) and C3 (8 blue points) is scattered and contains significantly fewer RPs at the same
time. When the partition number increased to 6, as Figure 8f shows, 2 outliers appear in C2
(12 red points), 1 outlier appears in C4 (10 turquoise points) and, on the whole, the partition
results are obviously imbalanced.

The WKNN position estimation algorithm is adopted for the localization test. As
shown in Figure 9, the mean error and maximum error vary with the changes in the
number of clusters. Compared with the traditional SSL based on global linear RP matching,
the positioning accuracy of SSL based on the clustering analysis is slightly improved when
the clustering number is 2, 3 or 4. However, when the clustering number increased to 5,
the positioning results began to deteriorate significantly ,and the average error exceeded
0.1850 m, while the maximum error reached 0.7950 m. At the same time, 72.22% of test
points cannot meet the positioning accuracy requirement of 0.2000 m.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of partitions

E
rr

or
/m

 

 

Maximum error
Mean error

Figure 9. The mean error and maximum error of location estimation by different RP partition
numbers.

As Table 2 shows, there is a comparison of the traditional case without a partition
and four sub-databases cases based on clustering analysis. Where MQa means the average
matching quantity, MTa means the average matching time, Ea means the average error and
Em means the maximum error. The MQa is reduced by 74.1% through database partition
based on clustering analysis, which results in the according reduction of MTa in SSL based
on the two-level RP matching method. In the positioning accuracy comparison, compared
with the traditional linear matching method, the Ea and Em of the two-level matching
method based on database partitioning are improved by 13.18% and reduced by 8.47%,
respectively. The positioning accuracy between the two RPs matching methods is almost
the same.

Table 2. Comparison of the localization results between the traditional RPs matching method and the
novel method based on clustering analysis.

Matching
Method MQa/Times MTa/s Ea/m Em/m

No partition 64 0.0232 0.6402 0.1203
4 sub-databases 16.6 0.0052 0.5558 0.1305
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5. Conclusions

In this paper, a two-level RP matching strategy is proposed to improve the online
positioning efficiency of the fingerprint-based SSL method. In the first level search, the
greedy search algorithm and the Fuzzy c-means clustering algorithm are proposed sepa-
rately to shrink the RP search range of the second level search in the two indoor scenes of
different complexities. According to the local similarity in the global range of positioning
services in the simple indoors scene, the global optimum task of adjacent database search-
ing is divided into a series of local optimal problems of partial RP matching. The adjacent
sub-database is finally obtained through the continuous transfer of the local search center.
At the same time, according to local similarity characteristics in some local regions of the
positioning services area in the complex indoor scene, the positioning database is divided
into a certain number of sub-databases in the offline phase. In the online positioning phase,
the matching of the adjacent sub-database can be found for rapid adjacent RPs matching
on the promise of ensuring positioning accuracy. In general, the two-level PR matching
method can effectively improve the efficiency of SSL and improve the positioning accuracy
to a degree. However, the determination of the local search range in the greedy searching
algorithm and the clustering number in the database partition needs further study.
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