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Abstract: Industrial Internet of Things (IIoT) applies IoT technologies on industrial automation
systems with the aims of providing remote sensing, remote control, self-organization and self-
maintenance. Since IIoT systems often constitute a critical infrastructure, cybersecurity risks have
rapidly increased over the last years. To address cybersecurity requirements, we need to deploy
cryptographic processing components which are particularly efficient, considering also that many
IIoT systems have real-time constraints. Hardware acceleration can greatly improve the efficiency
of cryptographic functions, but the speed-up could be jeopardized by a bad hardware–software
integration, which is an aspect often underrated by the literature. Considering that modern IIoT
devices often mount an operating system to fulfill their complex tasks, software influence on effi-
ciency cannot be neglected. In this paper, we develop a software–hardware integration of various
cryptographic accelerators with a Linux operating system, and we test its performance with two
typical IIoT reference applications. We also discuss our design choices and the lessons learned during
the development process.

Keywords: industrial internet of things; cryptography; hardware acceleration; hardware–software
integration; driver; OpenSSL

1. Introduction

Industrial Internet of Things (IIoT) refers to the application of IoT technologies on
industrial automation systems. The aim is to provide capabilities of sensing, Internet-wide
communication, intelligent processing, self-organization and self-maintenance within in-
dustrial information and control architectures. Among the numerous applications of IIoT,
we can mention smart transportation, smart factories, smart grid, and so on. Real-time
requirements are often necessary in IIoT, due to the need to maintain the controllabil-
ity of the automation system, and due to latency criticality in general. As a result of the
widespread adoption of IIoT, cybersecurity threats against these systems are rapidly increas-
ing. The risks associated to IIoT cybersecurity incidents are particularly high, since many
IIoT systems are considered critical infrastructures. To address both cybersecurity and
real-time requirements, we need to deploy cryptographic processing components which
are both secure and efficient. Within this context, hardware acceleration of cryptographic
functionalities is paramount. However, we must also make an effort to efficiently integrate
such hardware with the software chain, otherwise, the intrinsic efficiency of hardware
cryptographic accelerators is wasted. This is especially important if we consider that many
IIoT devices are so complex nowadays that they need an operating system running on them.
The majority of papers that study efficiency aspects of hardware/software cryptographic
components typically focus on software only [1–4] or hardware only [5]. Very little research
is dedicated to efficient software–hardware integration.

In this paper, we study a software–hardware integration of various cryptographic
accelerators (namely, the ones presented in [6–9]) with a Linux operating system. We test
the performance of such an integration, and we discuss our design choices and the lessons
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learned during the optimization process. As a result, we find that some implementation
choices that may look reasonable when developing the hardware in isolation turn out to be
sub-optimal when integrating the hardware with existing software architectures.

Our reference applications are the remote software update of industrial robots (e.g.,
UGVs) and the remote industrial sensing (e.g., temperature or pressure measurements in
plants). We refer to such applications because they represent the extreme endpoints of the
spectrum with respect to the size of messages to be secured within IIoT applications. Indeed,
UGV firmware can easily reach megabytes in size, while messages sent by temperature or
pressure sensors are typically less than a kilobyte.

The rest of the paper is organized as follows. Section 2 introduces the necessary
preliminary concepts and compares with some related work. Section 3 describes our
hardware system and our hardware–software integration. Section 4 reports and discusses
our experimental results. Finally, Section 5 concludes the paper and reports the lessons
learned during the optimization process.

2. Preliminaries and Related Work
2.1. Preliminaries

The Advanced Encryption Standard (AES) is a symmetric-key encryption algorithm
standardized by the U.S. National Institute of Standards and Technology (NIST) in 2001 [10].
AES is a variant of the Rijndael cipher [11], which can work with different key lengths
and block sizes. In standardizing AES, NIST fixed the block size to 128 bits, while the
possible lengths of the key are 128, 192, and 256 bits. AES is included in the ISO/IEC
18033-3 standard, and it is currently the only cipher publicly approved by the U.S. National
Security Agency (NSA) for the protection of top secret information.

SHA-2 (Secure Hash Algorithm 2) is a family of cryptographic hash functions that
use the Merkle–Damgård construction with a one-way compression function that uses the
Davies–Meyer structure. SHA-2 family has been standardized by NIST in 2001 [12], and it
includes four hash functions with different digest sizes: SHA-224, SHA-256, SHA-384,
SHA-512. SHA-224 is a truncated version of SHA-256 with a different set of initial values.
The same holds for SHA-384 relatively to SHA-512.

SHA-3 (Secure Hash Algorithm 3), also called Keccak, is a family of cryptographic
hash functions that use a sponge construction [13]. SHA-3 has been standardized by NIST
in 2015 [14], with the aim not to supersede SHA-2, but rather to provide a backup hash
function family for it. Indeed, SHA-3 provides for the same digest sizes of SHA-2 (SHA3-
224, SHA3-256, SHA3-384, SHA3-512), but it uses a completely different approach than
SHA-2 in such a way that it is unlikely that new attacks discovered against SHA-2 also
apply to SHA-3.

From the standardization of the SHA-3 family in 2015 to now, the security industry has
not shown a wide adoption of it, and the majority of applications still relies on the SHA-2
hash family. The first reason for this is that SHA-2 has not been shown to have structural
weaknesses big enough to justify the switch, as instead happened in the transition from
MD5 to SHA-1 and from SHA-1 to SHA-2. The second reason is that SHA-3 performs slower
than SHA-2 when implemented in software. This is confirmed also by our experiments (see
Section 4). However, the high level of parallelization of SHA-3 allows us to implement it on
hardware accelerators (ASIC or FPGA) with better performance than SHA-2, both in terms
of processing time [15] and energy consumption [16]. This is the reason why SHA-3 is
expected to slowly replace SHA-2 in new developments, especially when SHA-3 hardware
accelerators will be widely available on processors.

2.2. Openssl Library

OpenSSL [17] is a widely adopted, user-space library that provides software imple-
mentations for most of the cryptographic algorithms and protocols such as AES, RSA or
TLS. The library exposes one (or more) API(s) calls for each operation; developers who
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want to add cryptographic operation in their application just need to initialize the structures
and invoke them in the correct order.

2.3. Related Work on HW Support to Security

In the current state of the art, in order to accelerate the computing of the main security
functions, many hardware (HW) secure co-processors have been proposed. The proposed
approaches at the state of art typically follow one of these two approaches: off-chip Trusted
Platform Model (TPM) and on-chip Hardware Security Module (HSM). In the TPM ap-
proach, standardized as ISO/IEC 11889, a dedicated security chip implements in HW some
security functions that are offloaded from the main application processor. The TPM secure
chip is assembled in the same electronic board with the application processor chip and they
communicate through a serial data interface such as I2C or SPI. TPM chips available in the
market typically support secure keys storage and authentication and encryption functions.
For example, the ST33GTPMAI2C chip [18] is compliant with Trusted Computing Group
(TCG) TPM Library spec. 2.0 and includes: AIS-31 Class PTG2 compliant true random
number generator (TRNG); FIPS compliant DRBG (Deterministic Random Bit Generator);
SHA-1, SHA-2 (256 and 384 bits) and SHA-3 (256 and 384 bits) hashing; AES-128, 192
and 256 bits and Triple DES (Data Encryption Standard) 192 bits symmetric encryption;
RSA key generation (1024, 2048 bits), signature and encryption; ECC (NIST P-256/384)
Key generation, ECDH (Elliptic-curve Diffie–Hellman) encryption, ECDSA (Elliptic-curve
Digital Signature Algorithm) signature/verification. The limitation of this approach is that
the communication between the application processor and the secure chip usually repre-
sents a performance bottleneck. The second approach foresees to modify the architecture
of the application processor with an on-chip peripheral that acts as a secure instruction
set extension. Examples of this approach are the crypto-cell IPs from ARM. For example,
the crypto-cell312 [19] is conceived to be integrated on-chip with Cortex-M or Cortex-R 32b
processors in IoT applications. The crypto-cell312 achieves 200 MHz in 40 nm technology
and supports in hardware HASH functions, such as SHA1, SHA2-256, HMAC (Hash-based
message authentication code), Symmetric cryptography Engine for AES (Advanced En-
cryption Standard) with 128-bit keys and Chacha20, Public-key cryptography based on
RSA and Elliptic Curve Discrete Logarithm problem. Being co-integrated on-chip with the
application core the security core does not suffer from bandwidth bottlenecks as in case
of off-chip TPM chips. However, the secure designer should carefully develop the driver
and low-level software (SW) needed to access from the application SW the secure services
provided by the HSM.

3. System Description
3.1. Hw Architecture of the Proposed System

The proposed secure system architecture for IoT applications foresees an HW architec-
ture described in this section and a low-level SW one described in Section 3.2.

The HW architecture is shown in Figure 1. It has been designed and verified in
SystemVerilog and includes the following blocks:

(i) A programmable application core based on RISC-V architecture with 64b instruction
set and AXI4 interconnect vs. peripherals;

(ii) Dedicated memories (Rom and SRAM) to store secure information;
(iii) independent crypto-accelerators connected via AXI4 to sustain computing intensive

secure algorithms like AES-128/256, SHA2/SHA3, RNG/DBRG and ECC-based
crypto functions;

(iv) One-time-programmable (OTP) memory and physically unclonable function (PUF)
for chip identification and secure boot (not shown).
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Figure 1. The hardware architecture of the proposed system.

The RISC-V core is a 6-stage single-issue 64b CVA6 Ariane [20] where the instruction
RAM (or L1 instruction cache) has an access latency of 1 cycle on a hit, while accesses to the
data RAM (or L1 data cache) have a longer latency of 3 cycles on a hit. The implementation
of RISC-V used in our research includes I, M and C extensions as specified in Volume I:
User-Level ISA V 2.1 as well as the draft privilege extension 1.10. A floating-point unit is
also added to the ALU thus supporting from int8 to FP32 data arithmetic.

The system is completed by 4 accelerators whose detailed architectures will be dis-
cussed shortly. Each accelerator is independent from the others and has a 128-b data
interface towards large data memories and a 32-b configuration interface towards the
application core.

Note that, in the first generation of the system, the DMA module (shown in Figure 1)
has been omitted to save circuit complexity, given the IoT target.

The AES core is detailed in [6]. It supports multiple AES-based block cipher modes,
including the more advanced cipher-based MAC (CMAC), counter with CBC-MAC (CCM),
Galois counter mode (GCM), and XOR-encrypt-XOR-based tweaked-codebook mode with
ciphertext stealing (XTS) modes. The proposed AES accelerator implements advanced and
innovative features in HW, such as AES key secure management, on-chip clock randomiza-
tion to improve the resistance to side channel attacks, and access privilege mechanisms.
The achieved performance when integrating the AES accelerator core in FPGA technology
(Xilinx VU37P device) is the capability to encrypt or decrypt a 160B file on average in
60 µs for AES-128 and 65 µs for AES-256, i.e., for an encryption data-rate of 21.3 Mb/s for
AES-128 and 19.7 Mb/s for AES-256. The AES accelerator complexity is 56 kGE (GE = gates
equivalent).

The hashing core is discussed in [7]. The proposed circuit supports all the SHA2 and
SHA-3 operative modes and is to be one of the hardware cryptographic accelerators within
the crypto-tile of the European Processor Initiative. The accelerator has been verified on
FPGA and synthesized on ASIC 7 nm TSMC silicon technology, with complexity ranging
from 15 kGE (SHA2-256) to about 30 kGE (SHA2-512), and 31 kGE (SHA3-256) to about
33 kGE (SHA3-512-384-256-224). The throughput in FPGA technology is 120 ns/B to
generate a 256-b hashing tag for a 8.4 kB file in SHA2. For smaller file size the throughput
decreases at 210 ns/B per file of 128 B.

The other two accelerators present in the HW architecture are an RNG core described
in [8], and an ECC engine described in [9]. We did not measure the performance of the
HW–SW integration of such accelerators in the present paper. We leave such a task for
future work.

We note that the above security throughput performance in FPGA technology refers
to the specific HW accelerator, but to be really exploited from the application software, a
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proper design of the accelerator driver and low-level firmware is needed. This is addressed
in Section 3.2.

3.2. Sw Architecture of the Proposed System

The system runs the Linux kernel with the userspace based on BusyBox. The Linux
Kernel, which natively supports RISC-V architecture, was not modified and its version is
5.11. It was cross-compiled, along with BusyBox version 1.33.0, using GCC version 10.2.0
and Buildroot [21] with standard optimizations. The latter is a useful tool that simplifies
the configuration and the building of the two mentioned components. Due to the limited
memory and processing power available on the system, the Linux Kernel was configured
just enabling the required options, such as the Crypto APIs [22], Kernel Modules or the
software implementation of cryptographic algorithms used in the experiments.

The kernel delegates the details of accessing each hardware device to device drivers.
When a new Linux device driver for a cryptographic accelerator is developed, there are
at least two approaches that can be followed: a “traditional” one, or one that follows the
Linux Crypto API. The traditional method creates a special device file in the /dev directory;
applications that want to use the device must interact with this file using the standard file
systems-calls: (read(), write(), ioctl(), and so on). These system calls define a minimal
“byte stream” abstraction, leaving all other details unspecified. Each device driver thus
ends up defining its own, custom set of operations for all the device features that do not fit
into the abstraction. This means that each application that wants to use any such device
must include code specific for it. The burden of supporting, e.g., a new kind of accelerator
device is thus left to the application developer.

The other approach, which uses the Linux Crypto API, solves this issue for crypto-
graphic hardware devices, by adding a more expressive abstraction layer for this domain.

Figure 2 shows the entire software/hardware stack that is used in the API. When a user
space application requests a cryptographic operation that is using the Crypto API, the oper-
ation is forwarded to the kernel who will dispatch it to hardware or software, according to
a priority-based list. The software implementation is provided by the Linux kernel itself,
as an alternative to OpenSSL. Hardware implementations usually have an higher priority
over software implementations. Applications that use this API are totally unaware of what
is used to compute the cryptographic operation, and thus can be accelerated, either in hard-
ware or with a more efficient software implementation, without any change to their code.
The only required action is that this new implementation must be added to the previously
mentioned list. Note that the Crypto API is also used by other Linux kernel subsystems to
implement features such as encrypted file systems and network communication.

Figure 2. Linux Crypto API Stack.

To use the Crypto API, the driver need not create a special file in the /dev directory;
instead, it must register itself with the kernel’s list of available cryptographic algorithms.
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Moreover, the driver developer must comply with the constrains posed by the Crypto APIs.
The interface between the driver and the kernel defines some function callbacks that carry
data and information about the operation that shall be executed. The order in which these
callbacks are called, and the information they carry, are out of the control of the driver
developer. This is a downside of the API, since the imposed framework may not be optimal
for the hardware that may, e.g., need to perform the operations in a different order.

The Crypto API callbacks that the drier implemented must differ for each algorithm
type, but the general schema is the following:

• init : it is for initializing data structures and configuring the device itself.
• update: it is the main function; here data are passed to the underlying implementation

and the operation can be performed.
• exit: when the operation is over or interrupted, it can be used for reading the output

(according to the crypto operation), deallocating the data structures and resetting the
device.

The update function is the one that differs the most according to the algorithm type.
For instance, for symmetric encryption data flow in both directions: input data are pro-
cessed and then sent back to the caller. Whereas, in message digest, no output is produced
at this stage.

The following are the callbacks for symmetric encryption:

Listing 1. Crypto API Callbacks for Symmetric Encryption.

1 i n t ( * setkey ) ( s t r u c t crypto_skc ipher * tfm , const u8 * key , unsigned i n t keylen ) ;
2 i n t ( * i n i t ) ( s t r u c t crypto_skc ipher * tfm ) ;
3 i n t ( * encrypt ) ( s t r u c t skc ipher_reques t * req ) ;
4 i n t ( * decrypt ) ( s t r u c t skc ipher_reques t * req ) ;
5 void ( * e x i t ) ( s t r u c t crypto_skc ipher * tfm ) ;

To set up an encryption or decryption request, the AES Engine requires three informa-
tion pieces:

• Key Size;
• Block cipher mode of operation: ECB, CBC, etc.;
• Encryption or Decryption.

The key size is provided to the hardware when the setkey callback is fired. The other
two information pieces are given inside the init and inside the encrypt/decrypt, respectively.
This has some consequences on the driver implementation because the operation can be
performed only when all these three pieces are known to the hardware.

The functions are listed in the call order. The first one that is invoked by the kernel
is the setkey. As a parameter of this function, the driver receives the symmetric key
that will be used for encrypting or decrypting. As explained in [6], in the AES Engine,
the key management system’s purpose is to set and then seal all the symmetric keys at boot
time in the accelerator, so that any software attack which tries to steal a key is prevented.
Unfortunately, this concept cannot be applied when using the Linux Crypto APIs: each key,
as far as the driver knows, is disposable and will (probably) not be reused.

Then the init function is called. Due to the way this accelerator shall be programmed,
the driver cannot perform any configuration on the hardware because it does not know
(yet) whether this cryptographic operation will be encryption or decryption.

The encrypt (or decrypt) function: this function is the main one. It uses two scat-
terlists for input and output data which require processing or have already been processed.
As mentioned above, the device configuration must be performed inside this function
because beforehand, the driver did not know what operation to perform. Once this step is
complete, the driver can then proceed with all the write and subsequent read operations
from the device.

As better explained in Section 4 with experiments and results, the MCU Interface used
for the I/O operation for this work, which is composed of 32-bit registers for Input and
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Output, although fully working, is not fast enough and cannot sustain a data rate that
would allow the device to reach 100% utilization. In other words, the device spends most
of its time waiting for data.

The exit function is called in two scenarios: when the operation is over or because the
requester has suddenly canceled the ongoing cryptographic operation. The driver does not
differentiate these two cases and for this reason, it resets the key slot and the entire engine,
so that it is ready for a new request.

4. Experimental Results

All the experiments were performed on a Virtex UltraScale+ HBM VCU128 FPGA,
implementing a soft-core RISC-V processor CVA6 along with the Crypto Tile cryptographic
accelerator. The CPU runs at 100MHz, whilst each accelerator’s engine has a different
operating frequency: 170MHz AES, 190MHz SHA and 260MHz RNG. The Linux Kernel’s
version is 5.11 and the userspace system is based on BusyBox v1.33.0.

In order to analyze the performance of AES and SHA using OpenSSL, the Kernel’s
implementation and the Crypto Tile, two applications were developed: the first one us-
ing Linux’s Crypto API and another one that takes advantage of OpenSSL’s libcrypto
implementation.

The first application was developed using libkcapi [23] v1.3.0, a library that handles all
of the communications with the kernel’s Crypto API interface. The application opens a file
passed as an argument and maps it in memory, then saves the initial timestamp. The crypto
operation is internally performed in chunks of 4096 bytes, which is the maximum allowed
by the kernel. When the last operation is completed, the timestamp is saved again and
the time difference, in milliseconds, is printed. For enhanced precision, the timestamp is
retrieved using a special register of the RISC-V processor called cycle, which contains the
number of clock cycles since bootstrap.

Since this application uses Linux’s Crypto API, it can be used to test both the kernel’s
implementation and the Crypto Tile. The kernel will select the highest-priority implemen-
tation among the available ones. Since the Crypto Tile implementation has a higher priority
than the software-based one, the desired selection can be forced by loading or unloading
the Crypto Tile driver.

The second application was developed using the OpenSSL library v1.1.1l. The overall
approach that has been followed is quite similar to the previous one: the operation is
performed on chunks; this time, the size of the chunks can be chosen arbitrarily. To
maximize performance, in order to compete with the accelerator, a single chunk, whose
size is the entire file, was used.

In each experiment, the cryptographic operation was performed 20 times. These repe-
titions were not obtained by restarting the application each time. Instead, the application
itself invokes the operation the required amount of times. This approach reduces all the
overheads related, for instance, to the creation or destruction of a process, thus reaching a
higher level of accuracy. The graphs plot the mean values thus obtained.

To understand the behavior of the algorithms and the hardware in different scenarios,
the aforementioned procedure was then repeated with files of increasing size: 512 B, 5 KB,
50 KB, 500 KB and 5 MB. These sizes were chosen according to the reference applications of
remote software update in robots and remote industrial sensing. Indeed, 512 B should be
the typical message of an industrial sensor measuring temperature or pressure data, while
5 MB should be a credible size of a small UGV firmware. All the sizes in between should fit
the messages of the majority of IIoT applications.

In Figures 3–5, the orange line represents the time taken by OpenSSL, the gray one—by
the software implementation inside the kernel (Crypto/SW), and the blue one is obtained
using the hardware accelerator (Crypto/HW).
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Figure 3. Time required to compute each SHA algorithm on increasing file sizes. (a) SHA-224.
(b) SHA-256. (c) SHA-384. (d) SHA-512.
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Figure 4. Time required to compute each SHA3 algorithm on increasing file sizes. (a) SHA3-224.
(b) SHA3-256. (c) SHA3-384. (d) SHA3-512.
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Figure 5. Time required to compute AES modes on increasing file sizes. (a) AES-ECB. (b) AES-CBC.

Figures 3–5, which cover all SHA algorithms and two AES modes, ECB and CBC,
clearly show that, for files smaller than 50 KB both Crypto/HW and Crypyo/SW show the
same performance, which is much worse than plain OpenSSL; for large files, the fastest
option is Crypto/HW, while Crypto/SW remains slower than OpenSSL in most scenarios.
There are several reasons behind these results: OpenSSL runs entirely in user-space, and this
means that there is no Linux-related overhead when performing the computations; in
particular, there is no need to cross the user/kernel interface to initialize the operation
and copy the user data. This is not true for both Crypto/HW and Crypto/SW because
they both live in the kernel-space, and several syscalls are necessary for setting up the
environment, including all the data, that must be made available to the kernel, via a copy
or using some other methods involving other system calls. This effect is predominant on
smaller files where most of the time is spent on initialization, and this explains why the
two Crypto solutions show the same performance in these cases. As the file size increases,
the setup overhead is gradually amortized over larger data transfers, the gap becomes
smaller and the hardware finally takes the lead, as expected. The difference between
Crypto/HW and Crypto/SW for large files can be directly attributed to the hardware
accelerators performance, but note that both solution still need several system calls and
data copies. This may partly explain why Crypto/SW remains worse than OpenSSL even
in these scenarios (this is most evident in Figure 4).

Some more experiments have been performed to more deeply understand how the
hardware’s time is spent. Generally speaking, the time required by an operation involving
an external device can be split into at least three parts: waiting time, kernel time and I/O
time. The first one is the time spent waiting for the operation to be completed. The second
one is the time required for the data to be copied from user to kernel space, and for all the
processing performed by the driver itself, excluding the I/O operations. The third one is
the time spent reading or writing the data themselves.

The waiting time is always zero. The driver in all the experiments finds the output to
be ready, and thus, it does not need to wait. The I/O time was not measured directly, but it
was calculated: the number of iowrite and ioreads times the amount of time required for a
single I/O operation. The first number can be easily obtained and depends on the file size.
The only missing piece is how long it takes to perform one of these operations. This was
estimated by executing a great number of I/O operations, measuring the overall time and
dividing by the number of operations performed. To measure the kernel time, a modified
version of the driver, named Sink, was realized removing every ioread or iowrite and then
the same benchmark as before was executed. The time measured was only related to Linux
and to the driver itself, who performed all the necessary calculations. Obviously, no output
digest was produced.

Table 1 shows, according to the previously explained experiments, how the hardware
time is spent in percentage. It is quite clear that for small files, most of the time is spent
inside Linux and less doing I/O and, as the file size increases, the situation is reversed. This
situation is uncommon because most of the time should be spent waiting and not inside
the kernel or performing I/O.
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Table 1. Crypto Tile time divided in sections while performing SHA3-512.

512 B 5 KiB 50 KiB 500 KiB 5 MiB

I/O 3.26% 23.91% 59.91% 84.36% 84.21%

Sink 94.98% 75.29% 34.46% 14.65% 12.87%

Waiting 0% 0% 0% 0% 0%

Total 98.24% 99.20% 94.37% 99.01% 97.08%

These results are perfectly in line regarding small file sizes, i.e., the Linux-related
overhead is predominant for files smaller than 50KiB. One interesting fact is that, for bigger
files, the hardware is limited by its I/O capabilities, and it could surely take less time
if data were provided faster. This fact is also confirmed by Figures 6 and 7, where is
plotted the time required to process a 5MB file by each SHA/AES algorithm in each of the
available options. It is quite clear that the time used by the hardware is independent and
constant from the chosen algorithm, while it changes when using the other two software-
based alternatives, even though the computational cost of all the algorithms is different.
In other words, the same pattern should also appear for the Crypto/HW section with
higher/lower computation time for computationally heavier/lighter algorithms. The main
cause, as explained before, is related to the I/O. The large cost of I/O also explains why the
performance advantage of Crypto/HW on AES over the software solutions (Figure 5) is
very small compared to SHA (Figure 3) and SHA3 (Figure 4): in AES, the bulk of the data
need to travel two times from memory to the accelerator and then back, as opposed to a
single time.
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5. Conclusions

We have developed a full-stack system, from hardware to Operating-System integra-
tion, for cryptographic acceleration. The implementation and the experimental results have
shown that hardware–software integration must be designed carefully from the early stages
of development: failure to do so may lead to unnecessary software complexity and even
the impossibility to extract the full performance from the hardware. One possible approach
is to follow the “hardware software co-design” approach, described in the literature [24,25].
In our case, the former problem manifested itself in the friction between the Linux Crypto
API and the hardware interface, while the latter problem was caused by a sub-optimal I/O
interface, which essentially limited the maximum available bandwidth. Indeed, the analysis
of the experimental results has proven that, once the OS Linux kernel and drivers have been
optimized, and thanks to the use of HW accelerator for crypto primitive computation, the
time bottleneck in providing secure services is represented by the communication latency
for data transfer. This is why in a second generation, the DMA core shown in Figure 1 has
been added. The new DMA core is connected via AXI-4 memory mapped interface (with
128-bit data size so that a whole AES block can be transferred in one single transaction) to
the cryptographic accelerator and to the local memory (SRAM).

Implementing a full system has also shown that the OS overhead may sometime mask
the acceleration potential: since the hardware accelerators must be accessed through the
inter-mediation of the OS kernel, which has a non negligible cost, cryptographic operations
on small data sets may be implemented more efficiently in software. Therefore, for re-
mote industrial sensing applications, where the typical message is very short, a solution
implemented entirely in userspace software is preferable, given the cost of current kernel
APIs; on the other end, for remote software updates which may involve several megabytes
of data, the hardware solution can give a tenfold speed-up even when integrated in a
commodity OS kernel such as Linux.

Limitations and Future Work

Even if the hardware/software integration were studied on a real, previously pub-
lished system, our study is still limited to a single use case.

As future work, we plan to study more efficient APIs for the integration of software and
crypto accelerators. For example, some of the ideas explored in network acceleration ([26])
may apply also to this domain. In addition, we plan to validate our assumption on the
reference applications (e.g., the size of the messages to be secured) against the most recent
literature about industrial ontology [27,28].
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