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Abstract: Planar MOS/MEMS gas sensors have been widely studied and applied, but the detection
of exhaled gas has been little developed. The flow rate of exhaled gas affects the suspension structure
of the MEMS gas sensor and the operating temperature of the gas sensor. Therefore, this study uses
the Bosch process and the atomic layer deposition (ALD) process to prepare a room-temperature
(RT) TSV-structured TiO2 gas sensor. The results indicated that the TiO2 sensing film is uniformed
and covers the through-silicon via (TSV) structure and the TiO2 sensing film is confirmed to be
a p-type MOS. In terms of gas sensing at room temperature, the response of the sensor increases
with the increasing NO concentration. The sensor response is 16.5% on average, with an inaccuracy
of <± 0.5% for five cycles at 4 ppm NO concentration. For gas at 10 ppm, the response of the sensor
to NO is 24.4%, but the sensor produces almost no response to other gases (CO, CO2, SO2, and H2S).
The RT TiO2 gas sensor with a TSV structure exhibits good stability, reversibility, and selectivity to
NO gas.

Keywords: TiO2; TSV; gas sensor

1. Introduction

Air quality is important since pollutant gases affect human health. Among them,
nitrogen dioxide (NO2) gas and nitric oxide (NO) gas are two types of nitrogen oxides
(NOx). The main source of these gases is as a natural product of fossil fuel combustion,
thus improving the fuel’s quality has an effect on production. Moreover, it was known that
combustion facilities and automobiles are the major pollutants of NOx gas. They cause
airway inflammation, acid rain, and photochemical smog [1–4]. In terms of the airway
inflammation, NO has been a subject of research in the biomedical field due to its pivotal
role in cell signaling and is implicated in the pathophysiology of various diseases [5,6]. In
a study by Kim et al., it was reported that by conducting tests on children who exhaled
NO, a link to allergic inflammation was observed [7]. Taylor et al. used exhaled NO
measurements to guide the management of chronic asthma [8].

Several types of gas sensors are commercially available. They are categorized as elec-
trochemical sensors, catalytic combustion sensors or optical sensors. In recent years, metal
oxide semiconductor (MOS) gas sensors have been widely studied. For instance, Pour et al.
reported the performance of gas nanosensor in 1–4% of hydrogen concentration [9]. In
addition, Aval et al. reported the influence of oxide film surface morphology and thickness
on the properties of gas sensitive nanostructure sensor [10]. These are categorized as n-type
semiconductors, such as SnO2 [11], ZnO [12], and WO3 [2], and p-type semiconductors,
such as CuO [13] and Co3O4 [14]. However, due to the convenience of the circuit design
and signal transmission, reducing gases are usually detected using n-type semiconduc-
tors and oxidizing gases are detected using p-type semiconductors. Titanium dioxide
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(TiO2) is an n-type semiconductor with a 3.0 eV energy gap and with the advantage of
chemical and thermal stability at room temperature, which contributes to its suitability
for gas sensing [15]. Some p-type TiO2 have been produced using a different growth
technology [16–18].

Three-dimensional (3D) through-silicon via (TSV) technology allows heterogeneous in-
tegration, low power consumption, and reduction in the size of component. Therefore, it is
widely used in integrated circuits (IC), humidity sensors [19], light-emitting diodes [20,21],
field emissions [22], and photo detectors [23]. Recently, various TSV processes were widely
developed, such as laser drilling [24], cryogenic etching [25], Bosch etching [26], and wet
anisotropic etching [27]. Among them, the Bosch process is widely used due to its high
etch rate, better profile control, and mask selectivity [26]. In addition, the Bosch process
creates scallops on the sidewalls [26], which increase the sensing surface of the gas sen-
sor. However, thin films are difficult to deposit on the surface of scallops. The atomic
layer deposition (ALD) process was found to have good step coverage, especially for TSV
structures [28].

This study uses a via-structured p-type TiO2 NO gas sensor that is produced by the
Bosch and the ALD process. During the gas measurement, the sensor is operated at RT. A
via-structured gas sensor makes the airflow considerably smoother than a MOS gas sensor
with a general structure, which is more suitable for the detection of exhaled gas, especially
for the detection of respiratory diseases, as shown in Figure 1. The via-structured formation,
the TiO2 fabrication, and the sensor’s sensing mechanism are described and discussed.
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Figure 1. (a) With and (b) without a TSV-structured gas sensor.

2. Materials and Methods

Figure 2 displays the sensor’s fabrication process diagram in this study. The fabrication
process has four stages. The first stage forms the via. The via’s pattern is defined on a
6” silicon (Si) wafer using standard exposure and development processes, then the Bosch
process [29] is utilized to etch Si for via’s formation, as shown in Figure 2a. The second
stage produces the isolation layer. An 85 nm Al2O3 isolation layer is deposited using an
ALD process to cover the surface and sidewall of the via structure, as shown in Figure 2b.
The third stage produces the sensing layer. A 75 nm TiO2 is deposited on Al2O3 as a sensing
layer using identical ALD equipment, as shown in Figure 2c. During the deposition of
the TiO2 sensing layer, the precursors are TiCl4 and H2O vapor with an 80 sccm nitrogen
(N2) carrier gas. The pressure and temperature for the process are 300 mtorr and at 300 ◦C,
respectively. The sequence for each cycle is H2O (0.5 s), N2 (30 s), TiCl4 (0.5 s), and N2 (30 s).
The TiO2 sensing layer is continuously fabricated for 1000 cycles. The final stage produces
the metal electrode. A 190 nm thick aluminum layer is prepared on the double side of the
substrate using radio frequency (RF) magnetron sputtering, as shown in Figure 2d.
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Figure 2. The sensor fabrication process diagram for (a) etching Si, (b) depositing Al2O3, (c) deposit-
ing TiO2, and (d) depositing Al, respectively.

The PlasmaPro 100 equipment was used to complete the Bosch process. The ALD was
fabricated using a Picosun. The crystallinity of the TiO2 sensing layer was analyzed using
an X-ray diffraction (XRD). The thickness of the Al2O3 and TiO2 and via’s structure was
determined using field-emission scanning electron microscopy (FESEM, Hitachi SU8000)
and a focus ion beam microscope (FIB). For gas sensor measurements, a home-made
instrument system was used to measure the sensor’s response. The system includes a
Keithley 2400, a personal computer, a gas injection port, and an 8.8-L volume chamber. The
NO gas used for measurement is a mixture of nitrogen and nitric oxide in a ratio of 97:3.
When measuring, the applied voltage of the sensor is 8 V, and a 1-L gas bag collects the gas.
Then, a micro syringe is used to inject the gas with an appropriate concentration from the
gas injection port into the test chamber [30].

3. Results

Figure 3a shows the top-view SEM image of the via-structured TiO2 sensor. The via is
almost square, with a side length of 270 um. Figure 3b shows the cross-sectional FIB image
of the via-structured TiO2 sensor. The via is 400 um deep. Figure 3c–e shows the FIB image
of the top, middle, and bottom of the via structure, respectively. These figures show that
the Al2O3 and TiO2 thin films are about 85 and 75 nm thick, respectively. The TiO2 and
Al2O3 films which are produced using ALD are uniform and cover the surface of the Si.
The Al electrode is 190 nm thick.

Figure 4 shows the micro-Raman spectrum for TiO2/Si at room temperature using a
532 nm solid laser excitation source. There is a strong and sharp peak at 522 cm−1. This
is attributed to the Si substrate. In addition, there is one weaker peak at 300 cm−1, which
is attributed to the SiO2 that is generated by the water vapor and the surface of the Si
substrate during the fabrication of the TiO2 thin film [31]. Then, there is one minor peak at
144 cm−1 and three other significantly weaker peaks at 199, 400, and 638 cm−1. These peaks
are attributed to the TiO2 thin film, which contains anatase crystals. The Raman peaks at
144, 199, and 638 cm−1 are attributed to the Raman mode position Eg mode for TiO2. These
Eg peaks are attributed to the symmetric stretching vibration of O-Ti-O [21]. The peak at
400 cm−1 is attributed to the B1g mode, which is probably related to the bending vibration
of O−Ti−O [32].
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Figure 4. The micro-Raman spectrum for TiO2/Si at room temperature.
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To confirm the structure of the TiO2 thin film, Figure 5 displays the XRD diffraction
pattern of the TiO2 thin film prepared by ALD. It was found that the main diffraction plane
and sub-main peak are the (101) and (200) planes, respectively. Moreover, it was found
that the reflections from the (101), (004), (200), (105), (211), and (204) planes correspond to
peaks at 2θ = 25.25◦, 38.41◦, 48.06◦, 53.63◦, 55.10◦, and 62.68◦, respectively. These features
of the XRD pattern indicate the presence of an anatase phase of TiO2 (JCPDS card no.
21-1272) [33].
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Figure 5. The XRD diffraction pattern of the TiO2 thin film prepared by ALD.

Hall measurement is used to confirm the type of metal oxide semiconductor material.
Figure 6 shows the I-V curve for the Hall measurement, which is linear. This shows that the
probes at the sample and measurement are in ohmic contact. The carrier concentration is
+3.84 × 1018 cm−3. The TiO2 thin film for this study that is produced using ALD is a p-type
semiconductor material, as well as the experimental conclusions that can be drawn.
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Electrons have an important role in the gas sensing mechanism for a p-type MOS
sensor. When the sensor is placed in air at room temperature, oxidizing gases (such as O2,
nitric oxide (NO), etc.) are chemisorbed onto the surface of the MOS sensor. O2 traps an
electron from the sensor’s surface to form oxygen ions (O2

−). The minority carriers in p-
type MOS are electrons (e−) and the majority carriers are holes (h+), thus when O2 captures
an electron, the number of hole carriers increases since the electron-hole (e−-h+) pair re-
combination is inhibited and the resistance of the sensor is decreased. When a reducing gas
(e.g., SO2, H2S, etc.) is injected, it reacts with oxygen ions, thus the trapped electrons return
to the material and there is an increase in e--h+ pair recombination and the resistance of the
p-type MOS increases. With this sensing mechanism, ((Rair − Rgas)/Rair) × 100 [34] and
((Rgas − Rair)/Rair) × 100 [35], respectively define the response of the sensor to oxidizing
gas and reducing gas, where Rair is the sensor’s resistance and Rgas is the sensor’s resistance
in air containing an oxidizing or reducing gas. Using this definition, Figure 7 displays
the sensor response of the TSV-structured TiO2 sensor. During the measurement, the NO
concentration is increased from 0.5 to 8 ppm and the sensor operates at room temperature
(RT). The respective sensor response for the TSV-structured TiO2 gas sensor is 6.4%, 8.2%,
10.9%, 16.7%, and 21.3% for NO concentrations of 0.5, 1, 2, 4, and 8 ppm. In other words,
the response of the sensor is increased with the increasing NO concentration.
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The stability and reproducibility of the TSV-structured TiO2 NO gas sensor was
measured over five cycles. Each cycle involves 5 min of NO gas injection and 5 min of
pumping, as shown in Figure 8. During the measurement, the NO concentration is 4 ppm
and the operating temperature is RT. The sensor’s resistance rapidly decreases when NO
gas is injected. The sensor’s resistance increases when the test chamber is pumped. Of
note, at this time, the ambient gas is also introduced. This dynamic behavior is consistent
with the sensing mechanism for a p-type MOS that is previously described. Using the same
definition for sensor response, the average sensor response is 16.5%, with an inaccuracy of
<±0.5%. In other words, the sensor is stable and reversible at RT. Moreover, it was found
that the average response and recovery time of the TSV-structured TiO2 NO gas sensor are
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about 109 and 144 s. The response and recovery time are defined as the time required for a
90% change in the signal. Furthermore, this result indicated that the TSV-structured TiO2
NO gas sensor had a better response and recovery time than the previous studies [36–40],
as shown in Table 1.
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Table 1. Comparison with the previously studied TiO2 nitric oxide gas sensor.

Materials Structure Concentration
(ppm)

Optimum
Operation

Temperature (◦C)

Response
Time (s.)

Recovery
Time (s.) Reference

TiO2NP/ZnO film Planar 10 360 492 336 [36]
TiO2-rGO

Nanocomposite Planar 2.75 RT 440 881 [37]

TiO2@NGQDs Planar 100 RT 235 285 [38]
PEDOT–PSS:DEG-TiO2 Planar 1 RT 416 33 [39]

TiO2 nanodot Planar 10 RT 91 184 [40]
TiO2 Film TSV 4 RT 109 144 This work

A MOS gas sensor must sense a specific gas selectively. Figure 9 shows the measure-
ments for a TSV-structured RT TiO2 gas sensor. During this experiment, CO2, SO2, H2S,
CO, and NO were injected at a flow rate of about 10 ppm. The sensor’s response to NO is
24.4%. The sensor is only very slightly responsive to gases, such as CO, H2S, SO2, and CO2.
The TiO2 gas sensor with TSV structure exhibits good selectivity to NO gas. This should be
attributed to the lower activation energy of TiO2 film for NO gas. Furthermore, since the
sensor operates at room temperature, the TiO2 surface is difficult to adsorb ionized oxygen
species. As a result, the response of the sensor is poor when reducing gases, such as CO2,
CO, H2S, and SO2, are introduced [41].
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4. Conclusions

This study uses the Bosch process to form a TSV structure and then uses the ALD
process to fabricate a TSV-structured TiO2 gas sensor. The FIB images show that the TiO2
sensing film uniformly covers the TSV structure. The Hall measurement confirms that the
TiO2 sensing film is a p-type MOS. The respective sensor response of the TSV-structured
TiO2 gas sensor to NO at room temperature is 6.4%, 8.2%, 10.9%, 16.7%, and 21.3% for NO
concentrations of 0.5, 1, 2, 4, and 8 ppm. In terms of the TSV-structured RT TiO2 NO gas
sensor’s stability and reproducibility, the sensor response is 16.5% on average, with an
inaccuracy of <±0.5%. In terms of selective gas measurement, the response of the sensor to
NO is 24.4%. The sensor is only very slightly responsive to gases, such as SO2, CO, H2S,
and CO2. In other words, a RT TiO2 gas sensor with a TSV structure exhibits good stability,
reversibility, and selectivity to NO gas.
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